Tag Archives: sensor
#438076 Boston Dynamics’ Spot Robot Is Now ...
Boston Dynamics has been working on an arm for its Spot quadruped for at least five years now. There have been plenty of teasers along the way, including this 45-second clip from early 2018 of Spot using its arm to open a door, which at 85 million views seems to be Boston Dynamics’ most popular video ever by a huge margin. Obviously, there’s a substantial amount of interest in turning Spot from a highly dynamic but mostly passive sensor platform into a mobile manipulator that can interact with its environment.
As anyone who’s done mobile manipulation will tell you, actually building an arm is just the first step—the really tricky part is getting that arm to do exactly what you want it to do. In particular, Spot’s arm needs to be able to interact with the world with some amount of autonomy in order to be commercially useful, because you can’t expect a human (remote or otherwise) to spend all their time positioning individual joints or whatever to pick something up. So the real question about this arm is whether Boston Dynamics has managed to get it to a point where it’s autonomous enough that users with relatively little robotics experience will be able to get it to do useful tasks without driving themselves nuts.
Today, Boston Dynamics is announcing commercial availability of the Spot arm, along with some improved software called Scout plus a self-charging dock that’ll give the robot even more independence. And to figure out exactly what Spot’s new arm can do, we spoke with Zachary Jackowski, Spot Chief Engineer at Boston Dynamics.
Although Boston Dynamics’ focus has been on dynamic mobility and legged robots, the company has been working on manipulation for a very long time. We first saw an arm prototype on an early iteration of Spot in 2016, where it demonstrated some impressive functionality, including loading a dishwasher and fetching a beer in a way that only resulted in a minor catastrophe. But we’re guessing that Spot’s arm can trace its history back to BigDog’s crazy powerful hydraulic face-arm, which was causing mayhem with cinder blocks back in 2013:
Spot’s arm is not quite that powerful (it has to drag cinder blocks along the ground rather than fling them into space), but you can certainly see the resemblance. Here’s the video that Boston Dynamics posted yesterday to introduce Spot’s new arm:
A couple of things jumped out from this video right away. First, Spot is doing whole body manipulation with its arm, as opposed to just acting as a four-legged base that brings the arm where it needs to go. Planning looks to be very tightly integrated, such that if you ask the robot to manipulate an object, its arm, legs, and torso all work together to optimize that manipulation. Also, when Spot flips that electrical switch, you see the robot successfully grasp the switch, and then reposition its body in a way that looks like it provides better leverage for the flip, which is a neat trick. It looks like it may be able to use the strength of its legs to augment the strength of its arm, as when it’s dragging the cinder block around, which is surely an homage to BigDog. The digging of a hole is particularly impressive. But again, the real question is how much of this is autonomous or semi-autonomous in a way that will be commercially useful?
Before we get to our interview with Spot Chief Engineer Zack Jackowski, it’s worth watching one more video that Boston Dynamics shared with us:
This is notable because Spot is opening a door that’s not ADA compliant, and the robot is doing it with a simple two-finger gripper. Most robots you see interacting with doors rely on ADA compliant hardware, meaning (among other things) a handle that can be pushed rather than a knob that has to be twisted, because it’s much more challenging for a robot to grasp and twist a smooth round door knob than it is to just kinda bash down on a handle. That capability, combined with Spot being able to pass through a spring-loaded door, potentially opens up a much wider array of human environments to the robot, and that’s where we started our conversation with Jackowski.
IEEE Spectrum: At what point did you decide that for Spot’s arm to be useful, it had to be able to handle round door knobs?
Zachary Jackowski: We're like a lot of roboticists, where someone in a meeting about manipulation would say “it's time for the round doorknob” and people would start groaning a little bit. But the reality is that, in order to make a robot useful, you have to engage with the environments that users have. Spot’s arm uses a very simple gripper—it’s a one degree of freedom gripper, but a ton of thought has gone into all of the fine geometric contours of it such that it can grab that ADA compliant lever handle, and it’ll also do an enclosing grasp around a round door knob. The major point of a robot like Spot is to engage with the environment you have, and so you can’t cut out stuff like round door knobs.
We're thrilled to be launching the arm and getting it out with users and to have them start telling us what doors it works really well on, and what they're having trouble with. And we're going to be working on rapidly improving all this stuff. We went through a few campaigns of like, “this isn’t ready until we can open every single door at Boston Dynamics!” But every single door at Boston Dynamics and at our test lab is a small fraction of all the doors in the world. So we're prepared to learn a lot this year.
When we see Spot open a door, or when it does those other manipulation behaviors in the launch video, how much of that is autonomous, how much is scripted, and to what extent is there a human in the loop?
All of the scenes where the robot does a pick, like the snow scene or the laundry scene, that is actually an almost fully integrated autonomous behavior that has a bit of a script wrapped around it. We trained a detector for an object, and the robot is identifying that object in the environment, picking it, and putting it in the bin all autonomously. The scripted part of that is telling the robot to perform a series of picks.
