Tag Archives: robotics research

#437912 “Boston Dynamics Will Continue to ...

Last week’s announcement that Hyundai acquired Boston Dynamics from SoftBank left us with a lot of questions. We attempted to answer many of those questions ourselves, which is typically bad practice, but sometimes it’s the only option when news like that breaks.

Fortunately, yesterday we were able to speak with Michael Patrick Perry, vice president of business development at Boston Dynamics, who candidly answered our questions about Boston Dynamics’ new relationship with Hyundai and what the near future has in store.

IEEE Spectrum: Boston Dynamics is worth 1.1 billion dollars! Can you put that valuation into context for us?

Michael Patrick Perry: Since 2018, we’ve shifted to becoming a commercial organization. And that’s included a number of things, like taking our existing technology and bringing it to market for the first time. We’ve gone from zero to 400 Spot robots deployed, building out an ecosystem of software developers, sensor providers, and integrators. With that scale of deployment and looking at the pipeline of opportunities that we have lined up over the next year, I think people have started to believe that this isn’t just a one-off novelty—that there’s actual value that Spot is able to create. Secondly, with some of our efforts in the logistics market, we’re getting really strong signals both with our Pick product and also with some early discussions around Handle’s deployment in warehouses, which we think are going to be transformational for that industry.

So, the thing that’s really exciting is that two years ago, we were talking about this vision, and people said, “Wow, that sounds really cool, let’s see how you do.” And now we have the validation from the market saying both that this is actually useful, and that we’re able to execute. And that’s where I think we’re starting to see belief in the long-term viability of Boston Dynamics, not just as a cutting-edge research shop, but also as a business.

Photo: Boston Dynamics

Boston Dynamics says it has deployed 400 Spot robots, building out an “ecosystem of software developers, sensor providers, and integrators.”

How would you describe Hyundai’s overall vision for the future of robotics, and how do they want Boston Dynamics to fit into that vision?

In the immediate term, Hyundai’s focus is to continue our existing trajectories, with Spot, Handle, and Atlas. They believe in the work that we’ve done so far, and we think that combining with a partner that understands many of the industries in which we’re targeting, whether its manufacturing, construction, or logistics, can help us improve our products. And obviously as we start thinking about producing these robots at scale, Hyundai’s expertise in manufacturing is going to be really helpful for us.

Looking down the line, both Boston Dynamics and Hyundai believe in the value of smart mobility, and they’ve made a number of plays in that space. Whether it’s urban air mobility or autonomous driving, they’ve been really thinking about connecting the digital and the physical world through moving systems, whether that’s a car, a vertical takeoff and landing multi-rotor vehicle, or a robot. We are well positioned to take on robotics side of that while also connecting to some of these other autonomous services.

Can you tell us anything about the kind of robotics that the Hyundai Motor Group has going on right now?

So they’re working on a lot of really interesting stuff—exactly how that connects, you know, it’s early days, and we don’t have anything explicitly to share. But they’ve got a smart and talented robotics team that’s working in a variety of directions that shares overlap with us. Obviously, a lot of things related to autonomous driving shares some DNA with the work that we’re doing in autonomy for Spot and Handle, so it’s pretty exciting to see.

What are you most excited about here? How do you think this deal will benefit Boston Dynamics?

I think there are a number of things. One is that they have an expertise in hardware, in a way that’s unique. They understand and appreciate the complexity of creating large complex robotic systems. So I think there’s some shared understanding of what it takes to create a great hardware product. And then also they have the resources to help us actually build those products with them together—they have manufacturing resources and things like that.

“Robotics isn’t a short term game. We’ve scaled pretty rapidly but if you start looking at what the full potential of a company like Boston Dynamics is, it’s going to take years to realize, and I think Hyundai is committed to that long-term vision”

Another thing that’s exciting is that Hyundai has some pretty visionary bets for autonomous driving and unmanned aerial systems, and all of that fits very neatly into the connected vision of robotics that we were talking about before. Robotics isn’t a short term game. We’ve scaled pretty rapidly for a robotics company in terms of the scale of robots we’ve able to deploy in the field, but if you start looking at what the full potential of a company like Boston Dynamics is, it’s going to take years to realize, and I think Hyundai is committed to that long-term vision.

And when you’ve been talking with Hyundai, what are they most excited about?

I think they’re really excited about our existing products and our technology. Looking at some of the things that Spot, Pick, and Handle are able to do now, there are applications that many of Hyundai’s customers could benefit from in terms of mobility, remote sensing, and material handling. Looking down the line, Hyundai is also very interested in smart city technology, and mobile robotics is going to be a core piece of that.

We tend to focus on Spot and Handle and Atlas in terms of platform capabilities, but can you talk a bit about some of the component-level technology that’s unique to Boston Dynamics, and that could be of interest to Hyundai?

Creating very power-dense actuator design is something that we’ve been successful at for several years, starting back with BigDog and LS3. And Handle has some hydraulic actuators and valves that are pretty unique in terms of their design and capability. Fundamentally, we have a systems engineering approach that brings together both hardware and software internally. You’ll often see different groups that specialize in something, like great mechanical or electrical engineering groups, or great controls teams, but what I think makes Boston Dynamics so special is that we’re able to put everything on the table at once to create a system that’s incredibly capable. And that’s why with something like Spot, we’re able to produce it at scale, while also making it flexible enough for all the different applications that the robot is being used for right now.

