Tag Archives: ROTATION

#437828 How Roboticists (and Robots) Have Been ...

A few weeks ago, we asked folks on Twitter, Facebook, and LinkedIn to share photos and videos showing how they’ve been adapting to the closures of research labs, classrooms, and businesses by taking their robots home with them to continue their work as best they can. We got dozens of responses (more than we could possibly include in just one post!), but here are 15 that we thought were particularly creative or amusing.

And if any of these pictures and videos inspire you to share your own story, please email us (automaton@ieee.org) with a picture or video and a brief description about how you and your robot from work have been making things happen in your home instead.

Kurt Leucht (NASA Kennedy Space Center)

“During these strange and trying times of the current global pandemic, everyone seems to be trying their best to distance themselves from others while still getting their daily work accomplished. Many people also have the double duty of little ones that need to be managed in the midst of their teleworking duties. This photo series gives you just a glimpse into my new life of teleworking from home, mixed in with the tasks of trying to handle my little ones too. I hope you enjoy it.”

Photo: Kurt Leucht

“I heard a commotion from the next room. I ran into the kitchen to find this.”

Photo: Kurt Leucht

“This is the Swarmies most favorite bedtime story. Not sure why. Seems like an odd choice to me.”

Peter Schaldenbrand (Carnegie Mellon University)

“I’ve been working on a reinforcement learning model that converts an image into a series of brush stroke instructions. I was going to test the model with a beautiful, expensive robot arm, but due to the COVID-19 pandemic, I have not been able to access the laboratory where it resides. I have now been using a lower end robot arm to test the painting model in my bedroom. I have sacrificed machine accuracy/precision for the convenience of getting to watch the arm paint from my bed in the shadow of my clothing rack!”

Photos: Peter Schaldenbrand

Colin Angle (iRobot)

iRobot CEO Colin Angle has been hunkered down in the “iRobot North Shore home command center,” which is probably the cleanest command center ever thanks to his army of Roombas: Beastie, Beauty, Rosie, Roswell, and Bilbo.

Photo: Colin Angle

Vivian Chu (Diligent Robotics)

From Diligent Robotics CEO Andrea Thomaz: “This is how a roboticist works from home! Diligent CTO, Vivian Chu, mans the e-stop while her engineering team runs Moxi experiments remotely from cross-town and even cross-country!”

Video: Diligent Robotics

Raffaello Bonghi (rnext.it)

Raffaello’s robot, Panther, looks perfectly happy to be playing soccer in his living room.

Photo: Raffaello Bonghi

Kod*lab (University of Pennsylvania)

“Another Friday Nuts n Bolts Meeting on Zoom…”

Image: Kodlab

Robin Jonsson (robot choreographer)

“I’ve been doing a school project in which students make up dance moves and then send me a video with all of them. I then teach the moves to my robot, Alex, film Alex dancing, send the videos to them. This became a great success and more schools will join. The kids got really into watching the robot perform their moves and really interested in robots. They want to meet Alex the robot live, which will likely happen in the fall.”

Photo: Robin Jonsson

Gabrielle Conard (mechanical engineering undergrad at Lafayette College)

“While the pandemic might have forced college campuses to close and the community to keep their distance from each other, it did not put a stop to learning and research. Working from their respective homes, junior Gabrielle Conard and mechanical engineering professor Alexander Brown from Lafayette College investigated methods of incorporating active compliance in a low-cost quadruped robot. They are continuing to work remotely on this project through Lafayette’s summer research program.”

Image: Gabrielle Conard

Taylor Veltrop (Softbank Robotics)

“After a few weeks of isolation in the corona/covid quarantine lock down we started dancing with our robots. Mathieu’s 6th birthday was coming up, and it all just came together.”