One of the things that we’re excited about, and that roboticists have been excited about going back probably all the way to the DRC, is semi-autonomous manipulation. And so we have modes built into the interface where if you see an object that you want the robot to grab, all you have to do is tap that object on the screen, and the robot will walk up to it, use the depth camera in its gripper to capture a depth map, and plan a grasp on its own in real time. That’s all built-in, too.
The jump rope—robots don’t just go and jump rope on their own. We scripted an arm motion to move the rope, and wrote a script using our API to coordinate all three robots. Drawing “Boston Dynamics” in chalk in our parking lot was scripted also. One of our engineers wrote a really cool G-code interpreter that vectorizes graphics so that Spot can draw them.
So for an end user, if you wanted Spot to autonomously flip some switches for you, you’d just have to train Spot on your switches, and then Spot could autonomously perform the task?
There are a couple of ways that task could break down depending on how you’re interfacing with the robot. If you’re a tablet user, you’d probably just identify the switch yourself on the tablet’s screen, and the robot will figure out the grasp, and grasp it. Then you’ll enter a constrained manipulation mode on the tablet, and the robot will be able to actuate the switch. But the robot will take care of the complicated controls aspects, like figuring out how hard it has to pull, the center of rotation of the switch, and so on.
The video of Spot digging was pretty cool—how did that work?
That’s mostly a scripted behavior. There are some really interesting control systems topics in there, like how you’d actually do the right kinds of force control while you insert the trowel into the dirt, and how to maintain robot stability while you do it. The higher level task of how to make a good hole in the dirt—that’s scripted. But the part of the problem that’s actually digging, you need the right control system to actually do that, or you’ll dig your trowel into the ground and flip your robot over.
The last time we saw Boston Dynamics robots flipping switches and turning valves I think might have been during the DRC in 2015, when they had expert robot operators with control over every degree of freedom. How are things different now with Spot, and will non-experts in the commercial space really be able to get the robot to do useful tasks?
A lot of the things, like “pick the stuff up in the room,” or ‘turn that switch,” can all be done by a lightly trained operator using just the tablet interface. If you want to actually command all of Spot’s arm degrees of freedom, you can do that— not through the tablet, but the API does expose all of it. That’s actually a notable difference from the base robot; we’ve never opened up the part of the API that lets you command individual leg degrees of freedom, because we don’t think it’s productive for someone to do that. The arm is a little bit different. There are a lot of smart people working on arm motion planning algorithms, and maybe you want to plan your arm trajectory in a super precise way and then do a DRC-style interface where you click to approve it. You can do all that through the API if you want, but fundamentally, it’s also user friendly. It follows our general API design philosophy of giving you the highest level pieces of the toolbox that will enable you to solve a complex problem that we haven't thought of.
Looking back on it now, it’s really cool to see, after so many years, robots do the stuff that Gill Pratt was excited about kicking off with the DRC. And now it’s just a thing you can buy.
Is Spot’s arm safe?
You should follow the same safety rules that you’d follow when working with Spot normally, and that’s that you shouldn’t get within two meters of the robot when it’s powered on. Spot is not a cobot. You shouldn’t hug it. Fundamentally, the places where the robot is the most valuable are places where people don’t want to be, or shouldn’t be.
We’ve seen how people reacted to earlier videos of Spot using its arm—can you help us set some reasonable expectations for what this means for Spot?
You know, it gets right back to the normal assumptions about our robots that people make that aren’t quite reality. All of this manipulation work we’re doing— the robot’s really acting as a tool. Even if it’s an autonomous behavior, it’s a tool. The robot is digging a hole because it’s got a set of instructions that say “apply this much force over this much distance here, here, and here.”
It’s not digging a hole and planting a tree because it loves trees, as much as I’d love to build a robot that works like that.
Photo: Boston Dynamics
There isn’t too much to say about the dock, except that it’s a requirement for making Spot long-term autonomous. The uncomfortable looking charging contacts that Spot impales itself on also include hardwired network connectivity, which is important because Spot often comes back home with a huge amount of data that all needs to be offloaded and processed. Docking and undocking are autonomous— as soon as the robot sees the fiducial markers on the dock, auto docking is enabled and it takes one click to settle the robot down.
During a brief remote demo, we also learned some other interesting things about Spot’s updated remote interface. It’s very latency tolerant, since you don’t have to drive the robot directly (although you can if you want to). Click a point on the camera view and Spot will move there autonomously while avoiding obstacles, meaning that even if you’re dealing with seconds of lag, the robot will continue making safe progress. This will be especially important if (when?) Spot starts exploring the Moon.