It’s hard to talk specifics right now, but there are obviously other disciplines within mechanical engineering or electrical engineering or controls for robots or autonomous systems where some of our technology could be applied.

Photo: Boston Dynamics

Boston Dynamics is in the process of commercializing Handle, iterating on its design and planning to get box-moving robots on-site with customers in the next year or two.

While Boston Dynamics was part of Google, and then SoftBank, it seems like there’s been an effort to maintain independence. Is it going to be different with Hyundai? Will there be more direct integration or collaboration?

Obviously it’s early days, but right now, we have support to continue executing against all the plans that we have. That includes all the commercialization of Spot, as well as things for Atlas, which is really going to be pushing the capability of our team to expand into new areas. That’s going to be our immediate focus, and we don’t see anything that’s going to pull us away from that core focus in the near term.

As it stands right now, Boston Dynamics will continue to be Boston Dynamics under this new ownership.

How much of what you do at Boston Dynamics right now would you characterize as fundamental robotics research, and how much is commercialization? And how do you see that changing over the next couple of years?

We have been expanding our commercial team, but we certainly keep a lot of the core capabilities of fundamental robotics research. Some of it is very visible, like the new behavior development for Atlas where we’re pushing the limits of perception and path planning. But a lot of the stuff that we’re working on is a little bit under the hood, things that are less obvious—terrain handling, intervention handling, how to make safe faults, for example. Initially when Spot started slipping on things, it would flail around trying to get back up. We’ve had to figure out the right balance between the robot struggling to stand, and when it should decide to just lock its limbs and fall over because it’s safer to do that.

I’d say the other big thrust for us is manipulation. Our gripper for Spot is coming out early next year, and that’s going to unlock a new set of capabilities for us. We have years and years of locomotion experience, but the ability to manipulate is a space that’s still relatively new to us. So we’ve been ramping up a lot of work over the last several years trying to get to an early but still valuable iteration of the technology, and we’ll continue pushing on that as we start learning what’s most useful to our customers.

“I’d say the other big thrust for us is manipulation. Our gripper for Spot is coming out early next year, and that’s going to unlock a new set of capabilities for us. We have years and years of locomotion experience, but the ability to manipulate is a space that’s still relatively new to us”

Looking back, Spot as a commercial robot has a history that goes back to robots like LS3 and BigDog, which were very ambitious projects funded by agencies like DARPA without much in the way of commercial expectations. Do you think these very early stage, very expensive, very technical projects are still things that Boston Dynamics can take on?

Yes—I would point to a lot of the things we do with Atlas as an example of that. While we don’t have immediate plans to commercialize Atlas, we can point to technologies that come out of Atlas that have enabled some of our commercial efforts over time. There’s not necessarily a clear roadmap of how every piece of Atlas research is going to feed over into a commercial product; it’s more like, this is a really hard fundamental robotics challenge, so let’s tackle it and learn things that we can then benefit from across the company.

And fundamentally, our team loves doing cool stuff with robots, and you’ll continue seeing that in the months to come.

Photo: Boston Dynamics

Spot’s arm with gripper is coming out early next year, and Boston Dynamics says that’s going to “unlock a new set of capabilities for us.”

What would it take to commercialize Atlas? And are you getting closer with Handle?

We’re in the process of commercializing Handle. We’re at a relatively early stage, but we have a plan to get the first versions for box moving on-site with customers in the next year or two. Last year, we did some on-site deployments as proof-of-concept trials, and using the feedback from that, we did a new design pass on the robot, and we’re looking at increasing our manufacturing capability. That’s all in progress.

For Atlas, it’s like the Formula 1 of robots—you’re not going to take a Formula 1 car and try to make it less capable so that you can drive it on the road. We’re still trying to see what are some applications that would necessitate an energy and computationally intensive humanoid robot as opposed to something that’s more inherently stable. Trying to understand that application space is something that we’re interested in, and then down the line, we could look at creating new morphologies to help address specific applications. In many ways, Handle is the first version of that, where we said, “Atlas is good at moving boxes but it’s very complicated and expensive, so let’s create a simpler and smaller design that can achieve some of the same things.”

The press release mentioned a mobile robot for warehouses that will be introduced next year—is that Handle?

Yes, that’s the work that we’re doing on Handle.

As we start thinking about a whole robotic solution for the warehouse, we have to look beyond a high power, low footprint, dynamic platform like Handle and also consider things that are a little less exciting on video. We need a vision system that can look at a messy stack of boxes and figure out how to pick them up, we need an interface between a robot and an order building system—things where people might question why Boston Dynamics is focusing on them because it doesn’t fit in with our crazy backflipping robots, but it’s really incumbent on us to create that full end-to-end solution.

Are you confident that under Hyundai’s ownership, Boston Dynamics will be able to continue taking the risks required to remain on the cutting edge of robotics?

I think we will continue to push the envelope of what robots are capable of, and I think in the near term, you’ll be able to see that realized in our products and the research that we’re pushing forward with. 2021 is going to be a great year for us. Continue reading

Posted in Human Robots

#437857 Video Friday: Robotic Third Hand Helps ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ICRA 2020 – June 1-15, 2020 – [Virtual Conference]
RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.