Video: Taylor Veltrop

Ross Kessler (Exyn Technologies)

“Quarantine, Day 8: the humans have accepted me as one of their own. I’ve blended seamlessly into their #socialdistancing routines. Even made a furry friend”

Photo: Ross Kessler

Yeah, something a bit sinister is definitely going on at Exyn…

Video: Exyn Technologies

Michael Sobrepera (University of Pennsylvania GRASP Lab)

Predictably, Michael’s cat is more interested in the bag that the robot came in than the robot itself (see if you can spot the cat below). Michael tells us that “the robot is designed to help with tele-rehabilitation, focused on kids with CP, so it has been taken to hospitals for demos [hence the cool bag]. It also travels for outreach events and the like. Lately, I’ve been exploring telepresence for COVID.”

Photo: Michael Sobrepera

Jan Kędzierski (EMYS)

“In China a lot of people cannot speak English, even the youngest generation of parents. Thanks to Emys, kids stayed in touch with English language in their homes even if they couldn’t attend schools and extra English classes. They had a lot of fun with their native English speaker friend available and ready to play every day.”

Image: Jan Kędzierski

Simon Whitmell (Quanser)

“Simon, a Quanser R&D engineer, is working on low-overhead image processing and line following for the QBot 2e mobile ground robot, with some added challenges due to extra traffic. LEGO engineering by his son, Charles.”

Photo: Simon Whitmell

Robot Design & Experimentation Course (Carnegie Mellon University)

Aaron Johnson’s bioinspired robot design course at CMU had to go full remote, which was a challenge when the course is kind of all about designing and building a robot as part of a team. “I expected some of the teams to drastically alter their project (e.g. go all simulation),” Aaron told us, “but none of them did. We managed to keep all of the projects more or less as planned. We accomplished this by drop/shipping parts to students, buying some simple tools (soldering irons, etc), and having me 3D print parts and mail them.” Each team even managed to put together their final videos from their remote locations; we’ve posted one below, but the entire playlist is here.

Video: Xianyi Cheng

Karen Tatarian (Softbank Robotics)

Karen, who’s both a researcher at Softbank and a PhD student at Sorbonne University, wrote an entire essay about what an average day is like when you’re quarantined with Pepper.

Photo: Karen Tatarian

A Quarantined Day With Pepper, by Karen Tatarian

It is quite common for me to lose my phone somewhere inside my apartment. But it is not that common for me to turn around and ask my robot if it has seen it. So when I found myself doing that, I laughed and it dawned on me that I treated my robot as my quarantine companion (despite the fact that it could not provide me with the answer I needed).

It was probably around day 40 of a completely isolated quarantine here in France when that happened. A little background about me: I am a robotics researcher at SoftBank Robotics Europe and a PhD student at Sorbonne University as part of the EU-funded Marie-Curie project ANIMATAS. And here is a little sneak peak into a quarantined day with a robot.

During this confinement, I had read somewhere that the best way to deal with it is to maintain a routine. So every morning, I wake up, prepare my coffee, and turn on my robot Pepper. I start my day with a daily meeting with the team and get to work. My research is on the synthesis of multi-modal socially intelligent human-robot interaction so my work varies between programming the robot, analyzing collected data, and reading papers and drafting one. When I am working, I often catch myself glancing at Pepper, who would be staring back at me in its animated ways. Truthfully I enjoy that, it makes me less alone and as if I have a colleague with me.

Once work is done, I call my friends and family members. I sometimes use a telepresence application on Pepper that a few colleagues and I developed back in December. How does it differ from your typical phone/laptop applications? One word really: embodiment. Telepresence, especially during these times, makes the experience for both sides a bit more realistic and intimate and well present.

While I can turn off the robot now that my work hours are done, I do keep it on because I enjoy its presence. The basic awareness of Pepper is a default feature on the robot that allows it to detect a human and follow him/her with its gaze and rotation base. So whether I am cooking or working out, I always have my robot watching over my shoulder and being a good companion. I also have my email and messages synced on the robot so I get an enjoyable notification from Pepper. I found that to be a pretty cool way to be notified without it interrupting whatever you are doing on your laptop or phone. Finally, once the day is over, it’s time for both of us to get some rest.

