Tag Archives: Science Robotics

#437778 A Bug-Sized Camera for Bug-Sized Robots ...

As if it’s not hard enough to make very small mobile robots, once you’ve gotten the power and autonomy all figured out (good luck with that), your robot isn’t going to be all that useful unless it can carry some payload. And the payload that everybody wants robots to carry is a camera, which is of course a relatively big, heavy, power hungry payload. Great, just great.

This whole thing is frustrating because tiny, lightweight, power efficient vision systems are all around us. Literally, all around us right this second, stuffed into the heads of insects. We can’t make anything quite that brilliant (yet), but roboticists from the University of Washington, in Seattle, have gotten us a bit closer, with the smallest wireless, steerable video camera we’ve ever seen—small enough to fit on the back of a microbot, or even a live bug.

To make a camera this small, the UW researchers, led by Shyam Gollakota, a professor of computer science and engineering, had to start nearly from scratch, primarily because existing systems aren’t nearly so constrained by power availability. Even things like swallowable pill cameras require batteries that weigh more than a gram, but only power the camera for under half an hour. With a focus on small size and efficiency, they started with an off-the-shelf ultra low-power image sensor that’s 2.3 mm wide and weighs 6.7 mg. They stuck on a Bluetooth 5.0 chip (3 mm wide, 6.8 mg), and had a fun time connecting those two things together without any intermediary hardware to broadcast the camera output. A functional wireless camera also requires a lens (20 mg) and an antenna, which is just 5 mm of wire. An accelerometer is useful so that insect motion can be used to trigger the camera, minimizing the redundant frames that you’d get from a robot or an insect taking a nap.

Photo: University of Washington

The microcamera developed by the UW researchers can stream monochrome video at up to 5 frames per second to a cellphone 120 meters away.

The last bit to make up this system is a mechanically steerable “head,” weighing 35 mg and bringing the total weight of the wireless camera system to 84 mg. If the look of the little piezoelectric actuator seems familiar, you have very good eyes because it’s tiny, and also, it’s the same kind of piezoelectric actuator that the folks at UW use to power their itty bitty flying robots. It’s got a 60-degree panning range, but also requires a 96 mg boost converter to function, which is a huge investment in size and weight just to be able to point the camera a little bit. But overall, the researchers say that this pays off, because not having to turn the entire robot (or insect) when you want to look around reduces the energy consumption of the system as a whole by a factor of up to 84 (!).

Photo: University of Washington

Insects are very mobile platforms for outdoor use, but they’re also not easy to steer, so the researchers also built a little insect-scale robot that they could remotely control while watching the camera feed. As it turns out, this seems to be the smallest, power-autonomous terrestrial robot with a camera ever made.

This efficiency means that the wireless camera system can stream video frames (160×120 pixels monochrome) to a cell phone up to 120 meters away for up to 6 hours when powered by a 0.5-g, 10-mAh battery. A live, first-bug view can be streamed at up to 5 frames per second. The system was successfully tested on a pair of darkling beetles that were allowed to roam freely outdoors, and the researchers noted that they could also mount it on spiders or moths, or anything else that could handle the payload. (The researchers removed the electronics from the insects after the experiments and observed no noticeable adverse effects on their behavior.)

The researchers are already thinking about what it might take to put a wireless camera system on something that flies, and it’s not going to be easy—a bumblebee can only carry between 100 and 200 mg. The power system is the primary limitation here, but it might be possible to use a solar cell to cut down on battery requirements. And the camera itself could be scaled down as well, by using a completely custom sensor and a different type of lens. The other thing to consider is that with a long-range wireless link and a vision system, it’s possible to add sophisticated vision-based autonomy to tiny robots by doing the computation remotely. So, next time you see something scuttling across the ground, give it another look, because it might be looking right back at you.

“Wireless steerable vision for live insects and insect-scale robots,” by Vikram Iyer, Ali Najafi, Johannes James, Sawyer Fuller, and Shyamnath Gollakota from the University of Washington, is published in Science Robotics. Continue reading

Posted in Human Robots

#437747 High Performance Ornithopter Drone Is ...