We are seeing some exciting advances in the development of supernumerary robotic limbs. But one thing about this technology remains a major challenge: How do you control the extra limb if your own hands are busy—say, if you’re carrying a package? MIT researchers at Professor Harry Asada’s lab have an idea. They are using subtle finger movements in sensorized gloves to control the supernumerary limb. The results are promising, and they’ve demonstrated a waist-mounted arm with a qb SoftHand that can help you with doors, elevators, and even handshakes.

[ Paper ]

ROBOPANDA

Fluid actuated soft robots, or fluidic elastomer actuators, have shown great potential in robotic applications where large compliance and safe interaction are dominant concerns. They have been widely studied in wearable robotics, prosthetics, and rehabilitations in recent years. However, such soft robots and actuators are tethered to a bulky pump and controlled by various valves, limiting their applications to a small confined space. In this study, we report a new and effective approach to fluidic power actuation that is untethered, easy to design, fabricate, control, and allows various modes of actuation. In the proposed approach, a sealed elastic tube filled with fluid (gas or liquid) is segmented by adaptors. When twisting a segment, two major effects could be observed: (1) the twisted segment exhibits a contraction force and (2) other segments inflate or deform according to their constraint patterns.

[ Paper ]

And now: “Magnetic cilia carpets.”

[ ETH Zurich ]

To adhere to government recommendations while maintaining requirements for social distancing during the COVID-19 pandemic, Yaskawa Motoman is now utilizing an HC10DT collaborative robot to take individual employee temperatures. Named “Covie”, the design and fabrication of the robotic solution and its software was a combined effort by Yaskawa Motoman’s Technology Advancement Team (TAT) and Product Solutions Group (PSG), as well as a group of robotics students from the University of Dayton.

They should have programmed it to nod if your temperature was normal, and smacked you upside the head while yelling “GO HOME” if it wasn’t.

[ Yaskawa ]

Driving slowly on pre-defined routes, ZMP’s RakuRo autonomous vehicle helps people with mobility challenges enjoy cherry blossoms in Japan.

RakuRo costs about US $1,000 per month to rent, but ZMP suggests that facilities or groups of ~10 people could get together and share one, which makes the cost much more reasonable.

[ ZMP ]

Jessy Grizzle from the Dynamic Legged Locomotion Lab at the University of Michigan writes:

Our lab closed on March 20, 2020 under the State of Michigan’s “Stay Home, Stay Safe” order. For a 24-hour period, it seemed that our labs would be “sanitized” during our absence. Since we had no idea what that meant, we decided that Cassie Blue needed to “Stay Home, Stay Safe” as well. We loaded up a very expensive robot and took her off campus. On May 26, we were allowed to re-open our laboratory. After thoroughly cleaning the lab, disinfecting tools and surfaces, developing and getting approval for new safe operation procedures, we then re-organized our work areas to respect social distancing requirements and brought Cassie back to the laboratory.

During the roughly two months we were working remotely, the lab’s members got a lot done. Papers were written, dissertation proposals were composed, and plans for a new course, ROB 101, Computational Linear Algebra, were developed with colleagues. In addition, one of us (Yukai Gong) found the lockdown to his liking! He needed the long period of quiet to work through some new ideas for how to control 3D bipedal robots.

[ Michigan Robotics ]

Thanks Jesse and Bruce!

You can tell that this video of how Pepper has been useful during COVID-19 is not focused on the United States, since it refers to the pandemic in past tense.

[ Softbank Robotics ]

NASA’s water-seeking robotic Moon rover just booked a ride to the Moon’s South Pole. Astrobotic of Pittsburgh, Pennsylvania, has been selected to deliver the Volatiles Investigating Polar Exploration Rover, or VIPER, to the Moon in 2023.

[ NASA ]

This could be the most impressive robotic gripper demo I have ever seen.

[ Soft Robotics ]

Whiz, an autonomous vacuum sweeper, innovates the cleaning industry by automating tedious tasks for your team. Easy to train, easy to use, Whiz works with your staff to deliver a high-quality clean while increasing efficiency and productivity.

[ Softbank Robotics ]

About 40 seconds into this video, a robot briefly chases a goose.

[ Ghost Robotics ]

SwarmRail is a new concept for rail-guided omnidirectional mobile robot systems. It aims for a highly flexible production process in the factory of the future by opening up the available work space from above. This means that transport and manipulation tasks can be carried out by floor- and ceiling-bound robot systems. The special feature of the system is the combination of omnidirectionally mobile units with a grid-shaped rail network, which is characterized by passive crossings and a continuous gap between the running surfaces of the rails. Through this gap, a manipulator operating below the rail can be connected to a mobile unit traveling on the rail.

[ DLRRMC ]

RightHand Robotics (RHR), a leader in providing robotic piece-picking solutions, is partnered with PALTAC Corporation, Japan’s largest wholesaler of consumer packaged goods. The collaboration introduces RightHand’s newest piece-picking solution to the Japanese market, with multiple workstations installed in PALTAC’s newest facility, RDC Saitama, which opened in 2019 in Sugito, Saitama Prefecture, Japan.

[ RightHand Robotics ]

From the ICRA 2020, a debate on the “Future of Robotics Research,” addressing such issues as “robotics research is over-reliant on benchmark datasets and simulation” and “robots designed for personal or household use have failed because of fundamental misunderstandings of Human-Robot Interaction (HRI).”