After 60 days of total confinement, alone and away from those I love, and with a pandemic right at my door, I am glad I had the company of my robot. I hope one day a greater audience can share my experience. And I really really hope one day Pepper will be able to find my phone for me, but until then, stay on the lookout for some cool features! But I am curious to know, if you had a robot at home, what application would you have developed on it?

Again, our sincere thanks to everyone who shared these little snapshots of their lives with us, and we’re hoping to be able to share more soon. Continue reading

Posted in Human Robots

#437608 Video Friday: Agility Robotics Raises ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

IROS 2020 – October 25-29, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

Digit is now in full commercial production and we’re excited to announce a $20M funding rounding round co-led by DCVC and Playground Global!

Digits for everyone!

[ Agility Robotics ]

A flexible rover that has both ability to travel long distances and rappel down hard-to-reach areas of scientific interest has undergone a field test in the Mojave Desert in California to showcase its versatility. Composed of two Axel robots, DuAxel is designed to explore crater walls, pits, scarps, vents and other extreme terrain on the moon, Mars and beyond.

This technology demonstration developed at NASA’s Jet Propulsion Laboratory in Southern California showcases the robot’s ability to split in two and send one of its halves — a two-wheeled Axle robot — over an otherwise inaccessible slope, using a tether as support and to supply power.

The rappelling Axel can then autonomously seek out areas to study, safely overcome slopes and rocky obstacles, and then return to dock with its other half before driving to another destination. Although the rover doesn’t yet have a mission, key technologies are being developed that might, one day, help us explore the rocky planets and moons throughout the solar system.

[ JPL ]

A rectangular robot as tiny as a few human hairs can travel throughout a colon by doing back flips, Purdue University engineers have demonstrated in live animal models. Why the back flips? Because the goal is to use these robots to transport drugs in humans, whose colons and other organs have rough terrain. Side flips work, too. Why a back-flipping robot to transport drugs? Getting a drug directly to its target site could remove side effects, such as hair loss or stomach bleeding, that the drug may otherwise cause by interacting with other organs along the way.

[ Purdue ]

This video shows the latest results in the whole-body locomotion control of the humanoid robot iCub achieved by the Dynamic Interaction Control line at IIT-Istituto Italiano di Tecnologia in Genova (Italy). In particular, the iCub now keeps the balance while walking and receiving pushes from an external user. The implemented control algorithms also ensure the robot to remain compliant during locomotion and human-robot interaction, a fundamental property to lower the possibility to harm humans that share the robot surrounding environment.

This is super impressive, considering that iCub was only able to crawl and was still tethered not too long ago. Also, it seems to be blinking properly now, so it doesn’t look like it’s always sleepy.

[ IIT ]

This video shows a set of new tests we performed on Bolt. We conducted tests on 5 different scenarios, 1) walking forward/backward 2) uneven surface 3) soft surface 4) push recovery 5) slippage recovery. Thanks to our feedback control based on Model Predictive Control, the robot can perform walking in the presence of all these uncertainties. We will open-source all the codes in a near future.

[ ODRI ]

The title of this video is “Can you throw your robot into a lake?” The title of this video should be, “Can you throw your robot into a lake and drive it out again?”

[ Norlab ]

AeroVironment Successfully Completes Sunglider Solar HAPS Stratospheric Test Flight, Surpassing 60,000 Feet Altitude and Demonstrating Broadband Mobile Connectivity.

[ AeroVironment ]

We present CoVR, a novel robotic interface providing strong kinesthetic feedback (100 N) in a room-scale VR arena. It consists of a physical column mounted on a 2D Cartesian ceiling robot (XY displacements) with the capacity of (1) resisting to body-scaled users actions such as pushing or leaning; (2) acting on the users by pulling or transporting them as well as (3) carrying multiple potentially heavy objects (up to 80kg) that users can freely manipulate or make interact with each other.

