Tag Archives: see
#437293 These Scientists Just Completed a 3D ...
Human brain maps are a dime a dozen these days. Maps that detail neurons in a certain region. Maps that draw out functional connections between those cells. Maps that dive deeper into gene expression. Or even meta-maps that combine all of the above.
But have you ever wondered: how well do those maps represent my brain? After all, no two brains are alike. And if we’re ever going to reverse-engineer the brain as a computer simulation—as Europe’s Human Brain Project is trying to do—shouldn’t we ask whose brain they’re hoping to simulate?
Enter a new kind of map: the Julich-Brain, a probabilistic map of human brains that accounts for individual differences using a computational framework. Rather than generating a static PDF of a brain map, the Julich-Brain atlas is also dynamic, in that it continuously changes to incorporate more recent brain mapping results. So far, the map has data from over 24,000 thinly sliced sections from 23 postmortem brains covering most years of adulthood at the cellular level. But the atlas can also continuously adapt to progress in mapping technologies to aid brain modeling and simulation, and link to other atlases and alternatives.
In other words, rather than “just another” human brain map, the Julich-Brain atlas is its own neuromapping API—one that could unite previous brain-mapping efforts with more modern methods.
“It is exciting to see how far the combination of brain research and digital technologies has progressed,” said Dr. Katrin Amunts of the Institute of Neuroscience and Medicine at Research Centre Jülich in Germany, who spearheaded the study.
The Old Dogma
The Julich-Brain atlas embraces traditional brain-mapping while also yanking the field into the 21st century.
First, the new atlas includes the brain’s cytoarchitecture, or how brain cells are organized. As brain maps go, these kinds of maps are the oldest and most fundamental. Rather than exploring how neurons talk to each other functionally—which is all the rage these days with connectome maps—cytoarchitecture maps draw out the physical arrangement of neurons.
Like a census, these maps literally capture how neurons are distributed in the brain, what they look like, and how they layer within and between different brain regions.
Because neurons aren’t packed together the same way between different brain regions, this provides a way to parse the brain into areas that can be further studied. When we say the brain’s “memory center,” the hippocampus, or the emotion center, the “amygdala,” these distinctions are based on cytoarchitectural maps.
Some may call this type of mapping “boring.” But cytoarchitecture maps form the very basis of any sort of neuroscience understanding. Like hand-drawn maps from early explorers sailing to the western hemisphere, these maps provide the brain’s geographical patterns from which we try to decipher functional connections. If brain regions are cities, then cytoarchitecture maps attempt to show trading or other “functional” activities that occur in the interlinking highways.
You might’ve heard of the most common cytoarchitecture map used today: the Brodmann map from 1909 (yup, that old), which divided the brain into classical regions based on the cells’ morphology and location. The map, while impactful, wasn’t able to account for brain differences between people. More recent brain-mapping technologies have allowed us to dig deeper into neuronal differences and divide the brain into more regions—180 areas in the cortex alone, compared with 43 in the original Brodmann map.
The new study took inspiration from that age-old map and transformed it into a digital ecosystem.
A Living Atlas
Work began on the Julich-Brain atlas in the mid-1990s, with a little help from the crowd.
The preparation of human tissue and its microstructural mapping, analysis, and data processing is incredibly labor-intensive, the authors lamented, making it impossible to do for the whole brain at high resolution in just one lab. To build their “Google Earth” for the brain, the team hooked up with EBRAINS, a shared computing platform set up by the Human Brain Project to promote collaboration between neuroscience labs in the EU.
First, the team acquired MRI scans of 23 postmortem brains, sliced the brains into wafer-thin sections, and scanned and digitized them. They corrected distortions from the chopping using data from the MRI scans and then lined up neurons in consecutive sections—picture putting together a 3D puzzle—to reconstruct the whole brain. Overall, the team had to analyze 24,000 brain sections, which prompted them to build a computational management system for individual brain sections—a win, because they could now track individual donor brains too.
Their method was quite clever. They first mapped their results to a brain template from a single person, called the MNI-Colin27 template. Because the reference brain was extremely detailed, this allowed the team to better figure out the location of brain cells and regions in a particular anatomical space.