[ Robotics Debates ]

MassRobotics has a series of interviews where robotics celebrities are interviewed by high school students.The students are perhaps a little awkward (remember being in high school?), but it’s honest and the questions are interesting. The first two interviews are with Laurie Leshin, who worked on space robots at NASA and is now President of Worcester Polytechnic Institute, and Colin Angle, founder and CEO of iRobot.

[ MassRobotics ]

Thanks Andrew!

In this episode of the Voices from DARPA podcast, Dr. Timothy Chung, a program manager since 2016 in the agency’s Tactical Technology Office, delves into his robotics and autonomous technology programs – the Subterranean (SubT) Challenge and OFFensive Swarm-Enabled Tactics (OFFSET). From robot soccer to live-fly experimentation programs involving dozens of unmanned aircraft systems (UASs), he explains how he aims to assist humans heading into unknown environments via advances in collaborative autonomy and robotics.

[ DARPA ] Continue reading

Posted in Human Robots

#437783 Ex-Googler’s Startup Comes Out of ...

Over the last 10 years, the PR2 has helped roboticists make an enormous amount of progress in mobile manipulation over a relatively short time. I mean, it’s been a decade already, but still—robots are hard, and giving a bunch of smart people access to a capable platform where they didn’t have to worry about hardware and could instead focus on doing interesting and useful things helped to establish a precedent for robotics research going forward.

Unfortunately, not everyone can afford an enormous US $400,000 robot, and even if they could, PR2s are getting very close to the end of their lives. There are other mobile manipulators out there taking the place of the PR2, but so far, size and cost have largely restricted them to research labs. Lots of good research is being done, but it’s getting to the point where folks want to take the next step: making mobile manipulators real-world useful.

Today, a company called Hello Robot is announcing a new mobile manipulator called the Stretch RE1. With offices in the San Francisco Bay Area and in Atlanta, Ga., Hello Robot is led by Aaron Edsinger and Charlie Kemp, and by combining decades of experience in industry and academia they’ve managed to come up with a robot that’s small, lightweight, capable, and affordable, all at the same time. For now, it’s a research platform, but eventually, its creators hope that it will be able to come into our homes and take care of us when we need it to.

A fresh look at mobile manipulators
To understand the concept behind Stretch, it’s worth taking a brief look back at what Edsinger and Kemp have been up to for the past 10 years. Edsinger co-founded Meka Robotics in 2007, which built expensive, high performance humanoid arms, torsos, and heads for the research market. Meka was notable for being the first robotics company (as far as we know) to sell robot arms that used series elastic actuators, and the company worked extensively with Georgia Tech researchers. In 2011, Edsinger was one of the co-founders of Redwood Robotics (along with folks from SRI and Willow Garage), which was going to develop some kind of secret and amazing new robot arm before Google swallowed it in late 2013. At the same time, Google also acquired Meka and a bunch of other robotics companies, and Edsinger ended up at Google as one of the directors of its robotics program, until he left to co-found Hello Robot in 2017.

Meanwhile, since 2007 Kemp has been a robotics professor at Georgia Tech, where he runs the Healthcare Robotics Lab. Kemp’s lab was one of the 11 PR2 beta sites, giving him early experience with a ginormous mobile manipulator. Much of the research that Kemp has spent the last decade on involves robots providing assistance to untrained users, often through direct physical contact, and frequently either in their own homes or in a home environment. We should mention that the Georgia Tech PR2 is still going, most recently doing some clever material classification work in a paper for IROS later this year.

Photo: Hello Robot

Hello Robot co-founder and CEO Aaron Edsinger says that, although Stretch is currently a research platform, he hopes to see the robot deployed in home environments, adding that the “impact we want to have is through robots that are helpful to people in society.”

So with all that in mind, where’d Hello Robot come from? As it turns out, both Edsinger and Kemp were in Rodney Brooks’ group at MIT, so it’s perhaps not surprising that they share some of the same philosophies about what robots should be and what they should be used for. After collaborating on a variety of projects over the years, in 2017 Edsinger was thinking about his next step after Google when Kemp stopped by to show off some video of a new robot prototype that he’d been working on—the prototype for Stretch. “As soon as I saw it, I knew that was exactly the kind of thing I wanted to be working on,” Edsinger told us. “I’d become frustrated with the complexity of the robots being built to do manipulation in home environments and around people, and it solved a lot of problems in an elegant way.”

For Kemp, Stretch is an attempt to get everything he’s been teaching his robots out of his lab at Georgia Tech and into the world where it can actually be helpful to people. “Right from the beginning, we were trying to take our robots out to real homes and interact with real people,” says Kemp. Georgia Tech’s PR2, for example, worked extensively with Henry and Jane Evans, helping Henry (a quadriplegic) regain some of the bodily autonomy he had lost. With the assistance of the PR2, Henry was able to keep himself comfortable for hours without needing a human caregiver to be constantly with him. “I felt like I was making a commitment in some ways to some of the people I was working with,” Kemp told us. “But 10 years later, I was like, where are these things? I found that incredibly frustrating. Stretch is an effort to try to push things forward.”