The remote interface also has an option to adjust how close Spot can get to obstacles, or to turn the obstacle avoidance off altogether. The latter functionality is useful if Spot sees something as an obstacle that really isn’t, like a curtain, while the former is useful if the robot is operating in an environment where it needs to give an especially wide berth to objects that could be dangerous to run into. “The robot’s not perfect—robots will never be perfect,” Jackowski reminds us, which is something we really (seriously) appreciate hearing from folks working on powerful, dynamic robots. “No matter how good the robot is, you should always de-risk as much as possible.”
Another part of that de-risking is having the user let Spot know when it’s about to go up or down some stairs by putting into “Stair Mode” with a toggle switch in the remote interface. Stairs are still a challenge for Spot, and Stair Mode slows the robot down and encourages it to pitch its body more aggressively to get a better view of the stairs. You’re encouraged to use stair mode, and also encouraged to send Spot up and down stairs with its “head” pointing up the stairs both ways, but these are not requirements for stair navigation— if you want to, you can send Spot down stairs head first without putting it in stair mode. Jackowski says that eventually, Spot will detect stairways by itself even when not in stair mode and adjust itself accordingly, but for now, that de-risking is solidly in the hands of the user.
Spot’s sensor payload, which is what we were trying out for the demo, provided a great opportunity for us to hear Spot STOMP STOMP STOMPING all over the place, which was also an opportunity for us to ask Jackowski why they can’t make Spot a little quieter. “It’s advantageous for Spot to step a little bit hard for the same reason it’s advantageous for you to step a little bit hard if you’re walking around blindfolded—that reason is that it really lets you know where the ground is, particularly when you’re not sure what to expect.” He adds, “It’s all in the name of robustness— the robot might be a little louder, but it’s a little more sure of its footing.”
Boston Dynamics isn’t yet ready to disclose the price of an arm-equipped Spot, but if you’re a potential customer, now is the time to contact the Boston Dynamics sales team to ask them about it. As a reminder, the base model of Spot costs US $74,500, with extra sensing or compute adding a substantial premium on top of that.
There will be a livestream launch event taking place at 11am ET today, during which Boston Dynamics’ CEO Robert Playter, VP of Marketing Michael Perry, and other folks from Boston Dynamics will make presentations on this new stuff. It’ll be live at this link, or you can watch it below. Continue reading →
#438006 Smellicopter Drone Uses Live Moth ...
Research into robotic sensing has, understandably I guess, been very human-centric. Most of us navigate and experience the world visually and in 3D, so robots tend to get covered with things like cameras and lidar. Touch is important to us, as is sound, so robots are getting pretty good with understanding tactile and auditory information, too. Smell, though? In most cases, smell doesn’t convey nearly as much information for us, so while it hasn’t exactly been ignored in robotics, it certainly isn’t the sensing modality of choice in most cases.
Part of the problem with smell sensing is that we just don’t have a good way of doing it, from a technical perspective. This has been a challenge for a long time, and it’s why we either bribe or trick animals like dogs, rats, vultures, and other animals to be our sensing systems for airborne chemicals. If only they’d do exactly what we wanted them to do all the time, this would be fine, but they don’t, so it’s not.
Until we get better at making chemical sensors, leveraging biology is the best we can do, and what would be ideal would be some sort of robot-animal hybrid cyborg thing. We’ve seen some attempts at remote controlled insects, but as it turns out, you can simplify things if you don’t use the entire insect, but instead just find a way to use its sensing system. Enter the Smellicopter.
There’s honestly not too much to say about the drone itself. It’s an open-source drone project called Crazyflie 2.0, with some additional off the shelf sensors for obstacle avoidance and stabilization. The interesting bits are a couple of passive fins that keep the drone pointed into the wind, and then the sensor, called an electroantennogram.
Image: UW
The drone’s sensor, called an electroantennogram, consists of a “single excised antenna” from a Manduca sexta hawkmoth and a custom signal processing circuit.
To make one of these sensors, you just, uh, “harvest” an antenna from a live hawkmoth. Obligingly, the moth antenna is hollow, meaning that you can stick electrodes up it. Whenever the olfactory neurons in the antenna (which is still technically alive even though it’s not attached to the moth anymore) encounter an odor that they’re looking for, they produce an electrical signal that the electrodes pick up. Plug the other ends of the electrodes into a voltage amplifier and filter, run it through an analog to digital converter, and you’ve got a chemical sensor that weighs just 1.5 gram and consumes only 2.7 mW of power. It’s significantly more sensitive than a conventional metal-oxide odor sensor, in a much smaller and more efficient form factor, making it ideal for drones.
To localize an odor, the Smellicopter uses a simple bioinspired approach called crosswind casting, which involves moving laterally left and right and then forward when an odor is detected. Here’s how it works:
The vehicle takes off to a height of 40 cm and then hovers for ten seconds to allow it time to orient upwind. The smellicopter starts casting left and right crosswind. When a volatile chemical is detected, the smellicopter will surge 25 cm upwind, and then resume casting. As long as the wind direction is fairly consistent, this strategy will bring the insect or robot increasingly closer to a singular source with each surge.