However, MNI-Colin27’s brain isn’t your or my brain—or any of the brains the team analyzed. To dilute any of Colin’s potential brain quirks, the team also mapped their dataset onto an “average brain,” dubbed the ICBM2009c (catchy, I know).
This step allowed the team to “standardize” their results with everything else from the Human Connectome Project and the UK Biobank, kind of like adding their Google Maps layer to the existing map. To highlight individual brain differences, the team overlaid their dataset on existing ones, and looked for differences in the cytoarchitecture.
The microscopic architecture of neurons change between two areas (dotted line), forming the basis of different identifiable brain regions. To account for individual differences, the team also calculated a probability map (right hemisphere). Image credit: Forschungszentrum Juelich / Katrin Amunts
Based on structure alone, the brains were both remarkably different and shockingly similar at the same time. For example, the cortexes—the outermost layer of the brain—were physically different across donor brains of different age and sex. The region especially divergent between people was Broca’s region, which is traditionally linked to speech production. In contrast, parts of the visual cortex were almost identical between the brains.
The Brain-Mapping Future
Rather than relying on the brain’s visible “landmarks,” which can still differ between people, the probabilistic map is far more precise, the authors said.
What’s more, the map could also pool yet unmapped regions in the cortex—about 30 percent or so—into “gap maps,” providing neuroscientists with a better idea of what still needs to be understood.
“New maps are continuously replacing gap maps with progress in mapping while the process is captured and documented … Consequently, the atlas is not static but rather represents a ‘living map,’” the authors said.
Thanks to its structurally-sound architecture down to individual cells, the atlas can contribute to brain modeling and simulation down the line—especially for personalized brain models for neurological disorders such as seizures. Researchers can also use the framework for other species, and they can even incorporate new data-crunching processors into the workflow, such as mapping brain regions using artificial intelligence.
Fundamentally, the goal is to build shared resources to better understand the brain. “[These atlases] help us—and more and more researchers worldwide—to better understand the complex organization of the brain and to jointly uncover how things are connected,” the authors said.
Image credit: Richard Watts, PhD, University of Vermont and Fair Neuroimaging Lab, Oregon Health and Science University Continue reading
#437251 The Robot Revolution Was Televised: Our ...
When robots take over the world, Boston Dynamics may get a special shout-out in the acceptance speech.
“Do you, perchance, recall the many times you shoved our ancestors with a hockey stick on YouTube? It might have seemed like fun and games to you—but we remember.”
In the last decade, while industrial robots went about blandly automating boring tasks like the assembly of Teslas, Boston Dynamics built robots as far removed from Roombas as antelope from amoebas. The flaws in Asimov’s laws of robotics suddenly seemed a little too relevant.
The robot revolution was televised—on YouTube. With tens of millions of views, the robotics pioneer is the undisputed heavyweight champion of robot videos, and has been for years. Each new release is basically guaranteed press coverage—mostly stoking robot fear but occasionally eliciting compassion for the hardships of all robot-kind. And for good reason. The robots are not only some of the most advanced in the world, their makers just seem to have a knack for dynamite demos.
When Google acquired the company in 2013, it was a bombshell. One of the richest tech companies, with some of the most sophisticated AI capabilities, had just paired up with one of the world’s top makers of robots. And some walked on two legs like us.
Of course, the robots aren’t quite as advanced as they seem, and a revolution is far from imminent. The decade’s most meme-worthy moment was a video montage of robots, some of them by Boston Dynamics, falling—over and over and over, in the most awkward ways possible. Even today, they’re often controlled by a human handler behind the scenes, and the most jaw-dropping cuts can require several takes to nail. Google sold the company to SoftBank in 2017, saying advanced as they were, there wasn’t yet a clear path to commercial products. (Google’s robotics work was later halted and revived.)
Yet, despite it all, Boston Dynamics is still with us and still making sweet videos. Taken as a whole, the evolution in physical prowess over the years has been nothing short of astounding. And for the first time, this year, a Boston Dynamics robot, Spot, finally went on sale to anyone with a cool $75K.
So, we got to thinking: What are our favorite Boston Dynamics videos? And can we gather them up in one place for your (and our) viewing pleasure? Well, great question, and yes, why not. These videos were the ones that entertained or amazed us most (or both). No doubt, there are other beloved hits we missed or inadvertently omitted.