A robot you can put in the backseat of a car
One way to put Stretch in context is to think of it almost as a reaction to the kitchen sink philosophy of the PR2. Where the PR2 was designed to be all the robot anyone could ever need (plus plenty of robot that nobody really needed) embodied in a piece of hardware that weighs 225 kilograms and cost nearly half a million dollars, Stretch is completely focused on being just the robot that is actually necessary in a form factor that’s both much smaller and affordable. The entire robot weighs a mere 23 kg in a footprint that’s just a 34 cm square. As you can see from the video, it’s small enough (and safe enough) that it can be moved by a child. The cost? At $17,950 apiece—or a bit less if you buy a bunch at once—Stretch costs a fraction of what other mobile manipulators sell for.

It might not seem like size or weight should be that big of an issue, but it very much is, explains Maya Cakmak, a robotics professor at the University of Washington, in Seattle. Cakmak worked with PR2 and Henry Evans when she was at Willow Garage, and currently has access to both a PR2 and a Fetch research robot. “When I think about my long term research vision, I want to deploy service robots in real homes,” Cakmak told us. Unfortunately, it’s the robots themselves that have been preventing her from doing this—both the Fetch and the PR2 are large enough that moving them anywhere requires a truck and a lift, which also limits the home that they can be used in. “For me, I felt immediately that Stretch is very different, and it makes a lot of sense,” she says. “It’s safe and lightweight, you can probably put it in the backseat of a car.” For Cakmak, Stretch’s size is the difference between being able to easily take a robot to the places she wants to do research in, and not. And cost is a factor as well, since a cheaper robot means more access for her students. “I got my refurbished PR2 for $180,000,” Cakmak says. “For that, with Stretch I could have 10!”

“I felt immediately that Stretch is very different. It’s safe and lightweight, you can probably put it in the backseat of a car. I got my refurbished PR2 for $180,000. For that, with Stretch I could have 10!”
—Maya Cakmak, University of Washington

Of course, a portable robot doesn’t do you any good if the robot itself isn’t sophisticated enough to do what you need it to do. Stretch is certainly a compromise in functionality in the interest of small size and low cost, but it’s a compromise that’s been carefully thought out, based on the experience that Edsinger has building robots and the experience that Kemp has operating robots in homes. For example, most mobile manipulators are essentially multi-degrees-of-freedom arms on mobile bases. Stretch instead leverages its wheeled base to move its arm in the horizontal plane, which (most of the time) works just as well as an extra DoF or two on the arm while saving substantially on weight and cost. Similarly, Stretch relies almost entirely on one sensor, an Intel RealSense D435i on a pan-tilt head that gives it a huge range of motion. The RealSense serves as a navigation camera, manipulation camera, a 3D mapping system, and more. It’s not going to be quite as good for a task that might involve fine manipulation, but most of the time it’s totally workable and you’re saving on cost and complexity.

Stretch has been relentlessly optimized to be the absolutely minimum robot to do mobile manipulation in a home or workplace environment. In practice, this meant figuring out exactly what it was absolutely necessary for Stretch to be able to do. With an emphasis on manipulation, that meant defining the workspace of the robot, or what areas it’s able to usefully reach. “That was one thing we really had to push hard on,” says Edsinger. “Reachability.” He explains that reachability and a small mobile base tend not to go together, because robot arms (which tend to weigh a lot) can cause a small base to tip, especially if they’re moving while holding a payload. At the same time, Stretch needed to be able to access both countertops and the floor, while being able to reach out far enough to hand people things without having to be right next to them. To come up with something that could meet all those requirements, Edsinger and Kemp set out to reinvent the robot arm.

Stretch’s key innovation: a stretchable arm
The design they came up with is rather ingenious in its simplicity and how well it works. Edsinger explains that the arm consists of five telescoping links: one fixed and four moving. They are constructed of custom carbon fiber, and are driven by a single motor, which is attached to the robot’s vertical pole. The strong, lightweight structure allows the arm to extend over half a meter and hold up to 1.5 kg. Although the company has a patent pending for the design, Edsinger declined to say whether the links are driven by a belt, cables, or gears. “We don’t want to disclose too much of the secret sauce [with regard to] the drive mechanism.” He added that the arm was “one of the most significant engineering challenges on the robot in terms of getting the desired reach, compactness, precision, smoothness, force sensitivity, and low cost to all happily coexist.”

Photo: Hello Robot

Stretch’s arm consists of five telescoping links constructed of custom carbon fiber, and are driven by a single motor, which is attached to the robot’s vertical pole, minimizing weight and inertia. The arm has a reach of over half a meter and can hold up to 1.5 kg.

Another interesting features of Stretch is its interface with the world—its gripper. There are countless different gripper designs out there, each and every one of which is the best at gripping some particular subset of things. But making a generalized gripper for all of the stuff that you’d find in a home is exceptionally difficult. Ideally, you’d want some sort of massive experimental test program where thousands and thousands of people test out different gripper designs in their homes for long periods of time and then tell you which ones work best. Obviously, that’s impractical for a robotics startup, but Kemp realized that someone else was already running the study for him: Amazon.

“I had this idea that there are these assistive grabbers that people with disabilities use to grasp objects in the real world,” he told us. Kemp went on Amazon’s website and looked at the top 10 grabbers and the reviews from thousands of users. He then bought a bunch of different ones and started testing them. “This one [Stretch’s gripper], I almost didn’t order it, it was such a weird looking thing,” he says. “But it had great reviews on Amazon, and oh my gosh, it just blew away the other grabbers. And I was like, that’s it. It just works.”