Since odors are airborne, they need a bit of a breeze to spread very far, and the Smellicopter won’t be able to detect them unless it’s downwind of the source. But, that’s just how odors work— even if you’re right next to the source, if the wind is blowing from you towards the source rather than the other way around, you might not catch a whiff of it.
Whenever the olfactory neurons in the antenna encounter an odor that they’re looking for, they produce an electrical signal that the electrodes pick up
There are a few other constraints to keep in mind with this sensor as well. First, rather than detecting something useful (like explosives), it’s going to detect the smells of pretty flowers, because moths like pretty flowers. Second, the antenna will literally go dead on you within a couple hours, since it only functions while its tissues are alive and metaphorically kicking. Interestingly, it may be possible to use CRISPR-based genetic modification to breed moths with antennae that do respond to useful smells, which would be a neat trick, and we asked the researchers—Melanie Anderson, a doctoral student of mechanical engineering at the University of Washington, in Seattle; Thomas Daniel, a UW professor of biology; and Sawyer Fuller, a UW assistant professor of mechanical engineering—about this, along with some other burning questions, via email.
IEEE Spectrum, asking the important questions first: So who came up with “Smellicopter”?
Melanie Anderson: Tom Daniel coined the term “Smellicopter”. Another runner up was “OdorRotor”!
In general, how much better are moths at odor localization than robots?
Melanie Anderson: Moths are excellent at odor detection and odor localization and need to be in order to find mates and food. Their antennae are much more sensitive and specialized than any portable man-made odor sensor. We can't ask the moths how exactly they search for odors so well, but being able to have the odor sensitivity of a moth on a flying platform is a big step in that direction.
Tom Daniel: Our best estimate is that they outperform robotic sensing by at least three orders of magnitude.
How does the localization behavior of the Smellicopter compare to that of a real moth?
Anderson: The cast-and-surge odor search strategy is a simplified version of what we believe the moth (and many other odor searching animals) are doing. It is a reactive strategy that relies on the knowledge that if you detect odor, you can assume that the source is somewhere up-wind of you. When you detect odor, you simply move upwind, and when you lose the odor signal you cast in a cross-wind direction until you regain the signal.
Can you elaborate on the potential for CRISPR to be able to engineer moths for the detection of specific chemicals?
Anderson: CRISPR is already currently being used to modify the odor detection pathways in moth species. It is one of our future efforts to specifically use this to make the antennae sensitive to other chemicals of interest, such as the chemical scent of explosives.
Sawyer Fuller: We think that one of the strengths of using a moth's antenna, in addition to its speed, is that it may provide a path to both high chemical specificity as well as high sensitivity. By expressing a preponderance of only one or a few chemosensors, we are anticipating that a moth antenna will give a strong response only to that chemical. There are several efforts underway in other research groups to make such specific, sensitive chemical detectors. Chemical sensing is an area where biology exceeds man-made systems in terms of efficiency, small size, and sensitivity. So that's why we think that the approach of trying to leverage biological machinery that already exists has some merit.
You mention that the antennae lifespan can be extended for a few days with ice- how feasible do you think this technology is outside of a research context?
Anderson: The antennae can be stored in tiny vials in a standard refrigerator or just with an ice pack to extend their life to about a week. Additionally, the process for attaching the antenna to the electrical circuit is a teachable skill. It is definitely feasible outside of a research context.
Considering the trajectory that sensor development is on, how long do you think that this biological sensor system will outperform conventional alternatives?
Anderson: It's hard to speak toward what will happen in the future, but currently, the moth antenna still stands out among any commercially-available portable sensors.
There have been some experiments with cybernetic insects; what are the advantages and disadvantages of your approach, as opposed to (say) putting some sort of tracking system on a live moth?
Daniel: I was part of a cyber insect team a number of years ago. The challenge of such research is that the animal has natural reactions to attempts to steer or control it.
Anderson: While moths are better at odor tracking than robots currently, the advantage of the drone platform is that we have control over it. We can tell it to constrain the search to a certain area, and return after it finishes searching.
What can you tell us about the health, happiness, and overall wellfare of the moths in your experiments?
Anderson: The moths are cold anesthetized before the antennae are removed. They are then frozen so that they can be used for teaching purposes or in other research efforts.
What are you working on next?
Daniel: The four big efforts are (1) CRISPR modification, (2) experiments aimed at improving the longevity of the antennal preparation, (3) improved measurements of antennal electrical responses to odors combined with machine learning to see if we can classify different odors, and (4) flight in outdoor environments.