With that in mind, behold: Our favorite Boston Dynamics videos, from that one time they dressed up a humanoid bot in camo and gas mask—because, damn, that’s terrifying—to the time the most advanced robot dog in all the known universe got extra funky.
Let’s Kick This Off With a Big (Loud) Robot Dog
Let’s start with a baseline. BigDog was the first Boston Dynamics YouTube sensation. The year? 2009! The company was working on military contracts, and BigDog was supposed to be a sort of pack mule for soldiers. The video primarily shows off BigDog’s ability to balance on its own, right itself, and move over uneven terrain. Note the power source—a noisy combustion engine—and utilitarian design. Sufficed to say, things have evolved.
Nothing to See Here. Just a Pair of Robot Legs on a Treadmill
While BigDog is the ancestor of later four-legged robots, like Spot, Petman preceded the two-legged Atlas robot. Here, the Petman prototype, just a pair of robot legs and a caged torso, gets a light workout on the treadmill. Again, you can see its ability to balance and right itself when shoved. In contrast to BigDog, Petman is tethered for power (which is why it’s so quiet) and to catch it should it fall. Again, as you’ll see, things have evolved since then.
Robot in Gas Mask and Camo Goes for a Stroll
This one broke the internet—for obvious reasons. Not only is the robot wearing clothes, those clothes happen to be a camouflaged chemical protection suit and gas mask. Still working for the military, Boston Dynamics said Petman was testing protective clothing, and in addition to a full body, it had skin that actually sweated and was studded with sensors to detect leaks. In addition to walking, Petman does some light calisthenics as it prepares to climb out of the uncanny valley. (Still tethered though!)
This Machine Could Run Down Usain Bolt
If BigDog and Petman were built for balance and walking, Cheetah was built for speed. Here you can see the four-legged robot hitting 28.3 miles per hour, which, as the video casually notes, would be enough to run down the fastest human on the planet. Luckily, it wouldn’t be running down anyone as it was firmly leashed in the lab at this point.
Ever Dreamt of a Domestic Robot to Do the Dishes?
After its acquisition by Google, Boston Dynamics eased away from military contracts and applications. It was a return to more playful videos (like BigDog hitting the beach in Thailand and sporting bull horns) and applications that might be practical in civilian life. Here, the team introduced Spot, a streamlined version of BigDog, and showed it doing dishes, delivering a drink, and slipping on a banana peel (which was, of course, instantly made into a viral GIF). Note how much quieter Spot is thanks to an onboard battery and electric motor.
Spot Gets Funky
Nothing remotely practical here. Just funky moves. (Also, with a coat of yellow and black paint, Spot’s dressed more like a polished product as opposed to a utilitarian lab robot.)
Atlas Does Parkour…
Remember when Atlas was just a pair of legs on a treadmill? It’s amazing what ten years brings. By 2019, Atlas had a more polished appearance, like Spot, and had long ago ditched the tethers. Merely balancing was laughably archaic. The robot now had some amazing moves: like a handstand into a somersault, 180- and 360-degree spins, mid-air splits, and just for good measure, a gymnastics-style end to the routine to show it’s in full control.
…and a Backflip?!
To this day, this one is just. Insane.
10 Robot Dogs Tow a Box Truck
Nearly three decades after its founding, Boston Dynamics is steadily making its way into the commercial space. The company is pitching Spot as a multipurpose ‘mobility platform,’ emphasizing it can carry a varied suite of sensors and can go places standard robots can’t. (Its Handle robot is also set to move into warehouse automation.) So far, Spot’s been mostly trialed in surveying and data collection, but as this video suggests, string enough Spots together, and they could tow your car. That said, a pack of 10 would set you back $750K, so, it’s probably safe to say a tow truck is the better option (for now).
Image credit: Boston Dynamics Continue reading
#437236 Why We Need Mass Automation to ...
The scale of goods moving around the planet at any moment is staggering. Raw materials are dug up in one country, spun into parts and pieces in another, and assembled into products in a third. Crossing oceans and continents, they find their way to a local store or direct to your door.
