Tag Archives: roll

#435779 This Robot Ostrich Can Ride Around on ...

Proponents of legged robots say that they make sense because legs are often required to go where humans go. Proponents of wheeled robots say, “Yeah, that’s great but watch how fast and efficient my robot is, compared to yours.” Some robots try and take advantage of wheels and legs with hybrid designs like whegs or wheeled feet, but a simpler and more versatile solution is to do what humans do, and just take advantage of wheels when you need them.

We’ve seen a few experiments with this. The University of Michigan managed to convince Cassie to ride a Segway, with mostly positive (but occasionally quite negative) results. A Segway, and hoverboard-like systems, can provide wheeled mobility for legged robots over flat terrain, but they can’t handle things like stairs, which is kind of the whole point of having a robot with legs anyway.

Image: UC Berkeley

From left, a Segway, a hovercraft, and hovershoes, with complexity in terms of user control increasing from left to right.

At UC Berkeley’s Hybrid Robotics Lab, led by Koushil Sreenath, researchers have taken things a step further. They are teaching their Cassie bipedal robot (called Cassie Cal) to wheel around on a pair of hovershoes. Hovershoes are like hoverboards that have been chopped in half, resulting in a pair of motorized single-wheel skates. You balance on the skates, and control them by leaning forwards and backwards and left and right, which causes each skate to accelerate or decelerate in an attempt to keep itself upright. It’s not easy to get these things to work, even for a human, but by adding a sensor package to Cassie the UC Berkeley researchers have managed to get it to zip around campus fully autonomously.

Remember, Cassie is operating autonomously here—it’s performing vSLAM (with an Intel RealSense) and doing all of its own computation onboard in real time. Watching it jolt across that cracked sidewalk is particularly impressive, especially considering that it only has pitch control over its ankles and can’t roll its feet to maintain maximum contact with the hovershoes. But you can see the advantage that this particular platform offers to a robot like Cassie, including the ability to handle stairs. Stairs in one direction, anyway.

It’s a testament to the robustness of UC Berkeley’s controller that they were willing to let the robot operate untethered and outside, and it sounds like they’re thinking long-term about how legged robots on wheels would be real-world useful:

Our feedback control and autonomous system allow for swift movement through urban environments to aid in everything from food delivery to security and surveillance to search and rescue missions. This work can also help with transportation in large factories and warehouses.

For more details, we spoke with the UC Berkeley students (Shuxiao Chen, Jonathan Rogers, and Bike Zhang) via email.

IEEE Spectrum: How representative of Cassie’s real-world performance is what we see in the video? What happens when things go wrong?

Cassie’s real-world performance is similar to what we see in the video. Cassie can ride the hovershoes successfully all around the campus. Our current controller allows Cassie to robustly ride the hovershoes and rejects various perturbations. At present, one of the failure modes is when the hovershoe rolls to the side—this happens when it goes sideways down a step or encounters a large obstacle on one side of it, causing it to roll over. Under these circumstances, Cassie doesn’t have sufficient control authority (due to the thin narrow feet) to get the hovershoe back on its wheel.

The Hybrid Robotics Lab has been working on robots that walk over challenging terrain—how do wheeled platforms like hovershoes fit in with that?

Surprisingly, this research is related to our prior work on walking on discrete terrain. While locomotion using legs is efficient when traveling over rough and discrete terrain, wheeled locomotion is more efficient when traveling over flat continuous terrain. Enabling legged robots to ride on various micro-mobility platforms will offer multimodal locomotion capabilities, improving the efficiency of locomotion over various terrains.

Our current research furthers the locomotion ability for bipedal robots over continuous terrains by using a wheeled platform. In the long run, we would like to develop multi-modal locomotion strategies based on our current and prior work to allow legged robots to robustly and efficiently locomote in our daily life.

Photo: UC Berkeley

In their experiments, the UC Berkeley researchers say Cassie proved quite capable of riding the hovershoes over rough and uneven terrain, including going down stairs.