Stretch’s teleoperated and autonomous capabilities
As with any robot intended to be useful outside of a structured environment, hardware is only part of the story, and arguably not even the most important part. In order for Stretch to be able to operate out from under the supervision of a skilled roboticist, it has to be either easy to control, or autonomous. Ideally, it’s both, and that’s what Hello Robot is working towards, although things didn’t start out that way, Kemp explains. “From a minimalist standpoint, we began with the notion that this would be a teleoperated robot. But in the end, you just don’t get the real power of the robot that way, because you’re tied to a person doing stuff. As much as we fought it, autonomy really is a big part of the future for this kind of system.”

Here’s a look at some of Stretch’s teleoperated capabilities. We’re told that Stretch is very easy to get going right out of the box, although this teleoperation video from Hello Robot looks like it’s got a skilled and experienced user in the loop:

For such a low-cost platform, the autonomy (even at this early stage) is particularly impressive:

Since it’s not entirely clear from the video exactly what’s autonomous, here’s a brief summary of a couple of the more complex behaviors that Kemp sent us:

Object grasping: Stretch uses its 3D camera to find the nearest flat surface using a virtual overhead view. It then segments significant blobs on top of the surface. It selects the largest blob in this virtual overhead view and fits an ellipse to it. It then generates a grasp plan that makes use of the center of the ellipse and the major and minor axes. Once it has a plan, Stretch orients its gripper, moves to the pre-grasp pose, moves to the grasp pose, closes its gripper based on the estimated object width, lifts up, and retracts.
Mapping, navigating, and reaching to a 3D point: These demonstrations all use FUNMAP (Fast Unified Navigation, Manipulation and Planning). It’s all novel custom Python code. Even a single head scan performed by panning the 3D camera around can result in a very nice 3D representation of Stretch’s surroundings that includes the nearby floor. This is surprisingly unusual for robots, which often have their cameras too low to see many interesting things in a human environment. While mapping, Stretch selects where to scan next in a non-trivial way that considers factors such as the quality of previous observations, expected new observations, and navigation distance. The plan that Stretch uses to reach the target 3D point has been optimized for navigation and manipulation. For example, it finds a final robot pose that provides a large manipulation workspace for Stretch, which must consider nearby obstacles, including obstacles on the ground.
Object handover: This is a simple demonstration of object handovers. Stretch performs Cartesian motions to move its gripper to a body-relative position using a good motion heuristic, which is to extend the arm as the last step. These simple motions work well due to the design of Stretch. It still surprises me how well it moves the object to comfortable places near my body, and how unobtrusive it is. The goal point is specified relative to a 3D frame attached to the person’s mouth estimated using deep learning models (shown in the RViz visualization video). Specifically, Stretch targets handoff at a 3D point that is 20 cm below the estimated position of the mouth and 25 cm away along the direction of reaching.

Much of these autonomous capabilities come directly from Kemp’s lab, and the demo code is available for anyone to use. (Hello Robot says all of Stretch’s software is open source.)

Photo: Hello Robot

Hello Robot co-founder and CEO Aaron Edsinger says Stretch is designed to work with people in homes and workplaces and can be teleoperated to do a variety of tasks, including picking up toys, removing laundry from a dryer, and playing games with kids.

As of right now, Stretch is very much a research platform. You’re going to see it in research labs doing research things, and hopefully in homes and commercial spaces as well, but still under the supervision of professional roboticists. As you may have guessed, though, Hello Robot’s vision is a bit broader than that. “The impact we want to have is through robots that are helpful to people in society,” Edsinger says. “We think primarily in the home context, but it could be in healthcare, or in other places. But we really want to have our robots be impactful, and useful. To us, useful is exciting.” Adds Kemp: “I have a personal bias, but we’d really like this technology to benefit older adults and caregivers. Rather than creating a specialized assistive device, we want to eventually create an inexpensive consumer device for everyone that does lots of things.”

Neither Edsinger nor Kemp would say much more on this for now, and they were very explicit about why—they’re being deliberately cautious about raising expectations, having seen what’s happened to some other robotics companies over the past few years. Without VC funding (Hello Robot is currently bootstrapping itself into existence), Stretch is being sold entirely on its own merits. So far, it seems to be working. Stretch robots are already in a half dozen research labs, and we expect that with today’s announcement, we’ll start seeing them much more frequently.

This article appears in the October 2020 print issue as “A Robot That Keeps It Simple.” Continue reading

Posted in Human Robots

#437671 Video Friday: Researchers 3D Print ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online]
IROS 2020 – October 25-29, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

The Giant Gundam in Yokohama is actually way cooler than I thought it was going to be.

[ Gundam Factory ] via [ YouTube ]

A new 3D-printing method will make it easier to manufacture and control the shape of soft robots, artificial muscles and wearable devices. Researchers at UC San Diego show that by controlling the printing temperature of liquid crystal elastomer, or LCE, they can control the material’s degree of stiffness and ability to contract—also known as degree of actuation. What’s more, they are able to change the stiffness of different areas in the same material by exposing it to heat.

[ UCSD ]

Thanks Ioana!

This is the first successful reactive stepping test on our new torque-controlled biped robot named Bolt. The robot has 3 active degrees of freedom per leg and one passive joint in ankle. Since there is no active joint in ankle, the robot only relies on step location and timing adaptation to stabilize its motion. Not only can the robot perform stepping without active ankles, but it is also capable of rejecting external disturbances as we showed in this video.

