Tag Archives: say

#435127 Teaching AI the Concept of ‘Similar, ...

As a human you instinctively know that a leopard is closer to a cat than a motorbike, but the way we train most AI makes them oblivious to these kinds of relations. Building the concept of similarity into our algorithms could make them far more capable, writes the author of a new paper in Science Robotics.

Convolutional neural networks have revolutionized the field of computer vision to the point that machines are now outperforming humans on some of the most challenging visual tasks. But the way we train them to analyze images is very different from the way humans learn, says Atsuto Maki, an associate professor at KTH Royal Institute of Technology.

“Imagine that you are two years old and being quizzed on what you see in a photo of a leopard,” he writes. “You might answer ‘a cat’ and your parents might say, ‘yeah, not quite but similar’.”

In contrast, the way we train neural networks rarely gives that kind of partial credit. They are typically trained to have very high confidence in the correct label and consider all incorrect labels, whether ”cat” or “motorbike,” equally wrong. That’s a mistake, says Maki, because ignoring the fact that something can be “less wrong” means you’re not exploiting all of the information in the training data.

Even when models are trained this way, there will be small differences in the probabilities assigned to incorrect labels that can tell you a lot about how well the model can generalize what it has learned to unseen data.

If you show a model a picture of a leopard and it gives “cat” a probability of five percent and “motorbike” one percent, that suggests it picked up on the fact that a cat is closer to a leopard than a motorbike. In contrast, if the figures are the other way around it means the model hasn’t learned the broad features that make cats and leopards similar, something that could potentially be helpful when analyzing new data.

If we could boost this ability to identify similarities between classes we should be able to create more flexible models better able to generalize, says Maki. And recent research has demonstrated how variations of an approach called regularization might help us achieve that goal.

Neural networks are prone to a problem called “overfitting,” which refers to a tendency to pay too much attention to tiny details and noise specific to their training set. When that happens, models will perform excellently on their training data but poorly when applied to unseen test data without these particular quirks.

Regularization is used to circumvent this problem, typically by reducing the network’s capacity to learn all this unnecessary information and therefore boost its ability to generalize to new data. Techniques are varied, but generally involve modifying the network’s structure or the strength of the weights between artificial neurons.

More recently, though, researchers have suggested new regularization approaches that work by encouraging a broader spread of probabilities across all classes. This essentially helps them capture more of the class similarities, says Maki, and therefore boosts their ability to generalize.

One such approach was devised in 2017 by Google Brain researchers, led by deep learning pioneer Geoffrey Hinton. They introduced a penalty to their training process that directly punished overconfident predictions in the model’s outputs, and a technique called label smoothing that prevents the largest probability becoming much larger than all others. This meant the probabilities were lower for correct labels and higher for incorrect ones, which was found to boost performance of models on varied tasks from image classification to speech recognition.

Another came from Maki himself in 2017 and achieves the same goal, but by suppressing high values in the model’s feature vector—the mathematical construct that describes all of an object’s important characteristics. This has a knock-on effect on the spread of output probabilities and also helped boost performance on various image classification tasks.

While it’s still early days for the approach, the fact that humans are able to exploit these kinds of similarities to learn more efficiently suggests that models that incorporate them hold promise. Maki points out that it could be particularly useful in applications such as robotic grasping, where distinguishing various similar objects is important.

Image Credit: Marianna Kalashnyk / Shutterstock.com Continue reading

Posted in Human Robots

#435043 This Week’s Awesome Stories From ...

NANOTECHNOLOGY
The Microbots Are on Their Way
Kenneth Chang | The New York Times
“Like Frankenstein, Marc Miskin’s robots initially lie motionless. Then their limbs jerk to life. But these robots are the size of a speck of dust. Thousands fit side-by-side on a single silicon wafer similar to those used for computer chips, and, like Frankenstein coming to life, they pull themselves free and start crawling.”

FUTURE
Why the ‘Post-Natural’ Age Could Be Strange and Beautiful
Lauren Holt | BBC
“As long as humans have existed, we have been influencing our planet’s flora and fauna. So, if humanity continues to flourish far into the future, how will nature change? And how might this genetic manipulation affect our own biology and evolutionary trajectory? The short answer: it will be strange, potentially beautiful and like nothing we’re used to.”

