Tag Archives: robotics

#437721 Video Friday: Child Robot Learning to ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

CLAWAR 2020 – August 24-26, 2020 – [Online Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
CYBATHLON 2020 – November 13-14, 2020 – [Online Event]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

We first met Ibuki, Hiroshi Ishiguro’s latest humanoid robot, a couple of years ago. A recent video shows how Ishiguro and his team are teaching the robot to express its emotional state through gait and body posture while moving.

This paper presents a subjective evaluation of the emotions of a wheeled mobile humanoid robot expressing emotions during movement by replicating human gait-induced upper body motion. For this purpose, we proposed the robot equipped with a vertical oscillation mechanism that generates such motion by focusing on human center-of-mass trajectory. In the experiment, participants watched videos of the robot’s different emotional gait-induced upper body motions, and assess the type of emotion shown, and their confidence level in their answer.

[ Hiroshi Ishiguro Lab ] via [ RobotStart ]

ICYMI: This is a zinc-air battery made partly of Kevlar that can be used to support weight, not just add to it.

Like biological fat reserves store energy in animals, a new rechargeable zinc battery integrates into the structure of a robot to provide much more energy, a team led by the University of Michigan has shown.

The new battery works by passing hydroxide ions between a zinc electrode and the air side through an electrolyte membrane. That membrane is partly a network of aramid nanofibers—the carbon-based fibers found in Kevlar vests—and a new water-based polymer gel. The gel helps shuttle the hydroxide ions between the electrodes. Made with cheap, abundant and largely nontoxic materials, the battery is more environmentally friendly than those currently in use. The gel and aramid nanofibers will not catch fire if the battery is damaged, unlike the flammable electrolyte in lithium ion batteries. The aramid nanofibers could be upcycled from retired body armor.

[ University of Michigan ]

In what they say is the first large-scale study of the interactions between sound and robotic action, researchers at CMU’s Robotics Institute found that sounds could help a robot differentiate between objects, such as a metal screwdriver and a metal wrench. Hearing also could help robots determine what type of action caused a sound and help them use sounds to predict the physical properties of new objects.

[ CMU ]

Captured on Aug. 11 during the second rehearsal of the OSIRIS-REx mission’s sample collection event, this series of images shows the SamCam imager’s field of view as the NASA spacecraft approaches asteroid Bennu’s surface. The rehearsal brought the spacecraft through the first three maneuvers of the sampling sequence to a point approximately 131 feet (40 meters) above the surface, after which the spacecraft performed a back-away burn.

These images were captured over a 13.5-minute period. The imaging sequence begins at approximately 420 feet (128 meters) above the surface – before the spacecraft executes the “Checkpoint” maneuver – and runs through to the “Matchpoint” maneuver, with the last image taken approximately 144 feet (44 meters) above the surface of Bennu.

[ NASA ]

The DARPA AlphaDogfight Trials Final Event took place yesterday; the livestream is like 5 hours long, but you can skip ahead to 4:39 ish to see the AI winner take on a human F-16 pilot in simulation.

Some things to keep in mind about the result: The AI had perfect situational knowledge while the human pilot had to use eyeballs, and in particular, the AI did very well at lining up its (virtual) gun with the human during fast passing maneuvers, which is the sort of thing that autonomous systems excel at but is not necessarily reflective of better strategy.

[ DARPA ]

Coming soon from Clearpath Robotics!

[ Clearpath ]

This video introduces Preferred Networks’ Hand type A, a tendon-driven robot gripper with passively switchable underactuated surface.

[ Preferred Networks ]

CYBATHLON 2020 will take place on 13 – 14 November 2020 – at the teams’ home bases. They will set up their infrastructure for the competition and film their races. Instead of starting directly next to each other, the pilots will start individually and under the supervision of CYBATHLON officials. From Zurich, the competitions will be broadcast through a new platform in a unique live programme.

[ Cybathlon ]

In this project, we consider the task of autonomous car racing in the top-selling car racing game Gran Turismo Sport. Gran Turismo Sport is known for its detailed physics simulation of various cars and tracks. Our approach makes use of maximum-entropy deep reinforcement learning and a new reward design to train a sensorimotor policy to complete a given race track as fast as possible. We evaluate our approach in three different time trial settings with different cars and tracks. Our results show that the obtained controllers not only beat the built-in non-player character of Gran Turismo Sport, but also outperform the fastest known times in a dataset of personal best lap times of over 50,000 human drivers.

[ UZH ]

With the help of the software pitasc from Fraunhofer IPA, an assembly task is no longer programmed point by point, but workpiece-related. Thus, pitasc adapts the assembly process itself for new product variants with the help of updated parameters.