[ ODRI ]

The curling robot “Curly” is the first AI-based robot to demonstrate competitive curling skills in an icy real environment with its high uncertainties. Scientists from seven different Korean research institutions including Prof. Klaus-Robert Müller, head of the machine-learning group at TU Berlin and guest professor at Korea University, have developed an AI-based curling robot.

[ TU Berlin ]

MoonRanger, a small robotic rover being developed by Carnegie Mellon University and its spinoff Astrobotic, has completed its preliminary design review in preparation for a 2022 mission to search for signs of water at the moon’s south pole. Red Whittaker explains why the new MoonRanger Lunar Explorer design is innovative and different from prior planetary rovers.

[ CMU ]

Cobalt’s security robot can now navigate unmodified elevators, which is an impressive feat.

Also, EXTERMINATE!

[ Cobalt ]

OrionStar, the robotics company invested in by Cheetah Mobile, announced the Robotic Coffee Master. Incorporating 3,000 hours of AI learning, 30,000 hours of robotic arm testing and machine vision training, the Robotic Coffee Master can perform complex brewing techniques, such as curves and spirals, with millimeter-level stability and accuracy (reset error ≤ 0.1mm).

[ Cheetah Mobile ]

DARPA OFFensive Swarm-Enabled Tactics (OFFSET) researchers recently tested swarms of autonomous air and ground vehicles at the Leschi Town Combined Arms Collective Training Facility (CACTF), located at Joint Base Lewis-McChord (JBLM) in Washington. The Leschi Town field experiment is the fourth of six planned experiments for the OFFSET program, which seeks to develop large-scale teams of collaborative autonomous systems capable of supporting ground forces operating in urban environments.

[ DARPA ]

Here are some highlights from Team Explorer’s SubT Urban competition back in February.

[ Team Explorer ]

Researchers with the Skoltech Intelligent Space Robotics Laboratory have developed a system that allows easy interaction with a micro-quadcopter with LEDs that can be used for light-painting. The researchers used a 92x92x29 mm Crazyflie 2.0 quadrotor that weighs just 27 grams, equipped with a light reflector and an array of controllable RGB LEDs. The control system consists of a glove equipped with an inertial measurement unit (IMU; an electronic device that tracks the movement of a user’s hand), and a base station that runs a machine learning algorithm.

[ Skoltech ]

“DeKonBot” is the prototype of a cleaning and disinfection robot for potentially contaminated surfaces in buildings such as door handles, light switches or elevator buttons. While other cleaning robots often spray the cleaning agents over a large area, DeKonBot autonomously identifies the surface to be cleaned.

[ Fraunhofer IPA ]

On Oct. 20, the OSIRIS-REx mission will perform the first attempt of its Touch-And-Go (TAG) sample collection event. Not only will the spacecraft navigate to the surface using innovative navigation techniques, but it could also collect the largest sample since the Apollo missions.

[ NASA ]

With all the robotics research that seems to happen in places where snow is more of an occasional novelty or annoyance, it’s good to see NORLAB taking things more seriously

[ NORLAB ]

Telexistence’s Model-T robot works very slowly, but very safely, restocking shelves.

[ Telexistence ] via [ YouTube ]

Roboy 3.0 will be unveiled next month!

[ Roboy ]

KUKA ready2_educate is your training cell for hands-on education in robotics. It is especially aimed at schools, universities and company training facilities. The training cell is a complete starter package and your perfect partner for entry into robotics.

[ KUKA ]

A UPenn GRASP Lab Special Seminar on Data Driven Perception for Autonomy, presented by Dapo Afolabi from UC Berkeley.

Perception systems form a crucial part of autonomous and artificial intelligence systems since they convert data about the relationship between an autonomous system and its environment into meaningful information. Perception systems can be difficult to build since they may involve modeling complex physical systems or other autonomous agents. In such scenarios, data driven models may be used to augment physics based models for perception. In this talk, I will present work making use of data driven models for perception tasks, highlighting the benefit of such approaches for autonomous systems.

[ GRASP Lab ]

A Maryland Robotics Center Special Robotics Seminar on Underwater Autonomy, presented by Ioannis Rekleitis from the University of South Carolina.

This talk presents an overview of algorithmic problems related to marine robotics, with a particular focus on increasing the autonomy of robotic systems in challenging environments. I will talk about vision-based state estimation and mapping of underwater caves. An application of monitoring coral reefs is going to be discussed. I will also talk about several vehicles used at the University of South Carolina such as drifters, underwater, and surface vehicles. In addition, a short overview of the current projects will be discussed. The work that I will present has a strong algorithmic flavour, while it is validated in real hardware. Experimental results from several testing campaigns will be presented.

[ MRC ]

This week’s CMU RI Seminar comes from Scott Niekum at UT Austin, on Scaling Probabilistically Safe Learning to Robotics.

Before learning robots can be deployed in the real world, it is critical that probabilistic guarantees can be made about the safety and performance of such systems. This talk focuses on new developments in three key areas for scaling safe learning to robotics: (1) a theory of safe imitation learning; (2) scalable reward inference in the absence of models; (3) efficient off-policy policy evaluation. The proposed algorithms offer a blend of safety and practicality, making a significant step towards safe robot learning with modest amounts of real-world data.

[ CMU RI ] Continue reading

Posted in Human Robots

#437635 Toyota Research Demonstrates ...