How long did it take to train Cassie to use the hovershoes? Are there any hovershoe skills that Cassie is better at than an average human?

We spent about eight months to develop our whole system, including a controller, a path planner, and a vision system. This involved developing mathematical models of Cassie and the hovershoes, setting up a dynamical simulation, figuring out how to interface and communicate with various sensors and Cassie, and doing several experiments to slowly improve performance. In contrast, a human with a good sense of balance needs a few hours to learn to use the hovershoes. A human who has never used skates or skis will probably need a longer time.

A human can easily turn in place on the hovershoes, while Cassie cannot do this motion currently due to our algorithm requiring a non-zero forward speed in order to turn. However, Cassie is much better at riding the hovershoes over rough and uneven terrain including riding the hovershoes down some stairs!

What would it take to make Cassie faster or more agile on the hovershoes?

While Cassie can currently move at a decent pace on the hovershoes and navigate obstacles, Cassie’s ability to avoid obstacles at rapid speeds is constrained by the sensing, the controller, and the onboard computation. To enable Cassie to dynamically weave around obstacles at high speeds exhibiting agile motions, we need to make progress on different fronts.

We need planners that take into account the entire dynamics of the Cassie-Hovershoe system and rapidly generate dynamically-feasible trajectories; we need controllers that tightly coordinate all the degrees-of-freedom of Cassie to dynamically move while balancing on the hovershoes; we need sensors that are robust to motion-blur artifacts caused due to fast turns; and we need onboard computation that can execute our algorithms at real-time speeds.

What are you working on next?

We are working on enabling more aggressive movements for Cassie on the hovershoes by fully exploiting Cassie’s dynamics. We are working on approaches that enable us to easily go beyond hovershoes to other challenging micro-mobility platforms. We are working on enabling Cassie to step onto and off from wheeled platforms such as hovershoes. We would like to create a future of multi-modal locomotion strategies for legged robots to enable them to efficiently help people in our daily life.

“Feedback Control for Autonomous Riding of Hovershoes by a Cassie Bipedal Robot,” by Shuxiao Chen, Jonathan Rogers, Bike Zhang, and Koushil Sreenath from the Hybrid Robotics Lab at UC Berkeley, has been submitted to IEEE Robotics and Automation Letters with option to be presented at the 2019 IEEE RAS International Conference on Humanoid Robots. Continue reading

Posted in Human Robots

#435750 Video Friday: Amazon CEO Jeff Bezos ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events):

RSS 2019 – June 22-26, 2019 – Freiburg, Germany
Hamlyn Symposium on Medical Robotics – June 23-26, 2019 – London, U.K.
ETH Robotics Summer School – June 27-1, 2019 – Zurich, Switzerland
MARSS 2019 – July 1-5, 2019 – Helsinki, Finland
ICRES 2019 – July 29-30, 2019 – London, U.K.
Let us know if you have suggestions for next week, and enjoy today’s videos.

Last week at the re:MARS conference, Amazon CEO and aspiring supervillain Jeff Bezos tried out this pair of dexterous robotic hands, which he described as “weirdly natural” to operate. The system combines Shadow Robot’s anthropomorphic robot hands with SynTouch’s biomimetic tactile sensors and HaptX’s haptic feedback gloves.

After playing with the robot, Bezos let out his trademark evil laugh.

[ Shadow Robot ]

The RoboMaster S1 is DJI’s advanced new educational robot that opens the door to limitless learning and entertainment. Develop programming skills, get familiar with AI technology, and enjoy thrilling FPV driving with games and competition. From young learners to tech enthusiasts, get ready to discover endless possibilities with the RoboMaster S1.

[ DJI ]

It’s very impressive to see DLR’s humanoid robot Toro dynamically balancing, even while being handed heavy objects, pushing things, and using multi-contact techniques to kick a fire extinguisher for some reason.

The paper is in RA-L, and you can find it at the link below.

[ RA-L ] via [ DLR ]

Thanks Maximo!