The vast majority of drones are rotary-wing systems (like quadrotors), and for good reason: They’re cheap, they’re easy, they scale up and down well, and we’re getting quite good at controlling them, even in very challenging environments. For most applications, though, drones lose out to birds and their flapping wings in almost every way—flapping wings are very efficient, enable astonishing agility, and are much safer, able to make compliant contact with surfaces rather than shredding them like a rotor system does. But flapping wing have their challenges too: Making flapping-wing robots is so much more difficult than just duct taping spinning motors to a frame that, with a few exceptions, we haven’t seen nearly as much improvement as we have in more conventional drones.

In Science Robotics last week, a group of roboticists from Singapore, Australia, China, and Taiwan described a new design for a flapping-wing robot that offers enough thrust and control authority to make stable transitions between aggressive flight modes—like flipping and diving—while also being able to efficiently glide and gently land. While still more complex than a quadrotor in both hardware and software, this ornithopter’s advantages might make it worthwhile.

One reason that making a flapping-wing robot is difficult is because the wings have to move back and forth at high speed while electric motors spin around and around at high speed. This requires a relatively complex transmission system, which (if you don’t do it carefully), leads to weight penalties and a significant loss of efficiency. One particular challenge is that the reciprocating mass of the wings tends to cause the entire robot to flex back and forth, which alternately binds and disengages elements in the transmission system.

The researchers’ new ornithopter design mitigates the flexing problem using hinges and bearings in pairs. Elastic elements also help improve efficiency, and the ornithopter is in fact more efficient with its flapping wings than it would be with a rotary propeller-based propulsion system. Its thrust exceeds its 26-gram mass by 40 percent, which is where much of the aerobatic capability comes from. And one of the most surprising findings of this paper was that flapping-wing robots can actually be more efficient than propeller-based aircraft.

One of the most surprising findings of this paper was that flapping-wing robots can actually be more efficient than propeller-based aircraft

It’s not just thrust that’s a challenge for ornithopters: Control is much more complex as well. Like birds, ornithopters have tails, but unlike birds, they have to rely almost entirely on tail control authority, not having that bird-level of control over fine wing movements. To make an acrobatic level of control possible, the tail control surfaces on this ornithopter are huge—the tail plane area is 35 percent of the wing area. The wings can also provide some assistance in specific circumstances, as by combining tail control inputs with a deliberate stall of the things to allow the ornithopter to execute rapid flips.

With the ability to take off, hover, glide, land softly, maneuver acrobatically, fly quietly, and interact with its environment in a way that’s not (immediately) catastrophic, flapping-wing drones easily offer enough advantages to keep them interesting. Now that ornithopters been shown to be even more efficient than rotorcraft, the researchers plan to focus on autonomy with the goal of moving their robot toward real-world usefulness.

“Efficient flapping wing drone arrests high-speed flight using post-stall soaring,” by Yao-Wei Chin, Jia Ming Kok, Yong-Qiang Zhu, Woei-Leong Chan, Javaan S. Chahl, Boo Cheong Khoo, and Gih-Keong Lau from from Nanyang Technological University in Singapore, National University of Singapore, Defence Science and Technology Group in Canberra, Australia, Qingdao University of Technology in Shandong, China, University of South Australia in Mawson Lakes, and National Chiao Tung University in Hsinchu, Taiwan, was published in Science Robotics. Continue reading

Posted in Human Robots

#437728 A Battery That’s Tough Enough To ...

Batteries can add considerable mass to any design, and they have to be supported using a sufficiently strong structure, which can add significant mass of its own. Now researchers at the University of Michigan have designed a structural zinc-air battery, one that integrates directly into the machine that it powers and serves as a load-bearing part.

That feature saves weight and thus increases effective storage capacity, adding to the already hefty energy density of the zinc-air chemistry. And the very elements that make the battery physically strong help contain the chemistry’s longstanding tendency to degrade over many hundreds of charge-discharge cycles.

The research is being published today in Science Robotics.

Nicholas Kotov, a professor of chemical engineer, is the leader of the project. He would not say how many watt-hours his prototype stores per gram, but he did note that zinc air—because it draw on ambient air for its electricity-producing reactions—is inherently about three times as energy-dense as lithium-ion cells. And, because using the battery as a structural part means dispensing with an interior battery pack, you could free up perhaps 20 percent of a machine’s interior. Along with other factors the new battery could in principle provide as much as 72 times the energy per unit of volume (not of mass) as today’s lithium-ion workhorses.

