Tag Archives: say

#435656 Will AI Be Fashion Forward—or a ...

The narrative that often accompanies most stories about artificial intelligence these days is how machines will disrupt any number of industries, from healthcare to transportation. It makes sense. After all, technology already drives many of the innovations in these sectors of the economy.

But sneakers and the red carpet? The definitively low-tech fashion industry would seem to be one of the last to turn over its creative direction to data scientists and machine learning algorithms.

However, big brands, e-commerce giants, and numerous startups are betting that AI can ingest data and spit out Chanel. Maybe it’s not surprising, given that fashion is partly about buzz and trends—and there’s nothing more buzzy and trendy in the world of tech today than AI.

In its annual survey of the $3 trillion fashion industry, consulting firm McKinsey predicted that while AI didn’t hit a “critical mass” in 2018, it would increasingly influence the business of everything from design to manufacturing.

“Fashion as an industry really has been so slow to understand its potential roles interwoven with technology. And, to be perfectly honest, the technology doesn’t take fashion seriously.” This comment comes from Zowie Broach, head of fashion at London’s Royal College of Arts, who as a self-described “old fashioned” designer has embraced the disruptive nature of technology—with some caveats.

Co-founder in the late 1990s of the avant-garde fashion label Boudicca, Broach has always seen tech as a tool for designers, even setting up a website for the company circa 1998, way before an online presence became, well, fashionable.

Broach told Singularity Hub that while she is generally optimistic about the future of technology in fashion—the designer has avidly been consuming old sci-fi novels over the last few years—there are still a lot of difficult questions to answer about the interface of algorithms, art, and apparel.

For instance, can AI do what the great designers of the past have done? Fashion was “about designing, it was about a narrative, it was about meaning, it was about expression,” according to Broach.

AI that designs products based on data gleaned from human behavior can potentially tap into the Pavlovian response in consumers in order to make money, Broach noted. But is that channeling creativity, or just digitally dabbling in basic human brain chemistry?

She is concerned about people retaining control of the process, whether we’re talking about their data or their designs. But being empowered with the insights machines could provide into, for example, the geographical nuances of fashion between Dubai, Moscow, and Toronto is thrilling.

“What is it that we want the future to be from a fashion, an identity, and design perspective?” she asked.

Off on the Right Foot
Silicon Valley and some of the biggest brands in the industry offer a few answers about where AI and fashion are headed (though not at the sort of depths that address Broach’s broader questions of aesthetics and ethics).

Take what is arguably the biggest brand in fashion, at least by market cap but probably not by the measure of appearances on Oscar night: Nike. The $100 billion shoe company just gobbled up an AI startup called Celect to bolster its data analytics and optimize its inventory. In other words, Nike hopes it will be able to figure out what’s hot and what’s not in a particular location to stock its stores more efficiently.

The company is going even further with Nike Fit, a foot-scanning platform using a smartphone camera that applies AI techniques from fields like computer vision and machine learning to find the best fit for each person’s foot. The algorithms then identify and recommend the appropriately sized and shaped shoe in different styles.

No doubt the next step will be to 3D print personalized and on-demand sneakers at any store.

San Francisco-based startup ThirdLove is trying to bring a similar approach to bra sizes. Its 20-member data team, Fortune reported, has developed the Fit Finder quiz that uses machine learning algorithms to help pick just the right garment for every body type.

Data scientists are also a big part of the team at Stitch Fix, a former San Francisco startup that went public in 2017 and today sports a market cap of more than $2 billion. The online “personal styling” company uses hundreds of algorithms to not only make recommendations to customers, but to help design new styles and even manage the subscription-based supply chain.

Future of Fashion
E-commerce giant Amazon has thrown its own considerable resources into developing AI applications for retail fashion—with mixed results.

One notable attempt involved a “styling assistant” that came with the company’s Echo Look camera that helped people catalog and manage their wardrobes, evening helping pick out each day’s attire. The company more recently revisited the direct consumer side of AI with an app called StyleSnap, which matches clothes and accessories uploaded to the site with the retailer’s vast inventory and recommends similar styles.

Behind the curtains, Amazon is going even further. A team of researchers in Israel have developed algorithms that can deduce whether a particular look is stylish based on a few labeled images. Another group at the company’s San Francisco research center was working on tech that could generate new designs of items based on images of a particular style the algorithms trained on.