Fuller: The moth's antenna sensor gives us a new ability to sense with a much shorter latency than was previously possible with similarly-sized sensors (e.g. semiconductor sensors). What exactly a robot agent should do to best take advantage of this is an open question. In particular, I think the speed may help it to zero in on plume sources in complex environments much more quickly. Think of places like indoor settings with flow down hallways that splits out at doorways, and in industrial settings festooned with pipes and equipment. We know that it is possible to search out and find odors in such scenarios, as anybody who has had to contend with an outbreak of fruit flies can attest. It is also known that these animals respond very quickly to sudden changes in odor that is present in such turbulent, patchy plumes. Since it is hard to reduce such plumes to a simple model, we think that machine learning may provide insights into how to best take advantage of the improved temporal plume information we now have available.
Tom Daniel also points out that the relative simplicity of this project (now that the UW researchers have it all figured out, that is) means that even high school students could potentially get involved in it, even if it’s on a ground robot rather than a drone. All the details are in the paper that was just published in Bioinspiration & Biomimetics. Continue reading →
#437990 Video Friday: Record-Breaking Drone Show ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
HRI 2021 – March 8-11, 2021 – [Online]
RoboSoft 2021 – April 12-16, 2021 – [Online]
Let us know if you have suggestions for next week, and enjoy today's videos.
A new parent STAR robot is presented. The parent robot has a tail on which the child robot can climb. By collaborating together, the two robots can reach locations that neither can reach on its own.
The parent robot can also supply the child robot with energy by recharging its batteries. The parent STAR can dispatch and recuperate the child STAR automatically (when aligned). The robots are fitted with sensors and controllers and have automatic capabilities but make no decisions on their own.
[ Bio-Inspired and Medical Robotics Lab ]
How TRI trains its robots.
[ TRI ]
The only thing more satisfying than one SCARA robot is two SCARA robots working together.
[ Fanuc ]
I'm not sure that this is strictly robotics, but it's so cool that it's worth a watch anyway.
[ Shinoda & Makino Lab ]
Flying insects heavily rely on optical flow for visual navigation and flight control. Roboticists have endowed small flying robots with optical flow control as well, since it requires just a tiny vision sensor. However, when using optical flow, the robots run into two problems that insects appear to have overcome. Firstly, since optical flow only provides mixed information on distances and velocities, using it for control leads to oscillations when getting closer to obstacles. Secondly, since optical flow provides very little information on obstacles in the direction of motion, it is hardest to detect obstacles that the robot is actually going to collide with! We propose a solution to these problems by means of a learning process.
[ Nature ]
A new Guinness World Record was set on Friday in north China for the longest animation performed by 600 unmanned aerial vehicles (UAVs).
[ Xinhua ]
Translucency is prevalent in everyday scenes. As such, perception of transparent objects is essential for robots to perform manipulation. In this work, we propose LIT, a two-stage method for transparent object pose estimation using light-field sensing and photorealistic rendering.
[ University of Michigan ] via [ Fetch Robotics ]
This paper reports the technological progress and performance of team “CERBERUS” after participating in the Tunnel and Urban Circuits of the DARPA Subterranean Challenge.
And here's a video report on the SubT Urban Beta Course performance:
[ CERBERUS ]
Congrats to Energy Robotics on 2 million euros in seed funding!
[ Energy Robotics ]
Thanks Stefan!
In just 2 minutes, watch HEBI robotics spending 23 minutes assembling a robot arm.
HEBI Robotics is hosting a webinar called 'Redefining the Robotic Arm' next week, which you can check out at the link below.
[ HEBI Robotics ]
Thanks Hardik!
Achieving versatile robot locomotion requires motor skills which can adapt to previously unseen situations. We propose a Multi-Expert Learning Architecture (MELA) that learns to generate adaptive skills from a group of representative expert skills. During training, MELA is first initialised by a distinct set of pre-trained experts, each in a separate deep neural network (DNN). Then by learning the combination of these DNNs using a Gating Neural Network (GNN), MELA can acquire more specialised experts and transitional skills across various locomotion modes.
[ Paper ]
Since the dawn of history, advances in science and technology have pursued “power” and “accuracy.” Initially, “hardness” in machines and materials was sought for reliable operations. In our area of Science of Soft Robots, we have combined emerging academic fields aimed at “softness” to increase the exposure and collaboration of researchers in different fields.
[ Science of Soft Robots ]
A team from the Laboratory of Robotics and IoT for Smart Precision Agriculture and Forestry at INESC TEC – Technology and Science are creating a ROS stack solution using Husky UGV for precision field crop agriculture.
[ Clearpath Robotics ]
Associate Professor Christopher J. Hasson in the Department of Physical Therapy is the director Neuromotor Systems Laboratory at Northeastern University. There he is working with a robotic arm to provide enhanced assistance to physical therapy patients, while maintaining the intimate therapist and patient relationship.
[ Northeastern ]
Mobile Robotic telePresence (MRP) systems aim to support enhanced collaboration between remote and local members of a given setting. But MRP systems also put the remote user in positions where they frequently rely on the help of local partners. Getting or ‘recruiting’ such help can be done with various verbal and embodied actions ranging in explicitness. In this paper, we look at how such recruitment occurs in video data drawn from an experiment where pairs of participants (one local, one remote) performed a timed searching task.