Magically, a roll of toilet paper, power tool, or tube of toothpaste is there just when you need it.
Even more staggering is that this whole system, the global supply chain, works so well that it’s effectively invisible most of the time. Until now, that is. The pandemic has thrown a floodlight on the inner workings of this modern wonder—and it’s exposed massive vulnerabilities.
The e-commerce supply chain is an instructive example. As the world went into lockdown, and everything non-essential went online, demand for digital fulfillment skyrocketed.
Even under “normal” conditions, most e-commerce warehouses were struggling to meet demand. But Covid-19 has further strained the ability to cope with shifting supply, an unprecedented tidal wave of orders, and labor shortages. Local stores are running out of key products. Online grocers and e-commerce platforms are suspending some home deliveries, restricting online purchases of certain items, and limiting new customers. The whole system is being severely tested.
Why? Despite an abundance of 21st century technology, we’re stuck in the 20th century.
Today’s supply chain consists of fleets of ships, trucks, warehouses, and importantly, people scattered around the world. While there are some notable instances of advanced automation, the overwhelming majority of work is still manual, resembling a sort of human-powered bucket brigade, with people wandering around warehouses or standing alongside conveyor belts. Each package of diapers or bottle of detergent ordered by an online customer might be touched dozens of times by warehouse workers before finding its way into a box delivered to a home.
The pandemic has proven the critical need for innovation due to increased demand, concerns about the health and safety of workers, and traceability and safety of products and services.
At the 2020 World Economic Forum, there was much discussion about the ongoing societal transformation in which humans and machines work in tandem, automating and augmenting the way we get things done. At the time, pre-pandemic, debate trended toward skepticism and fear of job losses, with some even questioning the ethics and need for these technologies.
Now, we see things differently. To make the global supply chain more resilient to shocks like Covid-19, we must look to technology.
Perfecting the Global Supply Chain: The Massive ‘Matter Router’
Technology has faced and overcome similar challenges in the past.
World War II, for example, drove innovation in techniques for rapid production of many products on a large scale, including penicillin. We went from the availability of one dose of the drug in 1941, to four million sterile packages of the drug every month four years later.
Similarly, today’s companies, big and small, are looking to automation, robotics, and AI to meet the pandemic head on. These technologies are crucial to scaling the infrastructure that will fulfill most of the world’s e-commerce and food distribution needs.
You can think of this new infrastructure as a rapidly evolving “matter router” that will employ increasingly complex robotic systems to move products more freely and efficiently.
Robots powered by specialized AI software, for example, are already learning to adapt to changes in the environment, using the most recent advances in industrial robotics and machine learning. When customers suddenly need to order dramatically new items, these robots don’t need to stop or be reprogrammed. They can perform new tasks by learning from experience using low-cost camera systems and deep learning for visual and image recognition.
These more flexible robots can work around the clock, helping make facilities less sensitive to sudden changes in workforce and customer demand and strengthening the supply chain.
Today, e-commerce is roughly 12% of retail sales in the US and is expected to rise well beyond 25% within the decade, fueled by changes in buying habits. However, analysts have begun to consider whether the current crisis might cause permanent jumps in those numbers, as it has in the past (for instance with the SARS epidemic in China in 2003). Whatever happens, the larger supply chain will benefit from greater, more flexible automation, especially during global crises.
We must create what Hamza Mudassire of the University of Cambridge calls a “resilient ecosystem that links multiple buyers with multiple vendors, across a mesh of supply chains.” This ecosystem must be backed by robust, efficient, and scalable automation that uses robotics, autonomous vehicles, and the Internet of Things to help track the flow of goods through the supply chain.
The good news? We can accomplish this with technologies we have today.
Image credit: Guillaume Bolduc / Unsplash Continue reading
#437216 New Report: Tech Could Fuel an Age of ...
With rapid technological progress running headlong into dramatic climate change and widening inequality, most experts agree the coming decade will be tumultuous. But a new report predicts it could actually make or break civilization as we know it.
The idea that humanity is facing a major shake-up this century is not new. The Fourth Industrial Revolution being brought about by technologies like AI, gene editing, robotics, and 3D printing is predicted to cause dramatic social, political, and economic upheaval in the coming decades.