Is it just me, or does the Suzumori Endo Robotics Laboratory’s Super Dragon arm somehow just keep getting longer?

Suzumori Endo Lab, Tokyo Tech developed a 10 m-long articulated manipulator for investigation inside the primary containment vessel of the Fukushima Daiichi Nuclear Power Plants. We employed a coupled tendon-driven mechanism and a gravity compensation mechanism using synthetic fiber ropes to design a lightweight and slender articulated manipulator. This work was published in IEEE Robotics and Automation Letters and Transactions of the JSME.

[ Suzumori Endo Lab ]

From what I can make out thanks to Google Translate, this cute little robot duck (developed by Nissan) helps minimize weeds in rice fields by stirring up the water.

[ Nippon.com ]

Confidence in your robot is when you can just casually throw it off of a balcony 15 meters up.

[ SUTD ]

You had me at “we’re going to completely submerge this apple in chocolate syrup.”

[ Soft Robotics Inc ]

In the mid 2020s, the European Space Agency is planning on sending a robotic sample return mission to the Moon. It’s called Heracles, after the noted snake-strangler of Greek mythology.

[ ESA ]

Rethink Robotics is still around, they’re just much more German than before. And Sawyer is still hard at work stealing jobs from humans.

[ Rethink Robotics ]

The reason to watch this new video of the Ghost Robotics Vision 60 quadruped is for the 3 seconds worth of barrel roll about 40 seconds in.

[ Ghost Robotics ]

This is a relatively low-altitude drop for Squishy Robotics’ tensegrity scout, but it still cool to watch a robot that’s resilient enough to be able to fall and just not worry about it.

[ Squishy Robotics ]

We control here the Apptronik DRACO bipedal robot for unsupported dynamic locomotion. DRACO consists of a 10 DoF lower body with liquid cooled viscoelastic actuators to reduce weight, increase payload, and achieve fast dynamic walking. Control and walking algorithms are designed by UT HCRL Laboratory.

I think all robot videos should be required to start with two “oops” clips followed by a “for real now” clip.

[ Apptronik ]

SAKE’s EZGripper manages to pick up a wrench, and also pick up a raspberry without turning it into instajam.

[ SAKE Robotics ]

And now: the robotic long-tongued piggy, courtesy Sony Toio.

[ Toio ]

In this video the ornithopter developed inside the ERC Advanced Grant GRIFFIN project performs its first flight. This projects aims to develop a flapping wing system with manipulation and human interaction capabilities.

A flapping-wing system with manipulation and human interaction capabilities, you say? I would like to subscribe to your newsletter.

[ GRVC ]

KITECH’s robotic hands and arms can manipulate, among other things, five boxes of Elmos. I’m not sure about the conversion of Elmos to Snuffleupaguses, although it turns out that one Snuffleupagus is exactly 1,000 pounds.

[ Ji-Hun Bae ]

The Australian Centre for Field Robotics (ACFR) has been working on agricultural robots for almost a decade, and this video sums up a bunch of the stuff that they’ve been doing, even if it’s more amusing than practical at times.

[ ACFR ]

ROS 2 is great for multi-robot coordination, like when you need your bubble level to stay really, really level.

[ Acutronic Robotics ]

We don’t hear iRobot CEO Colin Angle give a lot of talks, so this recent one (from Amazon’s re:MARS conference) is definitely worth a listen, especially considering how much innovation we’ve seen from iRobot recently.

Colin Angle, founder and CEO of iRobot, has unveil a series of breakthrough innovations in home robots from iRobot. For the first time on stage, he will discuss and demonstrate what it takes to build a truly intelligent system of robots that work together to accomplish more within the home – and enable that home, and the devices within it, to work together as one.

[ iRobot ]

In the latest episode of Robots in Depth, Per speaks with Federico Pecora from the Center for Applied Autonomous Sensor Systems at Örebro University in Sweden.