[ Microsoft Research ]
A presentation [from Team COSTAR] for the American Geophysical Union annual fall meeting on the application of robotic multi-sensor 3D Mapping for scientific exploration of caves. Lidar-based 3D maps are combined with visual/thermal/spectral/gas sensors to provide rich 3D context for scientific measurements map.
[ COSTAR ] Continue reading →
#437912 “Boston Dynamics Will Continue to ...
Last week’s announcement that Hyundai acquired Boston Dynamics from SoftBank left us with a lot of questions. We attempted to answer many of those questions ourselves, which is typically bad practice, but sometimes it’s the only option when news like that breaks.
Fortunately, yesterday we were able to speak with Michael Patrick Perry, vice president of business development at Boston Dynamics, who candidly answered our questions about Boston Dynamics’ new relationship with Hyundai and what the near future has in store.
IEEE Spectrum: Boston Dynamics is worth 1.1 billion dollars! Can you put that valuation into context for us?
Michael Patrick Perry: Since 2018, we’ve shifted to becoming a commercial organization. And that’s included a number of things, like taking our existing technology and bringing it to market for the first time. We’ve gone from zero to 400 Spot robots deployed, building out an ecosystem of software developers, sensor providers, and integrators. With that scale of deployment and looking at the pipeline of opportunities that we have lined up over the next year, I think people have started to believe that this isn’t just a one-off novelty—that there’s actual value that Spot is able to create. Secondly, with some of our efforts in the logistics market, we’re getting really strong signals both with our Pick product and also with some early discussions around Handle’s deployment in warehouses, which we think are going to be transformational for that industry.
So, the thing that’s really exciting is that two years ago, we were talking about this vision, and people said, “Wow, that sounds really cool, let’s see how you do.” And now we have the validation from the market saying both that this is actually useful, and that we’re able to execute. And that’s where I think we’re starting to see belief in the long-term viability of Boston Dynamics, not just as a cutting-edge research shop, but also as a business.
Photo: Boston Dynamics
Boston Dynamics says it has deployed 400 Spot robots, building out an “ecosystem of software developers, sensor providers, and integrators.”
How would you describe Hyundai’s overall vision for the future of robotics, and how do they want Boston Dynamics to fit into that vision?
In the immediate term, Hyundai’s focus is to continue our existing trajectories, with Spot, Handle, and Atlas. They believe in the work that we’ve done so far, and we think that combining with a partner that understands many of the industries in which we’re targeting, whether its manufacturing, construction, or logistics, can help us improve our products. And obviously as we start thinking about producing these robots at scale, Hyundai’s expertise in manufacturing is going to be really helpful for us.
Looking down the line, both Boston Dynamics and Hyundai believe in the value of smart mobility, and they’ve made a number of plays in that space. Whether it’s urban air mobility or autonomous driving, they’ve been really thinking about connecting the digital and the physical world through moving systems, whether that’s a car, a vertical takeoff and landing multi-rotor vehicle, or a robot. We are well positioned to take on robotics side of that while also connecting to some of these other autonomous services.
Can you tell us anything about the kind of robotics that the Hyundai Motor Group has going on right now?
So they’re working on a lot of really interesting stuff—exactly how that connects, you know, it’s early days, and we don’t have anything explicitly to share. But they’ve got a smart and talented robotics team that’s working in a variety of directions that shares overlap with us. Obviously, a lot of things related to autonomous driving shares some DNA with the work that we’re doing in autonomy for Spot and Handle, so it’s pretty exciting to see.
What are you most excited about here? How do you think this deal will benefit Boston Dynamics?
I think there are a number of things. One is that they have an expertise in hardware, in a way that’s unique. They understand and appreciate the complexity of creating large complex robotic systems. So I think there’s some shared understanding of what it takes to create a great hardware product. And then also they have the resources to help us actually build those products with them together—they have manufacturing resources and things like that.
“Robotics isn’t a short term game. We’ve scaled pretty rapidly but if you start looking at what the full potential of a company like Boston Dynamics is, it’s going to take years to realize, and I think Hyundai is committed to that long-term vision”
Another thing that’s exciting is that Hyundai has some pretty visionary bets for autonomous driving and unmanned aerial systems, and all of that fits very neatly into the connected vision of robotics that we were talking about before. Robotics isn’t a short term game. We’ve scaled pretty rapidly for a robotics company in terms of the scale of robots we’ve able to deploy in the field, but if you start looking at what the full potential of a company like Boston Dynamics is, it’s going to take years to realize, and I think Hyundai is committed to that long-term vision.
And when you’ve been talking with Hyundai, what are they most excited about?