“I will say that the accumulation of many new technologies across the industry could manifest in a highly specialized style assistant, far better than the examples we’ve seen today. However, the most likely thing is that the least sexy of the machine learning work will become the most impactful, and the public may never hear about it.”

That prediction is from an online interview with Leanne Luce, a fashion technology blogger and product manager at Google who recently wrote a book called, succinctly enough, Artificial Intelligence and Fashion.

Data Meets Design
Academics are also sticking their beakers into AI and fashion. Researchers at the University of California, San Diego, and Adobe Research have previously demonstrated that neural networks, a type of AI designed to mimic some aspects of the human brain, can be trained to generate (i.e., design) new product images to match a buyer’s preference, much like the team at Amazon.

Meanwhile, scientists at Hong Kong Polytechnic University are working with China’s answer to Amazon, Alibaba, on developing a FashionAI Dataset to help machines better understand fashion. The effort will focus on how algorithms approach certain building blocks of design, what are called “key points” such as neckline and waistline, and “fashion attributes” like collar types and skirt styles.

The man largely behind the university’s research team is Calvin Wong, a professor and associate head of Hong Kong Polytechnic University’s Institute of Textiles and Clothing. His group has also developed an “intelligent fabric defect detection system” called WiseEye for quality control, reducing the chance of producing substandard fabric by 90 percent.

Wong and company also recently inked an agreement with RCA to establish an AI-powered design laboratory, though the details of that venture have yet to be worked out, according to Broach.

One hope is that such collaborations will not just get at the technological challenges of using machines in creative endeavors like fashion, but will also address the more personal relationships humans have with their machines.

“I think who we are, and how we use AI in fashion, as our identity, is not a superficial skin. It’s very, very important for how we define our future,” Broach said.

Image Credit: Inspirationfeed / Unsplash Continue reading

Posted in Human Robots

#435646 Video Friday: Kiki Is a New Social Robot ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, Pa., USA
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

The DARPA Subterranean Challenge tunnel circuit takes place in just a few weeks, and we’ll be there!

[ DARPA SubT ]

Time lapse video of robotic arm on NASA’s Mars 2020 rover handily maneuvers 88-pounds (40 kilograms) worth of sensor-laden turret as it moves from a deployed to stowed configuration.

If you haven’t read our interview with Matt Robinson, now would be a great time, since he’s one of the folks at JPL who designed this arm.

[ Mars 2020 ]

Kiki is a small, white, stationary social robot with an evolving personality who promises to be your friend and costs $800 and is currently on Kickstarter.

The Kickstarter page is filled with the same type of overpromising that we’ve seen with other (now very dead) social robots: Kiki is “conscious,” “understands your feelings,” and “loves you back.” Oof. That said, we’re happy to see more startups trying to succeed in this space, which is certainly one of the toughest in consumer electronics, and hopefully they’ve been learning from the recent string of failures. And we have to say Kiki is a cute robot. Its overall design, especially the body mechanics and expressive face, look neat. And kudos to the team—the company was founded by two ex-Googlers, Mita Yun and Jitu Das—for including the “unedited prototype videos,” which help counterbalance the hype.

Another thing that Kiki has going for it is that everything runs on the robot itself. This simplifies privacy and means that the robot won’t partially die on you if the company behind it goes under, but also limits how clever the robot will be able to be. The Kickstarter campaign is already over a third funded, so…We’ll see.

[ Kickstarter ]

When your UAV isn’t enough UAV, so you put a UAV on your UAV.

[ CanberraUAV ]

ABB’s YuMi is testing ATMs because a human trying to do this task would go broke almost immediately.

[ ABB ]

DJI has a fancy new FPV system that features easy setup, digital HD streaming at up to 120 FPS, and <30ms latency.

If it looks expensive, that’s because it costs $930 with the remote included.

[ DJI ]

Honeybee Robotics has recently developed a regolith excavation and rock cleaning system for NASA JPL’s PUFFER rovers. This system, called POCCET (PUFFER-Oriented Compact Cleaning and Excavation Tool), uses compressed gas to perform all excavation and cleaning tasks. Weighing less than 300 grams with potential for further mass reduction, POCCET can be used not just on the Moon, but on other Solar System bodies such as asteroids, comets, and even Mars.