Illustration: Alice Kitterman/Science Robotics

“It’s not as if we invented something that was there before us,” Kotov says. ”I look in the mirror and I see my layer of fat—that’s for the storage of energy, but it also serves other purposes,” like keeping you warm in the wintertime. (A similar advance occurred in rocketry when designers learned how to make some liquid propellant tanks load bearing, eliminating the mass penalty of having separate external hull and internal tank walls.)

Others have spoken of putting batteries, including the lithium-ion kind, into load-bearing parts in vehicles. Ford, BMW, and Airbus, for instance, have expressed interest in the idea. The main problem to overcome is the tradeoff in load-bearing batteries between electrochemical performance and mechanical strength.

Image: Kotov Lab/University of Michigan

Key to the battery's physical toughness and to its long life cycle is the nanofiber membrane, made of Kevlar.

The Michigan group get both qualities by using a solid electrolyte (which can’t leak under stress) and by covering the electrodes with a membrane whose nanostructure of fibers is derived from Kevlar. That makes the membrane tough enough to suppress the growth of dendrites—branching fibers of metal that tend to form on an electrode with every charge-discharge cycle and which degrade the battery.

The Kevlar need not be purchased new but can be salvaged from discarded body armor. Other manufacturing steps should be easy, too, Kotov says. He has only just begun to talk to potential commercial partners, but he says there’s no reason why his battery couldn’t hit the market in the next three or four years.

Drones and other autonomous robots might be the most logical first application because their range is so severely chained to their battery capacity. Also, because such robots don’t carry people about, they face less of a hurdle from safety regulators leery of a fundamentally new battery type.

“And it’s not just about the big Amazon robots but also very small ones,” Kotov says. “Energy storage is a very significant issue for small and flexible soft robots.”

Here’s a video showing how Kotov’s lab has used batteries to form the “exoskeleton” of robots that scuttle like worms or scorpions. Continue reading

Posted in Human Robots

#437723 Minuscule RoBeetle Turns Liquid Methanol ...

It’s no secret that one of the most significant constraints on robots is power. Most robots need lots of it, and it has to come from somewhere, with that somewhere usually being a battery because there simply aren’t many other good options. Batteries, however, are famous for having poor energy density, and the smaller your robot is, the more of a problem this becomes. And the issue with batteries goes beyond the battery itself, but also carries over into all the other components that it takes to turn the stored energy into useful work, which again is a particular problem for small-scale robots.

In a paper published this week in Science Robotics, researchers from the University of Southern California, in Los Angeles, demonstrate RoBeetle, an 88-milligram four legged robot that runs entirely on methanol, a power-dense liquid fuel. Without any electronics at all, it uses an exceptionally clever bit of mechanical autonomy to convert methanol vapor directly into forward motion, one millimeter-long step at a time.

It’s not entirely clear from the video how the robot actually works, so let’s go through how it’s put together, and then look at the actuation cycle.

Image: Science Robotics

RoBeetle (A) uses a methanol-based actuation mechanism (B). The robot’s body (C) includes the fuel tank subassembly (D), a tank lid, transmission, and sliding shutter (E), bottom side of the sliding shutter (F), nickel-titanium-platinum composite wire and leaf spring (G), and front legs and hind legs with bioinspired backward-oriented claws (H).

The body of RoBeetle is a boxy fuel tank that you can fill with methanol by poking a syringe through a fuel inlet hole. It’s a quadruped, more or less, with fixed hind legs and two front legs attached to a single transmission that moves them both at once in a sort of rocking forward and up followed by backward and down motion. The transmission is hooked up to a leaf spring that’s tensioned to always pull the legs backward, such that when the robot isn’t being actuated, the spring and transmission keep its front legs more or less vertical and allow the robot to stand. Those horns are primarily there to hold the leaf spring in place, but they’ve got little hooks that can carry stuff, too.

The actuator itself is a nickel-titanium (NiTi) shape-memory alloy (SMA), which is just a wire that gets longer when it heats up and then shrinks back down when it cools. SMAs are fairly common and used for all kinds of things, but what makes this particular SMA a little different is that it’s been messily coated with platinum. The “messily” part is important for a reason that we’ll get to in just a second.

The way that the sliding vent is attached to the transmission is the really clever bit about this robot, because it means that the motion of the wire itself is used to modulate the flow of fuel through a purely mechanical system. Essentially, it’s an actuator and a sensor at the same time.