I think they’re really excited about our existing products and our technology. Looking at some of the things that Spot, Pick, and Handle are able to do now, there are applications that many of Hyundai’s customers could benefit from in terms of mobility, remote sensing, and material handling. Looking down the line, Hyundai is also very interested in smart city technology, and mobile robotics is going to be a core piece of that.
We tend to focus on Spot and Handle and Atlas in terms of platform capabilities, but can you talk a bit about some of the component-level technology that’s unique to Boston Dynamics, and that could be of interest to Hyundai?
Creating very power-dense actuator design is something that we’ve been successful at for several years, starting back with BigDog and LS3. And Handle has some hydraulic actuators and valves that are pretty unique in terms of their design and capability. Fundamentally, we have a systems engineering approach that brings together both hardware and software internally. You’ll often see different groups that specialize in something, like great mechanical or electrical engineering groups, or great controls teams, but what I think makes Boston Dynamics so special is that we’re able to put everything on the table at once to create a system that’s incredibly capable. And that’s why with something like Spot, we’re able to produce it at scale, while also making it flexible enough for all the different applications that the robot is being used for right now.
It’s hard to talk specifics right now, but there are obviously other disciplines within mechanical engineering or electrical engineering or controls for robots or autonomous systems where some of our technology could be applied.
Photo: Boston Dynamics
Boston Dynamics is in the process of commercializing Handle, iterating on its design and planning to get box-moving robots on-site with customers in the next year or two.
While Boston Dynamics was part of Google, and then SoftBank, it seems like there’s been an effort to maintain independence. Is it going to be different with Hyundai? Will there be more direct integration or collaboration?
Obviously it’s early days, but right now, we have support to continue executing against all the plans that we have. That includes all the commercialization of Spot, as well as things for Atlas, which is really going to be pushing the capability of our team to expand into new areas. That’s going to be our immediate focus, and we don’t see anything that’s going to pull us away from that core focus in the near term.
As it stands right now, Boston Dynamics will continue to be Boston Dynamics under this new ownership.
How much of what you do at Boston Dynamics right now would you characterize as fundamental robotics research, and how much is commercialization? And how do you see that changing over the next couple of years?
We have been expanding our commercial team, but we certainly keep a lot of the core capabilities of fundamental robotics research. Some of it is very visible, like the new behavior development for Atlas where we’re pushing the limits of perception and path planning. But a lot of the stuff that we’re working on is a little bit under the hood, things that are less obvious—terrain handling, intervention handling, how to make safe faults, for example. Initially when Spot started slipping on things, it would flail around trying to get back up. We’ve had to figure out the right balance between the robot struggling to stand, and when it should decide to just lock its limbs and fall over because it’s safer to do that.
I’d say the other big thrust for us is manipulation. Our gripper for Spot is coming out early next year, and that’s going to unlock a new set of capabilities for us. We have years and years of locomotion experience, but the ability to manipulate is a space that’s still relatively new to us. So we’ve been ramping up a lot of work over the last several years trying to get to an early but still valuable iteration of the technology, and we’ll continue pushing on that as we start learning what’s most useful to our customers.
“I’d say the other big thrust for us is manipulation. Our gripper for Spot is coming out early next year, and that’s going to unlock a new set of capabilities for us. We have years and years of locomotion experience, but the ability to manipulate is a space that’s still relatively new to us”
Looking back, Spot as a commercial robot has a history that goes back to robots like LS3 and BigDog, which were very ambitious projects funded by agencies like DARPA without much in the way of commercial expectations. Do you think these very early stage, very expensive, very technical projects are still things that Boston Dynamics can take on?
Yes—I would point to a lot of the things we do with Atlas as an example of that. While we don’t have immediate plans to commercialize Atlas, we can point to technologies that come out of Atlas that have enabled some of our commercial efforts over time. There’s not necessarily a clear roadmap of how every piece of Atlas research is going to feed over into a commercial product; it’s more like, this is a really hard fundamental robotics challenge, so let’s tackle it and learn things that we can then benefit from across the company.
And fundamentally, our team loves doing cool stuff with robots, and you’ll continue seeing that in the months to come.
Photo: Boston Dynamics
Spot’s arm with gripper is coming out early next year, and Boston Dynamics says that’s going to “unlock a new set of capabilities for us.”
What would it take to commercialize Atlas? And are you getting closer with Handle?
We’re in the process of commercializing Handle. We’re at a relatively early stage, but we have a plan to get the first versions for box moving on-site with customers in the next year or two. Last year, we did some on-site deployments as proof-of-concept trials, and using the feedback from that, we did a new design pass on the robot, and we’re looking at increasing our manufacturing capability. That’s all in progress.
For Atlas, it’s like the Formula 1 of robots—you’re not going to take a Formula 1 car and try to make it less capable so that you can drive it on the road. We’re still trying to see what are some applications that would necessitate an energy and computationally intensive humanoid robot as opposed to something that’s more inherently stable. Trying to understand that application space is something that we’re interested in, and then down the line, we could look at creating new morphologies to help address specific applications. In many ways, Handle is the first version of that, where we said, “Atlas is good at moving boxes but it’s very complicated and expensive, so let’s create a simpler and smaller design that can achieve some of the same things.”