[ Honeybee Robotics ]

DJI’s 2019 RoboMaster tournament, which takes place this month in Shenzen, looks like it’ll be fun to watch, with a plenty of action and rules that are easy to understand.

[ RoboMaster ]

Robots and baked goods are an automatic Video Friday inclusion.

Wow I want a cupcake right now.

[ Soft Robotics ]

The ICRA 2019 Best Paper Award went to Michelle A. Lee at Stanford, for “Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks.”

The ICRA video is here, and you can find the paper at the link below.

[ Paper ] via [ RoboHub ]

Cobalt Robotics put out a bunch of marketing-y videos this week, but this one reasonably interesting, even if you’re familiar with what they’re doing over there.

[ Cobalt Robotics ]

RightHand Robotics launched RightPick2 with a gala event which looked like fun as long as you were really, really in to robots.

[ RightHand Robotics ]

Thanks Jeff!

This video presents a framework for whole-body control applied to the assistive robotic system EDAN. We show how the proposed method can be used for a task like open, pass through and close a door. Also, we show the efficiency of the whole-body coordination with controlling the end-effector with respect to a fixed reference. Additionally, showing how easy the system can be manually manoeuvred by direct interaction with the end-effector, without the need for an extra input device.

[ DLR ]

You’ll probably need to turn on auto-translated subtitles for most of this, but it’s worth it for the adorable little single-seat robotic car designed to help people get around airports.

[ ZMP ]

In this week’s episode of Robots in Depth, Per speaks with Gonzalo Rey from Moog about their fancy 3D printed integrated hydraulic actuators.

Gonzalo talks about how Moog got started with hydraulic control,taking part in the space program and early robotics development. He shares how Moog’s technology is used in fly-by-wire systems in aircraft and in flow control in deep space probes. They have even reached Mars.

[ Robots in Depth ] Continue reading

Posted in Human Robots

#435605 All of the Winners in the DARPA ...

The first competitive event in the DARPA Subterranean Challenge concluded last week—hopefully you were able to follow along on the livestream, on Twitter, or with some of the articles that we’ve posted about the event. We’ll have plenty more to say about how things went for the SubT teams, but while they take a bit of a (well earned) rest, we can take a look at the winning teams as well as who won DARPA’s special superlative awards for the competition.

First Place: Team Explorer (25/40 artifacts found)
With their rugged, reliable robots featuring giant wheels and the ability to drop communications nodes, Team Explorer was in the lead from day 1, scoring in double digits on every single run.

Second Place: Team CoSTAR (11/40 artifacts found)
Team CoSTAR had one of the more diverse lineups of robots, and they switched up which robots they decided to send into the mine as they learned more about the course.

Third Place: Team CTU-CRAS (10/40 artifacts found)
While many teams came to SubT with DARPA funding, Team CTU-CRAS was self-funded, making them eligible for a special $200,000 Tunnel Circuit prize.

DARPA also awarded a bunch of “superlative awards” after SubT:

Most Accurate Artifact: Team Explorer

To score a point, teams had to submit the location of an artifact that was correct to within 5 meters of the artifact itself. However, DARPA was tracking the artifact locations with much higher precision—for example, the “zero” point on the backpack artifact was the center of the label on the front, which DARPA tracked to the millimeter. Team Explorer managed to return the location of a backpack with an error of just 0.18 meter, which is kind of amazing.

Down to the Wire: Team CSIRO Data61

With just an hour to find as many artifacts as possible, teams had to find the right balance between sending robots off to explore and bringing them back into communication range to download artifact locations. Team CSIRO Data61 cut their last point pretty close, sliding their final point in with a mere 22 seconds to spare.

Most Distinctive Robots: Team Robotika

Team Robotika had some of the quirkiest and most recognizable robots, which DARPA recognized with the “Most Distinctive” award. Robotika told us that part of the reason for that distinctiveness was practical—having a robot that was effectively in two parts meant that they could disassemble it so that it would fit in the baggage compartment of an airplane, very important for a team based in the Czech Republic.