[ Fraunhofer ]

In this video, a multi-material robot simulator is used to design a shape-changing robot, which is then transferred to physical hardware. The simulated and real robots can use shape change to switch between rolling gaits and inchworm gaits, to locomote in multiple environments.

[ Yale ]

This work presents a novel loco-manipulation control framework for the execution of complex tasks with kinodynamic constraints using mobile manipulators. As a representative example, we consider the handling and re-positioning of pallet jacks in unstructured environments. While these results reveal with a proof-of- concept the effectiveness of the proposed framework, they also demonstrate the high potential of mobile manipulators for relieving human workers from such repetitive and labor intensive tasks. We believe that this extended functionality can contribute to increasing the usability of mobile manipulators in different application scenarios.

[ Paper ] via [ IIT ]

I don’t know why this dinosaur ice cream serving robot needs to blow smoke out of its nose, but I like it.

[ Connected Robotics ] via [ RobotStart ]

Guardian S remote visual inspection and surveillance robots make laying cable runs in confined or hard to reach spaces easy. With advanced maneuverability and the ability to climb vertical, ferrous surfaces, the robot reaches areas that are not always easily accessible.

[ Sarcos ]

Looks like the company that bought Anki is working on an add-on to let cars charge while they drive.

[ Digital Dream Labs ]

Chris Atkeson gives a brief talk for the CMU Robotics Institute orientation.

[ CMU RI ]

A UofT Robotics Seminar, featuring Russ Tedrake from MIT and TRI on “Feedback Control for Manipulation.”

Control theory has an answer for just about everything, but seems to fall short when it comes to closing a feedback loop using a camera, dealing with the dynamics of contact, and reasoning about robustness over the distribution of tasks one might find in the kitchen. Recent examples from RL and imitation learning demonstrate great promise, but don’t leverage the rigorous tools from systems theory. I’d like to discuss why, and describe some recent results of closing feedback loops from pixels for “category-level” robot manipulation.

[ UofT ] Continue reading

Posted in Human Robots

#437716 Robotic Tank Is Designed to Crawl ...

Let’s talk about bowels! Most of us have them, most of us use them a lot, and like anything that gets used a lot, they eventually need to get checked out to help make sure that everything will keep working the way it should for as long as you need it to. Generally, this means a colonoscopy, and while there are other ways of investigating what’s going on in your gut, a camera on a flexible tube is still “the gold-standard method of diagnosis and intervention,” according to some robotics researchers who want to change that up a bit.

The University of Colorado’s Advanced Medical Technologies Lab has been working on a tank robot called Endoculus that’s able to actively drive itself through your intestines, rather than being shoved. The good news is that it’s very small, and the bad news is that it’s probably not as small as you’d like it to be.

The reason why a robot like Endoculus is necessary (or at least a good idea) is that trying to stuff a semi-rigid endoscopy tube into the semi-floppy tube that is your intestine doesn’t always go smoothly. Sometimes, the tip of the endoscopy tube can get stuck, and as more tube is fed in, it causes the intestine to distend, which best case is painful and worst case can cause serious internal injuries. One way of solving this is with swallowable camera pills, but those don’t help you with tasks like taking tissue samples. A self-propelled system like Endoculus could reduce risk while also making the procedure faster and cheaper.

Image: Advanced Medical Technologies Lab/University of Colorado

The researchers say that while the width of Endoculus is larger than a traditional endoscope, the device would require “minimal distention during use” and would “not cause pain or harm to the patient.” Future versions of the robot, they add, will “yield a smaller footprint.”

Endoculus gets around with four sets of treads, angled to provide better traction against the curved walls of your gut. The treads are micropillared, or covered with small nubs, which helps them deal with all your “slippery colon mucosa.” Designing the robot was particularly tricky because of the severe constraints on the overall size of the device, which is just 3 centimeters wide and 2.3 cm high. In order to cram the two motors required for full control, they had to be arranged parallel to the treads, resulting in a fairly complex system of 3D-printed worm gears. And to make the robot actually useful, it includes a camera, LED lights, tubes for injecting air and water, and a tool port that can accommodate endoscopy instruments like forceps and snares to retrieve tissue samples.

So far, Endoculus has spent some time inside of a live pig, although it wasn’t able to get that far since pig intestines are smaller than human intestines, and because apparently the pig intestine is spiraled somehow. The pig (and the robot) both came out fine. A (presumably different) pig then provided some intestine that was expanded to human-intestine size, inside of which Endoculus did much better, and was able to zip along at up to 40 millimeters per second without causing any damage. Personally, I’m not sure I’d want a robot to explore my intestine at a speed much higher than that.