3D PRINTING
Watch This Wild 3D-Printed Lung Air Sac Breathe
Amanda Kooser | CNET
“A research team led by bioengineers at the University of Washington and Rice University developed an open-source technique for bioprinting tissues ‘with exquisitely entangled vascular networks similar to the body’s natural passageways for blood, air, lymph and other vital fluids.’i”

SENSORS
A New Camera Can Photograph You From 45 Kilometers Away
Emerging Technology from the arXiv | MIT Technology Review
“Conventional images taken through the telescope show nothing other than noise. But the new technique produces images with a spatial resolution of about 60 cm, which resolves building windows.”

BIOTECH
The Search for the Kryptonite That Can Stop CRISPR
Antonio Regalado | MIT Technology Review
“CRISPR weapons? We’ll leave it to your imagination exactly what one could look like. What is safe to say, though, is that DARPA has asked Doudna and others to start looking into prophylactic treatments or even pills you could take to stop gene editing, just the way you can swallow antibiotics if you’ve gotten an anthrax letter in the mail.”

ROBOTICS
The Holy Grail of Robotics: Inside the Quest to Build a Mechanical Human Hand
Luke Dormehl | Digital Trends
“For real-life roboticists, building the perfect robot hand has long been the Holy Grail. It is the hardware yin to the software yang of creating an artificial mind. Seeking out the ultimate challenge, robotics experts gravitated to recreating what is one of the most complicated and beautiful pieces of natural engineering found in the human body.”

Image Credit: Maksim Sansonov / Unsplash Continue reading

Posted in Human Robots

#434843 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
Open AI’s Dota 2 AI Steamrolls World Champion e-Sports Team With Back-to-Back Victories
Nick Statt | The Verge
“…[OpenAI cofounder and CEO, Sam Altman] tells me there probably does not exist a video game out there right now that a system like OpenAI Five can’t eventually master at a level beyond human capability. For the broader AI industry, mastering video games may soon become passé, simple table stakes required to prove your system can learn fast and act in a way required to tackle tougher, real-world tasks with more meaningful benefits.”

ROBOTICS
Boston Dynamics Debuts the Production Version of SpotMini
Brian Heater, Catherine Shu | TechCrunch
“SpotMini is the first commercial robot Boston Dynamics is set to release, but as we learned earlier, it certainly won’t be the last. The company is looking to its wheeled Handle robot in an effort to push into the logistics space. It’s a super-hot category for robotics right now. Notably, Amazon recently acquired Colorado-based start up Canvas to add to its own arm of fulfillment center robots.”

NEUROSCIENCE
Scientists Restore Some Brain Cell Functions in Pigs Four Hours After Death
Joel Achenbach | The Washington Post
“The ethicists say this research can blur the line between life and death, and could complicate the protocols for organ donation, which rely on a clear determination of when a person is dead and beyond resuscitation.”

BIOTECH
How Scientists 3D Printed a Tiny Heart From Human Cells
Yasmin Saplakoglu | Live Science
“Though the heart is much smaller than a human’s (it’s only the size of a rabbit’s), and there’s still a long way to go until it functions like a normal heart, the proof-of-concept experiment could eventually lead to personalized organs or tissues that could be used in the human body…”

SPACE
The Next Clash of Silicon Valley Titans Will Take Place in Space
Luke Dormehl | Digital Trends
“With bold plans that call for thousands of new satellites being put into orbit and astronomical costs, it’s going to be fascinating to observe the next phase of the tech platform battle being fought not on our desktops or mobile devices in our pockets, but outside of Earth’s atmosphere.”

FUTURE HISTORY
The Images That Could Help Rebuild Notre-Dame Cathedral
Alexis C. Madrigal | The Atlantic
“…in 2010, [Andrew] Tallon, an art professor at Vassar, took a Leica ScanStation C10 to Notre-Dame and, with the assistance of Columbia’s Paul Blaer, began to painstakingly scan every piece of the structure, inside and out. …Over five days, they positioned the scanner again and again—50 times in all—to create an unmatched record of the reality of one of the world’s most awe-inspiring buildings, represented as a series of points in space.”

AUGMENTED REALITY
Mapping Our World in 3D Will Let Us Paint Streets With Augmented Reality
Charlotte Jee | MIT Technology Review
“Scape wants to use its location services to become the underlying infrastructure upon which driverless cars, robotics, and augmented-reality services sit. ‘Our end goal is a one-to-one map of the world covering everything,’ says Miller. ‘Our ambition is to be as invisible as GPS is today.’i”

Image Credit: VAlex / Shutterstock.com Continue reading

Posted in Human Robots

#434797 This Week’s Awesome Stories From ...