One end of the SMA wire is attached to the middle of the leaf spring, while the other end runs above the back of the robot where it’s stapled to an anchor block on the robot’s rear end. With the SMA wire hooked up but not actuated (i.e., cold rather than warm), it’s short enough that the leaf spring gets pulled back, rocking the legs forward and up. The last component is embedded in the robot’s back, right along the spine and directly underneath the SMA actuator. It’s a sliding vent attached to the transmission, so that the vent is open when the SMA wire is cold and the leaf spring is pulled back, and closed when the SMA wire is warm and the leaf spring is relaxed. The way that the sliding vent is attached to the transmission is the really clever bit about this robot, because it means that the motion of the wire itself is used to modulate the flow of fuel through a purely mechanical system. Essentially, it’s an actuator and a sensor at the same time.

The actuation cycle that causes the robot to walk begins with a full fuel tank and a cold SMA wire. There’s tension on the leaf spring, pulling the transmission back and rocking the legs forward and upward. The transmission also pulls the sliding vent into the open position, allowing methanol vapor to escape up out of the fuel tank and into the air, where it wafts past the SMA wire that runs directly above the vent.

The platinum facilitates a reaction of the methanol (CH3OH) with oxygen in the air (combustion, although not the dramatic flaming and explosive kind) to generate a couple of water molecules and some carbon dioxide plus a bunch of heat, and this is where the messy platinum coating is important, because messy means lots of surface area for the platinum to interact with as much methanol as possible. In just a second or two the temperature of the SMA wire skyrockets from 50 to 100 ºC and it expands, allowing the leaf spring about 0.1 mm of slack. As the leaf spring relaxes, the transmission moves the legs backwards and downwards, and the robot pulls itself forward about 1.2 mm. At the same time, the transmission is closing off the sliding vent, cutting off the supply of methanol vapor. Without the vapor reacting with the platinum and generating heat, in about a second and a half, the SMA wire cools down. As it does, it shrinks, pulling on the leaf spring and starting the cycle over again. Top speed is 0.76 mm/s (0.05 body-lengths per second).

An interesting environmental effect is that the speed of the robot can be enhanced by a gentle breeze. This is because air moving over the SMA wire cools it down a bit faster while also blowing away any residual methanol from around the vents, shutting down the reaction more completely. RoBeetle can carry more than its own body weight in fuel, and it takes approximately 155 minutes for a full tank of methanol to completely evaporate. It’s worth noting that despite the very high energy density of methanol, this is actually a stupendously inefficient way of powering a robot, with an estimated end-to-end efficiency of just 0.48 percent. Not 48 percent, mind you, but 0.48 percent, while in general, powering SMAs with electricity is much more efficient.

However, you have to look at the entire system that would be necessary to deliver that electricity, and for a robot as small as RoBeetle, the researchers say that it’s basically impossible. The lightest commercially available battery and power supply that would deliver enough juice to heat up an SMA actuator weighs about 800 mg, nearly 10 times the total weight of RoBeetle itself. From that perspective, RoBeetle’s efficiency is actually pretty good.

Image: A. Kitterman/Science Robotics; adapted from R.L.T./MIT

Comparison of various untethered microrobots and bioinspired soft robots that use different power and actuation strategies.

There are some other downsides to RoBeetle we should mention—it can only move forwards, not backwards, and it can’t steer. Its speed isn’t adjustable, and once it starts walking, it’ll walk until it either breaks or runs out of fuel. The researchers have some ideas about the speed, at least, pointing out that increasing the speed of fuel delivery by using pressurized liquid fuels like butane or propane would increase the actuator output frequency. And the frequency, amplitude, and efficiency of the SMAs themselves can be massively increased “by arranging multiple fiber-like thin artificial muscles in hierarchical configurations similar to those observed in sarcomere-based animal muscle,” making RoBeetle even more beetle-like.

As for sensing, RoBeetle’s 230-mg payload is enough to carry passive sensors, but getting those sensors to usefully interact with the robot itself to enable any kind of autonomy remains a challenge. Mechanically intelligence is certainly possible, though, and we can imagine RoBeetle adopting some of the same sorts of systems that have been proposed for the clockwork rover that JPL wants to use for Venus exploration. The researchers also mention how RoBeetle could potentially serve as a model for microbots capable of aerial locomotion, which is something we’d very much like to see.