The press release mentioned a mobile robot for warehouses that will be introduced next year—is that Handle?
Yes, that’s the work that we’re doing on Handle.
As we start thinking about a whole robotic solution for the warehouse, we have to look beyond a high power, low footprint, dynamic platform like Handle and also consider things that are a little less exciting on video. We need a vision system that can look at a messy stack of boxes and figure out how to pick them up, we need an interface between a robot and an order building system—things where people might question why Boston Dynamics is focusing on them because it doesn’t fit in with our crazy backflipping robots, but it’s really incumbent on us to create that full end-to-end solution.
Are you confident that under Hyundai’s ownership, Boston Dynamics will be able to continue taking the risks required to remain on the cutting edge of robotics?
I think we will continue to push the envelope of what robots are capable of, and I think in the near term, you’ll be able to see that realized in our products and the research that we’re pushing forward with. 2021 is going to be a great year for us. Continue reading →
#437896 Solar-based Electronic Skin Generates ...
Replicating the human sense of touch is complicated—electronic skins need to be flexible, stretchable, and sensitive to temperature, pressure and texture; they need to be able to read biological data and provide electronic readouts. Therefore, how to power electronic skin for continuous, real-time use is a big challenge.
To address this, researchers from Glasgow University have developed an energy-generating e-skin made out of miniaturized solar cells, without dedicated touch sensors. The solar cells not only generate their own power—and some surplus—but also provide tactile capabilities for touch and proximity sensing. An early-view paper of their findings was published in IEEE Transactions on Robotics.
When exposed to a light source, the solar cells on the s-skin generate energy. If a cell is shadowed by an approaching object, the intensity of the light, and therefore the energy generated, reduces, dropping to zero when the cell makes contact with the object, confirming touch. In proximity mode, the light intensity tells you how far the object is with respect to the cell. “In real time, you can then compare the light intensity…and after calibration find out the distances,” says Ravinder Dahiya of the Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, where the study was carried out. The team used infra-red LEDs with the solar cells for proximity sensing for better results.
To demonstrate their concept, the researchers wrapped a generic 3D-printed robotic hand in their solar skin, which was then recorded interacting with its environment. The proof-of-concept tests showed an energy surplus of 383.3 mW from the palm of the robotic arm. “The eSkin could generate more than 100 W if present over the whole body area,” they reported in their paper.
“If you look at autonomous, battery-powered robots, putting an electronic skin [that] is consuming energy is a big problem because then it leads to reduced operational time,” says Dahiya. “On the other hand, if you have a skin which generates energy, then…it improves the operational time because you can continue to charge [during operation].” In essence, he says, they turned a challenge—how to power the large surface area of the skin—into an opportunity—by turning it into an energy-generating resource.
Dahiya envisages numerous applications for BEST’s innovative e-skin, given its material-integrated sensing capabilities, apart from the obvious use in robotics. For instance, in prosthetics: “[As] we are using [a] solar cell as a touch sensor itself…we are also [making it] less bulkier than other electronic skins.” This, he adds, will help create prosthetics that are of optimal weight and size, thus making it easier for prosthetics users. “If you look at electronic skin research, the the real action starts after it makes contact… Solar skin is a step ahead, because it will start to work when the object is approaching…[and] have more time to prepare for action.” This could effectively reduce the time lag that is often seen in brain–computer interfaces.
There are also possibilities in the automation sector, particularly in electrical and interactive vehicles. A car covered with solar e-skin, because of its proximity-sensing capabilities, would be able to “see” an approaching obstacle or a person. It isn’t “seeing” in the biological sense, Dahiya clarifies, but from the point of view of a machine. This can be integrated with other objects, not just cars, for a variety of uses. “Gestures can be recognized as well…[which] could be used for gesture-based control…in gaming or in other sectors.”
In the lab, tests were conducted with a single source of white light at 650 lux, but Dahiya feels there are interesting possibilities if they could work with multiple light sources that the e-skin could differentiate between. “We are exploring different AI techniques [for that],” he says, “processing the data in an innovative way [so] that we can identify the the directions of the light sources as well as the object.”
The BEST team’s achievement brings us closer to a flexible, self-powered, cost-effective electronic skin that can touch as well as “see.” At the moment, however, there are still some challenges. One of them is flexibility. In their prototype, they used commercial solar cells made of amorphous silicon, each 1cm x 1cm. “They are not flexible, but they are integrated on a flexible substrate,” Dahiya says. “We are currently exploring nanowire-based solar cells…[with which] we we hope to achieve good performance in terms of energy as well as sensing functionality.” Another shortcoming is what Dahiya calls “the integration challenge”—how to make the solar skin work with different materials. Continue reading →