GENE EDITING
Genome Engineers Made More Than 13,000 Genome Edits in a Single Cell
Antonio Regalado | MIT Technology Review
“The group, led by gene technologist George Church, wants to rewrite genomes at a far larger scale than has currently been possible, something it says could ultimately lead to the ‘radical redesign’ of species—even humans.”

ROBOTICS
Inside Google’s Rebooted Robotics Program
Cade Metz | The New York Times
“Google’s new lab is indicative of a broader effort to bring so-called machine learning to robotics. …Many believe that machine learning—not extravagant new devices—will be the key to developing robotics for manufacturing, warehouse automation, transportation and many other tasks.

VIDEOS
Boston Dynamics Builds the Warehouse Robot of Jeff Bezos’ Dreams
Luke Dormehl | Digital Trends
“…for anyone wondering what the future of warehouse operation is likely to look like, this offers a far more practical glimpse of the years to come than, say, a dancing dog robot. As Boston Dynamics moves toward commercializing its creations for the first time, this could turn out to be a lot closer than you might think.”

TECHNOLOGY
Europe Is Splitting the Internet Into Three
Casey Newton | The Verge
“The internet had previously been divided into two: the open web, which most of the world could access; and the authoritarian web of countries like China, which is parceled out stingily and heavily monitored. As of today, though, the web no longer feels truly worldwide. Instead we now have the American internet, the authoritarian internet, and the European internet. How does the EU Copyright Directive change our understanding of the web?”

VIRTUAL REALITY
No Man’s Sky’s Next Update Will Let You Explore Infinite Space in Virtual Reality
Taylor Hatmaker | TechCrunch
“Assuming the game runs well enough, No Man’s Sky Virtual Reality will be a far cry from gimmicky VR games that lack true depth, offering one of the most expansive—if not the most expansive—VR experiences to date.”

3D PRINTING
3D Metal Printing Tries to Break Into the Manufacturing Mainstream
Mark Anderson | IEEE Spectrum
“It’s been five or so years since 3D printing was at peak hype. Since then, the technology has edged its way into a new class of materials and started to break into more applications. Today, 3D printers are being seriously considered as a means to produce stainless steel 5G smartphones, high-strength alloy gas-turbine blades, and other complex metal parts.”

Image Credit: ale de sun / Shutterstock.com Continue reading

Posted in Human Robots

#434786 AI Performed Like a Human on a Gestalt ...

Dr. Been Kim wants to rip open the black box of deep learning.

A senior researcher at Google Brain, Kim specializes in a sort of AI psychology. Like cognitive psychologists before her, she develops various ways to probe the alien minds of artificial neural networks (ANNs), digging into their gory details to better understand the models and their responses to inputs.

The more interpretable ANNs are, the reasoning goes, the easier it is to reveal potential flaws in their reasoning. And if we understand when or why our systems choke, we’ll know when not to use them—a foundation for building responsible AI.

There are already several ways to tap into ANN reasoning, but Kim’s inspiration for unraveling the AI black box came from an entirely different field: cognitive psychology. The field aims to discover fundamental rules of how the human mind—essentially also a tantalizing black box—operates, Kim wrote with her colleagues.

In a new paper uploaded to the pre-publication server arXiv, the team described a way to essentially perform a human cognitive test on ANNs. The test probes how we automatically complete gaps in what we see, so that they form entire objects—for example, perceiving a circle from a bunch of loose dots arranged along a clock face. Psychologist dub this the “law of completion,” a highly influential idea that led to explanations of how our minds generalize data into concepts.

Because deep neural networks in machine vision loosely mimic the structure and connections of the visual cortex, the authors naturally asked: do ANNs also exhibit the law of completion? And what does that tell us about how an AI thinks?

Enter the Germans
The law of completion is part of a series of ideas from Gestalt psychology. Back in the 1920s, long before the advent of modern neuroscience, a group of German experimental psychologists asked: in this chaotic, flashy, unpredictable world, how do we piece together input in a way that leads to meaningful perceptions?

The result is a group of principles known together as the Gestalt effect: that the mind self-organizes to form a global whole. In the more famous words of Gestalt psychologist Kurt Koffka, our perception forms a whole that’s “something else than the sum of its parts.” Not greater than; just different.