The next step with Endoculus is to add some autonomy, which means figuring out how to do localization and mapping using the robot’s onboard camera and IMU. And then of course someone has to be the first human to experience Endoculus directly, which I’d totally volunteer for except the research team is in Colorado and I’m not. Sorry!

“Novel Optimization-Based Design and Surgical Evaluation of a Treaded Robotic Capsule Colonoscope,” by Gregory A. Formosa, J. Micah Prendergast, Steven A. Edmundowicz, and Mark E. Rentschler, from the University of Colorado, was presented at ICRA 2020.

< Back to IEEE Journal Watch Continue reading

Posted in Human Robots

#437707 Video Friday: This Robot Will Restock ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

CLAWAR 2020 – August 24-26, 2020 – [Online Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
CYBATHLON 2020 – November 13-14, 2020 – [Online Event]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Tokyo startup Telexistence has recently unveiled a new robot called the Model-T, an advanced teleoperated humanoid that can use tools and grasp a wide range of objects. Japanese convenience store chain FamilyMart plans to test the Model-T to restock shelves in up to 20 stores by 2022. In the trial, a human “pilot” will operate the robot remotely, handling items like beverage bottles, rice balls, sandwiches, and bento boxes.

With Model-T and AWP, FamilyMart and TX aim to realize a completely new store operation by remoteizing and automating the merchandise restocking work, which requires a large number of labor-hours. As a result, stores can operate with less number of workers and enable them to recruit employees regardless of the store’s physical location.

[ Telexistence ]

Quadruped dance-off should be a new robotics competition at IROS or ICRA.

I dunno though, that moonwalk might keep Spot in the lead…

[ Unitree ]

Through a hybrid of simulation and real-life training, this air muscle robot is learning to play table tennis.

Table tennis requires to execute fast and precise motions. To gain precision it is necessary to explore in this high-speed regimes, however, exploration can be safety-critical at the same time. The combination of RL and muscular soft robots allows to close this gap. While robots actuated by pneumatic artificial muscles generate high forces that are required for e.g. smashing, they also offer safe execution of explosive motions due to antagonistic actuation.

To enable practical training without real balls, we introduce Hybrid Sim and Real Training (HYSR) that replays prerecorded real balls in simulation while executing actions on the real system. In this manner, RL can learn the challenging motor control of the PAM-driven robot while executing ~15000 hitting motions.

[ Max Planck Institute ]

Thanks Dieter!

Anthony Cowley wrote in to share his recent thesis work on UPSLAM, a fast and lightweight SLAM technique that records data in panoramic depth images (just PNGs) that are easy to visualize and even easier to share between robots, even on low-bandwidth networks.

[ UPenn ]

Thanks Anthony!

GITAI’s G1 is the space dedicated general-purpose robot. G1 robot will enable automation of various tasks internally & externally on space stations and for lunar base development.

[ Gitai ]

The University of Michigan has a fancy new treadmill that’s built right into the floor, which proves to be a bit much for Mini Cheetah.

But Cassie Blue won’t get stuck on no treadmill! She goes for a 0.3 mile walk across campus, which ends when a certain someone ran the gantry into Cassie Blue’s foot.

[ Michigan Robotics ]

Some serious quadruped research going on at UT Austin Human Centered Robotics Lab.

[ HCRL ]

Will Burrard-Lucas has spent lockdown upgrading his slightly indestructible BeetleCam wildlife photographing robot.

[ Will Burrard-Lucas ]

Teleoperated surgical robots are becoming commonplace in operating rooms, but many are massive (sometimes taking up an entire room) and are difficult to manipulate, especially if a complication arises and the robot needs to removed from the patient. A new collaboration between the Wyss Institute, Harvard University, and Sony Corporation has created the mini-RCM, a surgical robot the size of a tennis ball that weighs as much as a penny, and performed significantly better than manually operated tools in delicate mock-surgical procedures. Importantly, its small size means it is more comparable to the human tissues and structures on which it operates, and it can easily be removed by hand if needed.

[ Harvard Wyss ]

Yaskawa appears to be working on a robot that can scan you with a temperature gun and then jam a mask on your face?

[ Motoman ]

Maybe we should just not have people working in mines anymore, how about that?

[ Exyn ]

Many current human-robot interactive systems tend to use accurate and fast – but also costly – actuators and tracking systems to establish working prototypes that are safe to use and deploy for user studies. This paper presents an embedded framework to build a desktop space for human-robot interaction, using an open-source robot arm, as well as two RGB cameras connected to a Raspberry Pi-based controller that allow a fast yet low-cost object tracking and manipulation in 3D. We show in our evaluations that this facilitates prototyping a number of systems in which user and robot arm can commonly interact with physical objects.