Federico talks about working on AI and service robotics. In this area he has worked on planning, especially focusing on why a particular goal is the one that the robot should work on. To make robots as useful and user friendly as possible, he works on inferring the goal from the robot’s environment so that the user does not have to tell the robot everything.

Federico has also worked with AI robotics planning in industry to optimize results. Managing the relative importance of tasks is another challenging area there. In this context, he works on automating not only a single robot for its goal, but an entire fleet of robots for their collective goal. We get to hear about how these techniques are being used in warehouse operations, in mines and in agriculture.

[ Robots in Depth ] Continue reading

Posted in Human Robots

#435634 Robot Made of Clay Can Sculpt Its Own ...

We’re very familiar with a wide variety of transforming robots—whether for submarines or drones, transformation is a way of making a single robot adaptable to different environments or tasks. Usually, these robots are restricted to a discrete number of configurations—perhaps two or three different forms—because of the constraints imposed by the rigid structures that robots are typically made of.

Soft robotics has the potential to change all this, with robots that don’t have fixed forms but instead can transform themselves into whatever shape will enable them to do what they need to do. At ICRA in Montreal earlier this year, researchers from Yale University demonstrated a creative approach toward a transforming robot powered by string and air, with a body made primarily out of clay.

Photo: Evan Ackerman

The robot is actuated by two different kinds of “skin,” one layered on top of another. There’s a locomotion skin, made of a pattern of pneumatic bladders that can roll the robot forward or backward when the bladders are inflated sequentially. On top of that is the morphing skin, which is cable-driven, and can sculpt the underlying material into a variety of shapes, including spheres, cylinders, and dumbbells. The robot itself consists of both of those skins wrapped around a chunk of clay, with the actuators driven by offboard power and control. Here it is in action:

The Yale researchers have been experimenting with morphing robots that use foams and tensegrity structures for their bodies, but that stuff provides a “restoring force,” springing back into its original shape once the actuation stops. Clay is different because it holds whatever shape it’s formed into, making the robot more energy efficient. And if the dumbbell shape stops being useful, the morphing layer can just squeeze it back into a cylinder or a sphere.

While this robot, and the sample transformation shown in the video, are relatively simplistic, the researchers suggest some ways in which a more complex version could be used in the future:

Photo: IEEE Xplore

This robot’s morphing skin sculpts its clay body into different shapes.

Applications where morphing and locomotion might serve as complementary functions are abundant. For the example skins presented in this work, a search-and-rescue operation could use the clay as a medium to hold a payload such as sensors or transmitters. More broadly, applications include resource-limited conditions where supply chains for materiel are sparse. For example, the morphing sequence shown in Fig. 4 [above] could be used to transform from a rolling sphere to a pseudo-jointed robotic arm. With such a morphing system, it would be possible to robotically morph matter into different forms to perform different functions.

Read this article for free on IEEE Xplore until 5 September 2019

Morphing Robots Using Robotic Skins That Sculpt Clay, by Dylan S. Shah, Michelle C. Yuen, Liana G. Tilton, Ellen J. Yang, and Rebecca Kramer-Bottiglio from Yale University, was presented at ICRA 2019 in Montreal.

[ Yale Faboratory ]

< Back to IEEE Journal Watch Continue reading

Posted in Human Robots

#435632 DARPA Subterranean Challenge: Tunnel ...

The Tunnel Circuit of the DARPA Subterranean Challenge starts later this week at the NIOSH research mine just outside of Pittsburgh, Pennsylvania. From 15-22 August, 11 teams will send robots into a mine that they've never seen before, with the goal of making maps and locating items. All DARPA SubT events involve tunnels of one sort or another, but in this case, the “Tunnel Circuit” refers to mines as opposed to urban underground areas or natural caves. This month’s challenge is the first of three discrete events leading up to a huge final event in August of 2021.