Most Robots Per Person: Team Coordinated Robotics

Kevin Knoedler, who won NASA’s Space Robotics Challenge entirely by himself, brought his own personal swarm of drones to SubT. With a ratio of seven robots to one human, Kevin was almost certainly the hardest working single human at the challenge.

Fan Favorite: Team NCTU

Photo: Evan Ackerman/IEEE Spectrum

The Fan Favorite award went to the team that was most popular on Twitter (with the #SubTChallenge hashtag), and it may or may not be the case that I personally tweeted enough about Team NCTU’s blimp to win them this award. It’s also true that whenever we asked anyone on other teams what their favorite robot was (besides their own, of course), the blimp was overwhelmingly popular. So either way, the award is well deserved.

DARPA shared this little behind-the-scenes clip of the blimp in action (sort of), showing what happened to the poor thing when the mine ventilation system was turned on between runs and DARPA staff had to chase it down and rescue it:

The thing to keep in mind about the results of the Tunnel Circuit is that unlike past DARPA robotics challenges (like the DRC), they don’t necessarily indicate how things are going to go for the Urban or Cave circuits because of how different things are going to be. Explorer did a great job with a team of rugged wheeled vehicles, which turned out to be ideal for navigating through mines, but they’re likely going to need to change things up substantially for the rest of the challenges, where the terrain will be much more complex.

DARPA hasn’t provided any details on the location of the Urban Circuit yet; all we know is that it’ll be sometime in February 2020. This gives teams just six months to take all the lessons that they learned from the Tunnel Circuit and update their hardware, software, and strategies. What were those lessons, and what do teams plan to do differently next year? Check back next week, and we’ll tell you.

[ DARPA SubT ] Continue reading

Posted in Human Robots

#435575 How an AI Startup Designed a Drug ...

Discovering a new drug can take decades, billions of dollars, and untold man hours from some of the smartest people on the planet. Now a startup says it’s taken a significant step towards speeding the process up using AI.

The typical drug discovery process involves carrying out physical tests on enormous libraries of molecules, and even with the help of robotics it’s an arduous process. The idea of sidestepping this by using computers to virtually screen for promising candidates has been around for decades. But progress has been underwhelming, and it’s still not a major part of commercial pipelines.

Recent advances in deep learning, however, have reignited hopes for the field, and major pharma companies have started tying up with AI-powered drug discovery startups. And now Insilico Medicine has used AI to design a molecule that effectively targets a protein involved in fibrosis—the formation of excess fibrous tissue—in mice in just 46 days.

The platform the company has developed combines two of the hottest sub-fields of AI: the generative adversarial networks, or GANs, which power deepfakes, and reinforcement learning, which is at the heart of the most impressive game-playing AI advances of recent years.

In a paper in Nature Biotechnology, the company’s researchers describe how they trained their model on all the molecules already known to target this protein as well as many other active molecules from various datasets. The model was then used to generate 30,000 candidate molecules.

Unlike most previous efforts, they went a step further and selected the most promising molecules for testing in the lab. The 30,000 candidates were whittled down to just 6 using more conventional drug discovery approaches and were then synthesized in the lab. They were put through increasingly stringent tests, but the leading candidate was found to be effective at targeting the desired protein and behaved as one would hope a drug would.

The authors are clear that the results are just a proof-of-concept, which company CEO Alex Zhavoronkov told Wired stemmed from a challenge set by a pharma partner to design a drug as quickly as possible. But they say they were able to carry out the process faster than traditional methods for a fraction of the cost.

There are some caveats. For a start, the protein being targeted is already very well known and multiple effective drugs exist for it. That gave the company a wealth of data to train their model on, something that isn’t the case for many of the diseases where we urgently need new drugs.

The company’s platform also only targets the very initial stages of the drug discovery process. The authors concede in their paper that the molecules would still take considerable optimization in the lab before they’d be true contenders for clinical trials.

“And that is where you will start to begin to commence to spend the vast piles of money that you will eventually go through in trying to get a drug to market,” writes Derek Lowe in his blog In The Pipeline. The part of the discovery process that the platform tackles represents a tiny fraction of the total cost of drug development, he says.

Nonetheless, the research is a definite advance for virtual screening technology and an important marker of the potential of AI for designing new medicines. Zhavoronkov also told Wired that this research was done more than a year ago, and they’ve since adapted the platform to go after harder drug targets with less data.