[ Paper ]

IBM Research is proud to host professor Yoshua Bengio — one of the world’s leading experts in AI — in a discussion of how AI can contribute to the fight against COVID-19.

[ IBM Research ]

Ira Pastor, ideaXme life sciences ambassador interviews Professor Dr. Hiroshi Ishiguro, the Director of the Intelligent Robotics Laboratory, of the Department of Systems Innovation, in the Graduate School of Engineering Science, at Osaka University, Japan.

[ ideaXme ]

A CVPR talk from Stanford’s Chelsea Finn on “Generalization in Visuomotor Learning.”

[ Stanford ] Continue reading

Posted in Human Robots

#437701 Robotics, AI, and Cloud Computing ...

IBM must be brimming with confidence about its new automated system for performing chemical synthesis because Big Blue just had twenty or so journalists demo the complex technology live in a virtual room.

IBM even had one of the journalists choose the molecule for the demo: a molecule in a potential Covid-19 treatment. And then we watched as the system synthesized and tested the molecule and provided its analysis in a PDF document that we all saw in the other journalist’s computer. It all worked; again, that’s confidence.

The complex system is based upon technology IBM started developing three years ago that uses artificial intelligence (AI) to predict chemical reactions. In August 2018, IBM made this service available via the Cloud and dubbed it RXN for Chemistry.

Now, the company has added a new wrinkle to its Cloud-based AI: robotics. This new and improved system is no longer named simply RXN for Chemistry, but RoboRXN for Chemistry.

All of the journalists assembled for this live demo of RoboRXN could watch as the robotic system executed various steps, such as moving the reactor to a small reagent and then moving the solvent to a small reagent. The robotic system carried out the entire set of procedures—completing the synthesis and analysis of the molecule—in eight steps.

Image: IBM Research

IBM RXN helps predict chemical reaction outcomes or design retrosynthesis in seconds.

In regular practice, a user will be able to suggest a combination of molecules they would like to test. The AI will pick up the order and task a robotic system to run the reactions necessary to produce and test the molecule. Users will be provided analyses of how well their molecules performed.

Back in March of this year, Silicon Valley-based startup Strateos demonstrated something similar that they had developed. That system also employed a robotic system to help researchers working from the Cloud create new chemical compounds. However, what distinguishes IBM’s system is its incorporation of a third element: the AI.

The backbone of IBM’s AI model is a machine learning translation method that treats chemistry like language translation. It translates the language of chemistry by converting reactants and reagents to products through the use of Statistical Machine Intelligence and Learning Engine (SMILE) representation to describe chemical entities.

IBM has also leveraged an automatic data driven strategy to ensure the quality of its data. Researchers there used millions of chemical reactions to teach the AI system chemistry, but contained within that data set were errors. So, how did IBM clean this so-called noisy data to eliminate the potential for bad models?

According to Alessandra Toniato, a researcher at IBM Zurichh, the team implemented what they dubbed the “forgetting experiment.”

Toniato explains that, in this approach, they asked the AI model how sure it was that the chemical examples it was given were examples of correct chemistry. When faced with this choice, the AI identified chemistry that it had “never learnt,” “forgotten six times,” or “never forgotten.” Those that were “never forgotten” were examples that were clean, and in this way they were able to clean the data that AI had been presented.

While the AI has always been part of the RXN for Chemistry, the robotics is the newest element. The main benefit that turning over the carrying out of the reactions to a robotic system is expected to yield is to free up chemists from doing the often tedious process of having to design a synthesis from scratch, says Matteo Manica, a research staff member in Cognitive Health Care and Life Sciences at IBM Research Zürich.

“In this demo, you could see how the system is synergistic between a human and AI,” said Manica. “Combine that with the fact that we can run all these processes with a robotic system 24/7 from anywhere in the world, and you can see how it will really help up to speed up the whole process.”

There appear to be two business models that IBM is pursuing with its latest technology. One is to deploy the entire system on the premises of a company. The other is to offer licenses to private Cloud installations.

Photo: Michael Buholzer

Teodoro Laino of IBM Research Europe.

“From a business perspective you can think of having a system like we demonstrated being replicated on the premise within companies or research groups that would like to have the technology available at their disposal,” says Teodoro Laino, distinguished RSM, manager at IBM Research Europe. “On the other hand, we are also pushing at bringing the entire system to a service level.”

Just as IBM is brimming with confidence about its new technology, the company also has grand aspirations for it.