“An 88-milligram insect-scale autonomous crawling robot driven by a catalytic artificial muscle,” by Xiufeng Yang, Longlong Chang, and Néstor O. Pérez-Arancibia from University of Southern California, in Los Angeles, was published in Science Robotics. Continue reading

Posted in Human Robots

#437600 Brain-Inspired Robot Controller Uses ...

Robots operating in the real world are starting to find themselves constrained by the amount of computing power they have available. Computers are certainly getting faster and more efficient, but they’re not keeping up with the potential of robotic systems, which have access to better sensors and more data, which in turn makes decision making more complex. A relatively new kind of computing device called a memristor could potentially help robotics smash through this barrier, through a combination of lower complexity, lower cost, and higher speed.

In a paper published today in Science Robotics, a team of researchers from the University of Southern California in Los Angeles and the Air Force Research Laboratory in Rome, N.Y., demonstrate a simple self-balancing robot that uses memristors to form a highly effective analog control system, inspired by the functional structure of the human brain.

First, we should go over just what the heck a memristor is. As the name suggests, it’s a type of memory that is resistance-based. That is, the resistance of a memristor can be programmed, and the memristor remembers that resistance even after it’s powered off (the resistance depends on the magnitude of the voltage applied to the memristor’s two terminals and the length of time that voltage has been applied). Memristors are potentially the ideal hybrid between RAM and flash memory, offering high speed, high density, non-volatile storage. So that’s cool, but what we’re most interested in as far as robot control systems go is that memristors store resistance, making them analog devices rather than digital ones.

By adding a memristor to an analog circuit with inputs from a gyroscope and an accelerometer, the researchers created a completely analog Kalman filter, which coupled to a second memristor functioned as a PD controller.

Nowadays, the word “analog” sounds like a bad thing, but robots are stuck in an analog world, and any physical interactions they have with the world (mediated through sensors) are fundamentally analog in nature. The challenge is that an analog signal is often “messy”—full of noise and non-linearities—and as such, the usual approach now is to get it converted to a digital signal and then processed to get anything useful out of it. This is fine, but it’s also not particularly fast or efficient. Where memristors come in is that they’re inherently analog, and in addition to storing data, they can also act as tiny analog computers, which is pretty wild.

By adding a memristor to an analog circuit with inputs from a gyroscope and an accelerometer, the researchers, led by Wei Wu, an associate professor of electrical engineering at USC, created a completely analog and completely physical Kalman filter to remove noise from the sensor signal. In addition, they used a second memristor can be used to turn that sensor data into a proportional-derivative (PD) controller. Next they put those two components together to build an analogy system that can do a bunch of the work required to keep an inverted pendulum robot upright far more efficiently than a traditional system. The difference in performance is readily apparent:

The shaking you see in the traditionally-controlled robot on the bottom comes from the non-linearity of the dynamic system, which changes faster than the on-board controller can keep up with. The memristors substantially reduce the cycle time, so the robot can balance much more smoothly. Specifically, cycle time is reduced from 3,034 microseconds to just 6 microseconds.

Of course, there’s more going on here, like motor drivers and a digital computer to talk to them, so this robot is really a hybrid system. But guess what? As the researchers point out, so are we!

The human brain consists of the cerebrum, the cerebellum, and the brainstem. The cerebrum is a major part of the brain in charge of vision, hearing, and thinking, whereas the cerebellum plays an important role in motion control. Through this cooperation of the cerebrum and the cerebellum, the human brain can conduct multiple tasks simultaneously with extremely low power consumption. Inspired by this, we developed a hybrid analog-digital computation platform, in which the digital component runs the high-level algorithm, whereas the analog component is responsible for sensor fusion and motion control.

By offloading a bunch of computation onto the memristors, the higher brain functions of the robot have more breathing room. Overall, you reduce power, space, and cost, while substantially improving performance. This has only become possible relatively recently due to memristor advances and availability, and the researchers expect that memristor-based hybrid computing will soon be able to “improve the robustness and the performance of mobile robotic systems with higher” degrees of freedom.

“A memristor-based hybrid analog-digital computing platform for mobile robotics,” by Buyun Chen, Hao Yang, Boxiang Song, Deming Meng, Xiaodong Yan, Yuanrui Li, Yunxiang Wang, Pan Hu, Tse-Hsien Ou, Mark Barnell, Qing Wu, Han Wang, and Wei Wu, from USC Viterbi and AFRL, was published in Science Robotics. Continue reading

Posted in Human Robots