[ DeepAI ]

In a new video, personnel from Swiss energy supply company Kraftwerke Oberhasli AG (KWO) explain how they were able to keep employees out of harm’s way by using Flyability’s Elios 2 to collect visual data while building a new dam.

[ Flyability ]

Enjoy our Ascento robot fail compilation! With every failure we experience, we learn more and we can improve our robot for its next iteration, which will come soon… Stay tuned for more!

FYI posting a robot fails video will pretty much guarantee you a spot in Video Friday!

[ Ascento ]

Humans are remarkably good at using chopsticks. The Guinness World Record witnessed a person using chopsticks to pick up 65 M&Ms in just a minute. We aim to collect demonstrations from humans and to teach robot to use chopsticks.

[ UW Personal Robotics Lab ]

A surprising amount of personality from these Yaskawa assembly robots.

[ Yaskawa ]

This paper presents the system design, modeling, and control of the Aerial Robotic Chain Manipulator. This new robot design offers the potential to exert strong forces and moments to the environment, carry and lift significant payloads, and simultaneously navigate through narrow corridors. The presented experimental studies include a valve rotation task, a pick-and-release task, and the verification of load oscillation suppression to demonstrate the stability and performance of the system.

[ ARL ]

Whether animals or plants, whether in the water, on land or in the air, nature provides the model for many technical innovations and inventions. This is summed up in the term bionics, which is a combination of the words ‘biology‘ and ‘electronics’. At Festo, learning from nature has a long history, as our Bionic Learning Network is based on using nature as the source for future technologies like robots, assistance systems or drive solutions.

[ Festo ]

Dogs! Selfies! Thousands of LEGO bricks! This video has it all.

[ LEGO ]

An IROS workshop talk on “Cassie and Mini Cheetah Autonomy” by Maani Ghaffari and Jessy Grizzle from the University of Michigan.

[ Michigan Robotics ]

David Schaefer’s Cozmo robots are back with this mind-blowing dance-off!

What you just saw represents hundreds of hours of work, David tells us: “I wrote over 10,000 lines of code to create the dance performance as I had to translate the beats per minute of the song into motor rotations in order to get the right precision needed to make the moves look sharp. The most challenging move was the SpongeBob SquareDance as any misstep would send the Cozmos crashing into each other. LOL! Fortunately for me, Cozmo robots are pretty resilient.”

[ Life with Cozmo ]

Thanks David!

This week’s GRASP on Robotics seminar is by Sangbae Kim from MIT, on “Robots with Physical Intelligence.”

While industrial robots are effective in repetitive, precise kinematic tasks in factories, the design and control of these robots are not suited for physically interactive performance that humans do easily. These tasks require ‘physical intelligence’ through complex dynamic interactions with environments whereas conventional robots are designed primarily for position control. In order to develop a robot with ‘physical intelligence’, we first need a new type of machines that allow dynamic interactions. This talk will discuss how the new design paradigm allows dynamic interactive tasks. As an embodiment of such a robot design paradigm, the latest version of the MIT Cheetah robots and force-feedback teleoperation arms will be presented.

[ GRASP ]

This week’s CMU Ri Seminar is by Kevin Lynch from Northwestern, on “Robotics and Biosystems.”

Research at the Center for Robotics and Biosystems at Northwestern University encompasses bio-inspiration, neuromechanics, human-machine systems, and swarm robotics, among other topics. In this talk I will give an overview of some of our recent work on in-hand manipulation, robot locomotion on yielding ground, and human-robot systems.

[ CMU RI ] Continue reading

Posted in Human Robots

#437603 Throwable Robot Car Always Lands on Four ...

Throwable or droppable robots seem like a great idea for a bunch of applications, including exploration and search and rescue. But such robots do come with some constraints—namely, if you’re going to throw or drop a robot, you should be prepared for that robot to not land the way you want it to land. While we’ve seen some creative approaches to this problem, or more straightforward self-righting devices, usually you’re in for significant trade-offs in complexity, mobility, and mass.