Laino adds: “Our aim is to provide chemical services across the world, a sort of Amazon of chemistry, where instead of looking for chemistry already in stock, you are asking for chemistry on demand.”

< Back to IEEE COVID-19 Resources Continue reading

Posted in Human Robots

#437697 These Underwater Drones Use Water ...

Yi Chao likes to describe himself as an “armchair oceanographer” because he got incredibly seasick the one time he spent a week aboard a ship. So it’s maybe not surprising that the former NASA scientist has a vision for promoting remote study of the ocean on a grand scale by enabling underwater drones to recharge on the go using his company’s energy-harvesting technology.

Many of the robotic gliders and floating sensor stations currently monitoring the world’s oceans are effectively treated as disposable devices because the research community has a limited number of both ships and funding to retrieve drones after they’ve accomplished their mission of beaming data back home. That’s not only a waste of money, but may also contribute to a growing assortment of abandoned lithium-ion batteries polluting the ocean with their leaking toxic materials—a decidedly unsustainable approach to studying the secrets of the underwater world.

“Our goal is to deploy our energy harvesting system to use renewable energy to power those robots,” says Chao, president and CEO of the startup Seatrec. “We're going to save one battery at a time, so hopefully we're going to not to dispose more toxic batteries in the ocean.”

Chao’s California-based startup claims that its SL1 Thermal Energy Harvesting System can already help save researchers money equivalent to an order of magnitude reduction in the cost of using robotic probes for oceanographic data collection. The startup is working on adapting its system to work with autonomous underwater gliders. And it has partnered with defense giant Northrop Grumman to develop an underwater recharging station for oceangoing drones that incorporates Northrop Grumman’s self-insulating electrical connector capable of operating while the powered electrical contacts are submerged.

Seatrec’s energy-harvesting system works by taking advantage of how certain substances transition from solid-to-liquid phase and liquid-to-gas phase when they heat up. The company’s technology harnesses the pressure changes that result from such phase changes in order to generate electricity.

Image: Seatrec

To make the phase changes happen, Seatrec’s solution taps the temperature differences between warmer water at the ocean surface and colder water at the ocean depths. Even a relatively simple robotic probe can generate additional electricity by changing its buoyancy to either float at the surface or sink down into the colder depths.

By attaching an external energy-harvesting module, Seatrec has already begun transforming robotic probes into assets that can be recharged and reused more affordably than sending out a ship each time to retrieve the probes. This renewable energy approach could keep such drones going almost indefinitely barring electrical or mechanical failures. “We just attach the backpack to the robots, we give them a cable providing power, and they go into the ocean,” Chao explains.

The early buyers of Seatrec’s products are primarily academic researchers who use underwater drones to collect oceanographic data. But the startup has also attracted military and government interest. It has already received small business innovation research contracts from both the U.S. Office of Naval Research and National Oceanic and Atmospheric Administration (NOAA).

Seatrec has also won two $10,000 prizes under the Powering the Blue Economy: Ocean Observing Prize administered by the U.S. Department of Energy and NOAA. The prizes awarded during the DISCOVER Competition phase back in March 2020 included one prize split with Northrop Grumman for the joint Mission Unlimited UUV Station concept. The startup and defense giant are currently looking for a robotics company to partner with for the DEVELOP Competition phase of the Ocean Observing Prize that will offer a total of $3 million in prizes.

In the long run, Seatrec hopes its energy-harvesting technology can support commercial ventures such as the aquaculture industry that operates vast underwater farms. The technology could also support underwater drones carrying out seabed surveys that pave the way for deep sea mining ventures, although those are not without controversy because of their projected environmental impacts.

Among all the possible applications Chao seems especially enthusiastic about the prospect of Seatrec’s renewable power technology enabling underwater drones and floaters to collect oceanographic data for much longer periods of time. He spent the better part of two decades working at the NASA Jet Propulsion Laboratory in Pasadena, Calif., where he helped develop a satellite designed for monitoring the Earth’s oceans. But he and the JPL engineering team that developed Seatrec’s core technology believe that swarms of underwater drones can provide a continuous monitoring network to truly begin understanding the oceans in depth.

The COVID-19 pandemic has slowed production and delivery of Seatrec’s products somewhat given local shutdowns and supply chain disruptions. Still, the startup has been able to continue operating in part because it’s considered to be a defense contractor that is operating an essential manufacturing facility. Seatrec’s engineers and other staff members are working in shifts to practice social distancing.

“Rather than building one or two for the government, we want to scale up to build thousands, hundreds of thousands, hopefully millions, so we can improve our understanding and provide that data to the community,” Chao says. Continue reading

Posted in Human Robots