While the Tunnel Circuit competition will be closed to the public, and media are only allowed access for a single day (which we'll be at, of course), DARPA has provided a substantial amount of information about what teams will be able to expect. We also have details from the SubT Integration Exercise, called STIX, which was a completely closed event that took place back in April. STIX was aimed at giving some teams (and DARPA) a chance to practice in a real tunnel environment.

For more general background on SubT, here are some articles to get you all caught up:

SubT: The Next DARPA Challenge for Robotics

Q&A with DARPA Program Manager Tim Chung

Meet The First Nine Teams

It makes sense to take a closer look at what happened at April's STIX exercise, because it is (probably) very similar to what teams will experience in the upcoming Tunnel Circuit. STIX took place at Edgar Experimental Mine in Colorado, and while no two mines are the same (and many are very, very different), there are enough similarities for STIX to have been a valuable experience for teams. Here's an overview video of the exercise from DARPA:

DARPA has also put together a much more detailed walkthrough of the STIX mine exercise, which gives you a sense of just how vast, complicated, and (frankly) challenging for robots the mine environment is:

So, that's the kind of thing that teams had to deal with back in April. Since the event was an exercise, rather than a competition, DARPA didn't really keep score, and wouldn't comment on the performance of individual teams. We've been trolling YouTube for STIX footage, though, to get a sense of how things went, and we found a few interesting videos.

Here's a nice overview from Team CERBERUS, which used drones plus an ANYmal quadruped:

Team CTU-CRAS also used drones, along with a tracked robot:

Team Robotika was brave enough to post video of a “fatal failure” experienced by its wheeled robot; the poor little bot gets rescued at about 7:00 in case you get worried:

So that was STIX. But what about the Tunnel Circuit competition this week? Here's a course preview video from DARPA:

It sort of looks like the NIOSH mine might be a bit less dusty than the Edgar mine was, but it could also be wetter and muddier. It’s hard to tell, because we’re just getting a few snapshots of what’s probably an enormous area with kilometers of tunnels that the robots will have to explore. But DARPA has promised “constrained passages, sharp turns, large drops/climbs, inclines, steps, ladders, and mud, sand, and/or water.” Combine that with the serious challenge to communications imposed by the mine itself, and robots will have to be both physically capable, and almost entirely autonomous. Which is, of course, exactly what DARPA is looking to test with this challenge.

Lastly, we had a chance to catch up with Tim Chung, Program Manager for the Subterranean Challenge at DARPA, and ask him a few brief questions about STIX and what we have to look forward to this week.

IEEE Spectrum: How did STIX go?

Tim Chung: It was a lot of fun! I think it gave a lot of the teams a great opportunity to really get a taste of what these types of real world environments look like, and also what DARPA has in store for them in the SubT Challenge. STIX I saw as an experiment—a learning experience for all the teams involved (as well as the DARPA team) so that we can continue our calibration.

What do you think teams took away from STIX, and what do you think DARPA took away from STIX?

I think the thing that teams took away was that, when DARPA hosts a challenge, we have very audacious visions for what the art of the possible is. And that's what we want—in my mind, the purpose of a DARPA Grand Challenge is to provide that inspiration of, ‘Holy cow, someone thinks we can do this!’ So I do think the teams walked away with a better understanding of what DARPA's vision is for the capabilities we're seeking in the SubT Challenge, and hopefully walked away with a better understanding of the technical, physical, even maybe mental challenges of doing this in the wild— which will all roll back into how they think about the problem, and how they develop their systems.

This was a collaborative exercise, so the DARPA field team was out there interacting with the other engineers, figuring out what their strengths and weaknesses and needs might be, and even understanding how to handle the robots themselves. That will help [strengthen] connections between these university teams and DARPA going forward. Across the board, I think that collaborative spirit is something we really wish to encourage, and something that the DARPA folks were able to take away.

What do we have to look forward to during the Tunnel Circuit?

The vision here is that the Tunnel Circuit is representative of one of the three subterranean subdomains, along with urban and cave. Characteristics of all of these three subdomains will be mashed together in an epic final course, so that teams will have to face hints of tunnel once again in that final event.