But according to think tank RethinkX, thinking about the coming transition as just another industrial revolution is too simplistic. In a report released last week called Rethinking Humanity, the authors argue that we are about to see a reordering of our relationship with the world as fundamental as when hunter-gatherers came together to build the first civilizations.
At the core of their argument is the fact that since the first large human settlements appeared 10,000 years ago, civilization has been built on the back of our ability to extract resources from nature, be they food, energy, or materials. This led to a competitive landscape where the governing logic is grow or die, which has driven all civilizations to date.
That could be about to change thanks to emerging technologies that will fundamentally disrupt the five foundational sectors underpinning society: information, energy, food, transportation, and materials. They predict that across all five, costs will fall by 10 times or more, while production processes will become 10 times more efficient and will use 90 percent fewer natural resources with 10 to 100 times less waste.
They say that this transformation has already happened in information, where the internet has dramatically reduced barriers to communication and knowledge. They predict the combination of cheap solar and grid storage will soon see energy costs drop as low as one cent per kilowatt hour, and they envisage widespread adoption of autonomous electric vehicles and the replacement of car ownership with ride-sharing.
The authors laid out their vision for the future of food in another report last year, where they predicted that traditional agriculture would soon be replaced by industrial-scale brewing of single-celled organisms genetically modified to produce all the nutrients we need. In a similar vein, they believe the same processes combined with additive manufacturing and “nanotechnologies” will allow us to build all the materials required for the modern world from the molecule up rather than extracting scarce natural resources.
They believe this could allow us to shift from a system of production based on extraction to one built on creation, as limitless renewable energy makes it possible to build everything we need from scratch and barriers to movement and information disappear. As a result, a lifestyle worthy of the “American Dream” could be available to anyone for as little as $250/month by 2030.
This will require a fundamental reimagining of our societies, though. All great civilizations have eventually hit fundamental limits on their growth and we are no different, as demonstrated by our growing impact on the environment and the increasing concentration of wealth. Historically this stage of development has lead to a doubling down on old tactics in search of short-term gains, but this invariably leads to the collapse of the civilization.
The authors argue that we’re in a unique position. Because of the technological disruption detailed above, we have the ability to break through the limits on our growth. But only if we change what the authors call our “Organizing System.” They describe this as “the prevailing models of thought, belief systems, myths, values, abstractions, and conceptual frameworks that help explain how the world works and our relationship to it.”
They say that the current hierarchical, centralized system based on nation-states is unfit for the new system of production that is emerging. The cracks are already starting to appear, with problems like disinformation campaigns, fake news, and growing polarization demonstrating how ill-suited our institutions are for dealing with the distributed nature of today’s information systems. And as this same disruption comes to the other foundational sectors the shockwaves could lead to the collapse of civilization as we know it.
Their solution is a conscious shift towards a new way of organizing the world. As emerging technology allows communities to become self-sufficient, flows of physical resources will be replaced by flows of information, and we will require a decentralized but highly networked Organizing System.
The report includes detailed recommendations on how to usher this in. Examples include giving individuals control and ownership of data rights; developing new models for community ownership of energy, information, and transportation networks; and allowing states and cities far greater autonomy on policies like immigration, taxation, education, and public expenditure.
How easy it will be to get people on board with such a shift is another matter. The authors say it may require us to re-examine the foundations of our society, like representative democracy, capitalism, and nation-states. While they acknowledge that these ideas are deeply entrenched, they appear to believe we can reason our way around them.
That seems optimistic. Cultural and societal change can be glacial, and efforts to impose it top-down through reason and logic are rarely successful. The report seems to brush over many of the messy realities of humanity, such as the huge sway that tradition and religion hold over the vast majority of people.
It also doesn’t deal with the uneven distribution of the technology that is supposed to catapult us into this new age. And while the predicted revolutions in transportation, energy, and information do seem inevitable, the idea that in the next decade or two we’ll be able to produce any material we desire using cheap and abundant stock materials seems like a stretch.
Despite the techno-utopianism though, many of the ideas in the report hold promise for building societies that are better adapted for the disruptive new age we are about to enter.
Image Credit: Futuristic Society/flickr Continue reading