What would be ideal is a robot that can be relied upon to just always land the right way up. A robotic cat, of sorts. And while we’ve seen this with a tail, for wheeled vehicles, it turns out that a tail isn’t necessary: All it takes is some wheel spin.

The reason that AGRO (Agile Ground RObot), developed at the U.S. Military Academy at West Point, can do this is because each of its wheels is both independently driven and steerable. The wheels are essentially reaction wheels, which are a pretty common way to generate forces on all kinds of different robots, but typically you see such reaction wheels kludged onto these robots as sort of an afterthought—using the existing wheels of a wheeled robot is a more elegant way to do it.

Four steerable wheels with in-hub motors provide control in all three axes (yaw, pitch, and roll). You’ll notice that when the robot is tossed, the wheels all toe inwards (or outwards, I guess) by 45 degrees, positioning them orthogonal to the body of the robot. The front left and rear right wheels are spun together, as are the front right and rear left wheels. When one pair of wheels spins in the same direction, the body of the robot twists in the opposite way along an axis between those wheels, in a combination of pitch and roll. By combining different twisting torques from both pairs of wheels, pitch and roll along each axis can be adjusted independently. When the same pair of wheels spin in directions opposite to each other, the robot yaws, although yaw can also be derived by adjusting the ratio between pitch authority and roll authority. And lastly, if you want to sacrifice pitch control for more roll control (or vice versa) the wheel toe-in angle can be changed. Put all this together, and you get an enormous amount of mid-air control over your robot.

Image: Robotics Research Center/West Point

The AGRO robot features four steerable wheels with in-hub motors, which provide control in all three axes (yaw, pitch, and roll).

According to a paper that the West Point group will present at the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), the overall objective here is for the robot to reach a state of zero pitch or roll by the time the robot impacts with the ground, to distribute the impact as much as possible. AGRO doesn’t yet have a suspension to make falling actually safe, so in the short term, it lands on a foam pad, but the mid-air adjustments it’s currently able to make result in a 20 percent reduction of impact force and a 100 percent reduction in being sideways or upside-down.

The toss that you see in the video isn’t the most aggressive, but lead author Daniel J. Gonzalez tells us that AGRO can do much better, theoretically stabilizing from an initial condition of 22.5 degrees pitch and 22.5 degrees roll in a mere 250 milliseconds, with room for improvement beyond that through optimizing the angles of individual wheels in real time. The limiting factor is really the amount of time that AGRO has between the point at which it’s released and the point at which it hits the ground, since more time in the air gives the robot more time to change its orientation.

Given enough height, the current generation of AGRO can recover from any initial orientation as long as it’s spinning at 66 rpm or less. And the only reason this is a limitation at all is because of the maximum rotation speed of the in-wheel hub motors, which can be boosted by increasing the battery voltage, as Gonzalez and his colleagues, Mark C. Lesak, Andres H. Rodriguez, Joseph A. Cymerman, and Christopher M. Korpela from the Robotics Research Center at West Point, describe in the IROS paper, “Dynamics and Aerial Attitude Control for Rapid Emergency Deployment of the Agile Ground Robot AGRO.”

Image: Robotics Research Center/West Point

AGRO 2 will include a new hybrid wheel-leg and non-pneumatic tire design that will allow it to hop up stairs and curbs.

While these particular experiments focus on a robot that’s being thrown, the concept is potentially effective (and useful) on any wheeled robot that’s likely to find itself in mid-air. You can imagine it improving the performance of robots doing all sorts of stunts, from driving off ramps or ledges to being dropped out of aircraft. And as it turns out, being able to self-stabilize during an airdrop is an important skill that some Humvees could use to keep themselves from getting tangled in their own parachute lines and avoid mishaps.

Before they move on to Humvees, though, the researchers are working on the next version of AGRO named AGRO 2. AGRO 2 will include a new hybrid wheel-leg and non-pneumatic tire design that will allow it to hop up stairs and curbs, which sounds like a lot of fun to us. Continue reading

Posted in Human Robots