Without giving too much away, the NIOSH mine will be similar to the Edgar mine in that it's a human-made environment that supports mining operations and research. But of course, every site is different, and these differences, I think, will provide good opportunities for the teams to shine.

Again, we'll be visiting the NIOSH mine in Pennsylvania during the Tunnel Circuit and will post as much as we can from there. But if you’re an actual participant in the Subterranean Challenge, please tweet me @BotJunkie so that I can follow and help share live updates.

[ DARPA Subterranean Challenge ] Continue reading

Posted in Human Robots

#435616 Video Friday: AlienGo Quadruped Robot ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

CLAWAR 2019 – August 26-28, 2019 – Kuala Lumpur, Malaysia
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

I know you’ve all been closely following our DARPA Subterranean Challenge coverage here and on Twitter, but here are short recap videos of each day just in case you missed something.

[ DARPA SubT ]

After Laikago, Unitree Robotics is now introducing AlienGo, which is looking mighty spry:

We’ve seen MIT’s Mini Cheetah doing backflips earlier this year, but apparently AlienGo is now the largest and heaviest quadruped to perform the maneuver.

[ Unitree ]

The majority of soft robots today rely on external power and control, keeping them tethered to off-board systems or rigged with hard components. Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Caltech have developed soft robotic systems, inspired by origami, that can move and change shape in response to external stimuli, paving the way for fully untethered soft robots.

The Rollbot begins as a flat sheet, about 8 centimeters long and 4 centimeters wide. When placed on a hot surface, about 200°C, one set of hinges folds and the robot curls into a pentagonal wheel.

Another set of hinges is embedded on each of the five sides of the wheel. A hinge folds when in contact with the hot surface, propelling the wheel to turn to the next side, where the next hinge folds. As they roll off the hot surface, the hinges unfold and are ready for the next cycle.

[ Harvard SEAS ]

A new research effort at Caltech aims to help people walk again by combining exoskeletons with spinal stimulation. This initiative, dubbed RoAM (Robotic Assisted Mobility), combines the research of two Caltech roboticists: Aaron Ames, who creates the algorithms that enable walking by bipedal robots and translates these to govern the motion of exoskeletons and prostheses; and Joel Burdick, whose transcutaneous spinal implants have already helped paraplegics in clinical trials to recover some leg function and, crucially, torso control.

[ Caltech ]

Once ExoMars lands, it’s going to have to get itself off of the descent stage and onto the surface, which could be tricky. But practice makes perfect, or as near as you can get on Earth.

That wheel walking technique is pretty cool, and it looks like ExoMars will be able to handle terrain that would scare NASA’s Mars rovers away.

[ ExoMars ]

I am honestly not sure whether this would make the game of golf more or less fun to watch:

[ Nissan ]

Finally, a really exciting use case for Misty!

It can pick up those balls too, right?

[ Misty ]

You know you’re an actual robot if this video doesn’t make you crave Peeps.

[ Soft Robotics ]

COMANOID investigates the deployment of robotic solutions in well-identified Airbus airliner assembly operations that are tedious for human workers and for which access is impossible for wheeled or rail-ported robotic platforms. This video presents a demonstration of autonomous placement of a part inside the aircraft fuselage. The task is performed by TORO, the torque-controlled humanoid robot developed at DLR.

[ COMANOID ]

It’s a little hard to see in this video, but this is a cable-suspended robot arm that has little tiny robot arms that it waves around to help damp down vibrations.

[ CoGiRo ]

This week in Robots in Depth, Per speaks with author Cristina Andersson.

In 2013 she organized events in Finland during European robotics week and found that many people was very interested but that there was also a big lack of knowledge.

She also talks about introducing robotics in society in a way that makes it easy for everyone to understand the benefits as this will make the process much easier. When people see the clear benefits in one field or situation they will be much more interested in bringing robotics in to their private or professional lives.

[ Robots in Depth ] Continue reading

Posted in Human Robots