Over the last several years, Toyota has been putting more muscle into forward-looking robotics research than just about anyone. In addition to the Toyota Research Institute (TRI), there’s that massive 175-acre robot-powered city of the future that Toyota still plans to build next to Mount Fuji. Even Toyota itself acknowledges that it might be crazy, but that’s just how they roll—as TRI CEO Gill Pratt told me a while back, when Toyota decides to do something, they really do go all-in on it.

TRI has been focusing heavily on home robots, which is reflective of the long-term nature of what TRI is trying to do, because home robots are both the place where we’ll need robots the most at the same time as they’re the place where it’s going to be hardest to deploy them. The unpredictable nature of homes, and the fact that homes tend to have squishy fragile people in them, are robot-unfriendly characteristics, but as the population continues to age (an increasingly acute problem in Japan), homes offer an enormous amount of potential for helping us maintain our independence.

Today, Toyota is showing off some of the research that it’s been working on recently, in the form of a virtual reality presentation in lieu of an in-person press event. For journalists, TRI pre-loaded the recording onto a VR headset, which was FedEx’ed to my house. You can watch the entire 40-minute presentation in 360 video on YouTube (or in VR if you have a headset of your own), but if you don’t watch the whole thing, you should at least check out the full-on GLaDOS (with arms) that TRI thinks belongs in your home.

The presentation features an introduction from Gill Pratt, who looks entirely too comfortable embedded inside of one of TRI’s telepresence robots. The event also covers a lot of territory, but the highlight is almost certainly the new hardware that TRI demonstrates.

Soft bubble gripper

Photo: TRI

This is a “soft bubble gripper,” under development at TRI’s Cambridge, Mass., branch. These passively-compliant, air-filled grippers make it easier to grasp many different kinds of objects safely, but the nifty thing is that they’ve got cameras inside of them watching a pattern of dots on the interior of the soft membrane.

When the outside of the bubble makes contact with an object, the bubble deforms, and the deformation of the dot pattern on the inside can be tracked by the camera to determine both directions and magnitudes of forces. This is a concept that we’ve seen elsewhere before, but TRI’s implementation is a clever way of making an inherently safe end effector that can still perform all the sensing you need it to do for relatively complex manipulation tasks.

The bubble gripper was presented at ICRA this year, and you can read the technical paper here.

Ceiling-mounted home robot

Photo: TRI

I don’t know whether robots dangling from the ceiling was somehow sinister pre-Portal, but it sure as heck is for me having played through that game a couple of times, and it’s since been reinforced by AUTO from WALL-E.

The reason that we generally see robots mounted on the floor or on tables or on mobile bases is that we’re bipeds, not bats, and giving a robot access to a human-like workspace is easiest to do if you also give that robot a human-like position and orientation. And if you want to be able to reach stuff high up, you do what TRI did with their previous generation of kitchen manipulator, and just give it the ability to make itself super tall. But TRI is convinced it’s a good place to put our future home robots:

One innovative concept is a “gantry robot” that would descend from an overhead framework to perform tasks such as loading the dishwasher, wiping surfaces, and clearing clutter. By traveling on the ceiling, the robot avoids the problems of navigating household floor clutter and navigating cramped spaces. When not in use, the robot would tuck itself up out of the way. To further investigate this idea, the team has built a laboratory prototype robot that can do all the same tasks as a floor-based mobile robot but with the innovative overhead mobility system.

Another obvious problem with the gantry robot is that you have to install all kinds of stuff in your ceiling for this to work, which makes it very impractical (if not totally impossible) to introduce a system like this into a home that wasn’t built specifically for it. If, however, you do build a home with a robot like this in mind, the animation below from TRI shows how it could be extra useful. Suddenly, stairs are a non-issue. Payload is presumably also a non-issue, since loads can be transferred to the ceiling. Batteries become unnecessary, so the whole robot can be much lighter weight, which in turn makes it safer. Sensors get a fantastic view, and obstacle avoidance becomes trivial.

Robots as “time machines”

Photo: TRI

TRI’s presentation covered more than what we’ve highlighted here—our focus has been on the hardware prototypes, but TRI had more to talk about, including learning through demonstration, scaling learning through simulation, and how TRI has been working with users to figure out what research directions should be explored. It’s all available right now on YouTube, and it’s well worth 40 minutes of your time.

“What we’re really focused on is this principle idea of amplifying, rather than replacing, human beings”
—Gill Pratt, TRI

It’s only been five years since Toyota announced the $1 billion investment that established TRI, and it feels like the progress that’s been made since then has been substantial. It’s not often that vision, resources, and long-term commitment come together like this, and TRI’s emphasis on making life better for people is one of the things that helps to keep us optimistic about the future of robotics.

“What we’re really focused on is this principle idea of amplifying, rather than replacing, human beings,” Gill Pratt told us. “And what it means to amplify a person, particularly as they’re aging—what we’re really trying to do is build a time machine. This may sound fanciful, and of course we can’t build a real time machine, but maybe we can build robotic assistants to make our lives as we age seem as if we are actually using a time machine.” He explains that it doesn’t mean building robots for convenience or to do our jobs for us. “It means building technology that enables us to continue to live and to work and to relate to each other as if we were younger,” he says. “And that’s really what our main goal is.” Continue reading

Posted in Human Robots