And with big pharma companies desperate to slash their ballooning development costs and find treatments for a host of intractable diseases, they can use all the help they can get.

Image Credit: freestocks.org / Unsplash Continue reading

Posted in Human Robots

#435541 This Giant AI Chip Is the Size of an ...

People say size doesn’t matter, but when it comes to AI the makers of the largest computer chip ever beg to differ. There are plenty of question marks about the gargantuan processor, but its unconventional design could herald an innovative new era in silicon design.

Computer chips specialized to run deep learning algorithms are a booming area of research as hardware limitations begin to slow progress, and both established players and startups are vying to build the successor to the GPU, the specialized graphics chip that has become the workhorse of the AI industry.

On Monday Californian startup Cerebras came out of stealth mode to unveil an AI-focused processor that turns conventional wisdom on its head. For decades chip makers have been focused on making their products ever-smaller, but the Wafer Scale Engine (WSE) is the size of an iPad and features 1.2 trillion transistors, 400,000 cores, and 18 gigabytes of on-chip memory.

The Cerebras Wafer-Scale Engine (WSE) is the largest chip ever built. It measures 46,225 square millimeters and includes 1.2 trillion transistors. Optimized for artificial intelligence compute, the WSE is shown here for comparison alongside the largest graphics processing unit. Image Credit: Used with permission from Cerebras Systems.
There is a method to the madness, though. Currently, getting enough cores to run really large-scale deep learning applications means connecting banks of GPUs together. But shuffling data between these chips is a major drain on speed and energy efficiency because the wires connecting them are relatively slow.

Building all 400,000 cores into the same chip should get round that bottleneck, but there are reasons it’s not been done before, and Cerebras has had to come up with some clever hacks to get around those obstacles.

Regular computer chips are manufactured using a process called photolithography to etch transistors onto the surface of a wafer of silicon. The wafers are inches across, so multiple chips are built onto them at once and then split up afterwards. But at 8.5 inches across, the WSE uses the entire wafer for a single chip.

The problem is that while for standard chip-making processes any imperfections in manufacturing will at most lead to a few processors out of several hundred having to be ditched, for Cerebras it would mean scrapping the entire wafer. To get around this the company built in redundant circuits so that even if there are a few defects, the chip can route around them.

The other big issue with a giant chip is the enormous amount of heat the processors can kick off—so the company has had to design a proprietary water-cooling system. That, along with the fact that no one makes connections and packaging for giant chips, means the WSE won’t be sold as a stand-alone component, but as part of a pre-packaged server incorporating the cooling technology.

There are no details on costs or performance so far, but some customers have already been testing prototypes, and according to Cerebras results have been promising. CEO and co-founder Andrew Feldman told Fortune that early tests show they are reducing training time from months to minutes.

We’ll have to wait until the first systems ship to customers in September to see if those claims stand up. But Feldman told ZDNet that the design of their chip should help spur greater innovation in the way engineers design neural networks. Many cornerstones of this process—for instance, tackling data in batches rather than individual data points—are guided more by the hardware limitations of GPUs than by machine learning theory, but their chip will do away with many of those obstacles.

Whether that turns out to be the case or not, the WSE might be the first indication of an innovative new era in silicon design. When Google announced it’s AI-focused Tensor Processing Unit in 2016 it was a wake-up call for chipmakers that we need some out-of-the-box thinking to square the slowing of Moore’s Law with skyrocketing demand for computing power.

It’s not just tech giants’ AI server farms driving innovation. At the other end of the spectrum, the desire to embed intelligence in everyday objects and mobile devices is pushing demand for AI chips that can run on tiny amounts of power and squeeze into the smallest form factors.

These trends have spawned renewed interest in everything from brain-inspired neuromorphic chips to optical processors, but the WSE also shows that there might be mileage in simply taking a sideways look at some of the other design decisions chipmakers have made in the past rather than just pumping ever more transistors onto a chip.

This gigantic chip might be the first exhibit in a weird and wonderful new menagerie of exotic, AI-inspired silicon.

Image Credit: Used with permission from Cerebras Systems. Continue reading

Posted in Human Robots