Although the theory has its critics, subsequent studies in humans and animals suggest that the law of completion happens on both the cognitive and neuroanatomical level.

Take a look at the drawing below. You immediately “see” a shape that’s actually the negative: a triangle or a square (A and B). Or you further perceive a 3D ball (C), or a snake-like squiggle (D). Your mind fills in blank spots, so that the final perception is more than just the black shapes you’re explicitly given.

Image Credit: Wikimedia Commons contributors, the free media repository.
Neuroscientists now think that the effect comes from how our visual system processes information. Arranged in multiple layers and columns, lower-level neurons—those first to wrangle the data—tend to extract simpler features such as lines or angles. In Gestalt speak, they “see” the parts.

Then, layer by layer, perception becomes more abstract, until higher levels of the visual system directly interpret faces or objects—or things that don’t really exist. That is, the “whole” emerges.

The Experiment Setup
Inspired by these classical experiments, Kim and team developed a protocol to test the Gestalt effect on feed-forward ANNs: one simple, the other, dubbed the “Inception V3,” far more complex and widely used in the machine vision community.

The main idea is similar to the triangle drawings above. First, the team generated three datasets: one set shows complete, ordinary triangles. The second—the “Illusory” set, shows triangles with the edges removed but the corners intact. Thanks to the Gestalt effect, to us humans these generally still look like triangles. The third set also only shows incomplete triangle corners. But here, the corners are randomly rotated so that we can no longer imagine a line connecting them—hence, no more triangle.

To generate a dataset large enough to tease out small effects, the authors changed the background color, image rotation, and other aspects of the dataset. In all, they produced nearly 1,000 images to test their ANNs on.

“At a high level, we compare an ANN’s activation similarities between the three sets of stimuli,” the authors explained. The process is two steps: first, train the AI on complete triangles. Second, test them on the datasets. If the response is more similar between the illusory set and the complete triangle—rather than the randomly rotated set—it should suggest a sort of Gestalt closure effect in the network.

Machine Gestalt
Right off the bat, the team got their answer: yes, ANNs do seem to exhibit the law of closure.

When trained on natural images, the networks better classified the illusory set as triangles than those with randomized connection weights or networks trained on white noise.

When the team dug into the “why,” things got more interesting. The ability to complete an image correlated with the network’s ability to generalize.

Humans subconsciously do this constantly: anything with a handle made out of ceramic, regardless of shape, could easily be a mug. ANNs still struggle to grasp common features—clues that immediately tells us “hey, that’s a mug!” But when they do, it sometimes allows the networks to better generalize.

“What we observe here is that a network that is able to generalize exhibits…more of the closure effect [emphasis theirs], hinting that the closure effect reflects something beyond simply learning features,” the team wrote.

What’s more, remarkably similar to the visual cortex, “higher” levels of the ANNs showed more of the closure effect than lower layers, and—perhaps unsurprisingly—the more layers a network had, the more it exhibited the closure effect.

As the networks learned, their ability to map out objects from fragments also improved. When the team messed around with the brightness and contrast of the images, the AI still learned to see the forest from the trees.

“Our findings suggest that neural networks trained with natural images do exhibit closure,” the team concluded.

AI Psychology
That’s not to say that ANNs recapitulate the human brain. As Google’s Deep Dream, an effort to coax AIs into spilling what they’re perceiving, clearly demonstrates, machine vision sees some truly weird stuff.

In contrast, because they’re modeled after the human visual cortex, perhaps it’s not all that surprising that these networks also exhibit higher-level properties inherent to how we process information.

But to Kim and her colleagues, that’s exactly the point.

“The field of psychology has developed useful tools and insights to study human brains– tools that we may be able to borrow to analyze artificial neural networks,” they wrote.

By tweaking these tools to better analyze machine minds, the authors were able to gain insight on how similarly or differently they see the world from us. And that’s the crux: the point isn’t to say that ANNs perceive the world sort of, kind of, maybe similar to humans. It’s to tap into a wealth of cognitive psychology tools, established over decades using human minds, to probe that of ANNs.

“The work here is just one step along a much longer path,” the authors conclude.

“Understanding where humans and neural networks differ will be helpful for research on interpretability by enlightening the fundamental differences between the two interesting species.”

Image Credit: Popova Alena / Shutterstock.com Continue reading

Posted in Human Robots