Tag Archives: roboticists

#435616 Video Friday: AlienGo Quadruped Robot ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

CLAWAR 2019 – August 26-28, 2019 – Kuala Lumpur, Malaysia
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

I know you’ve all been closely following our DARPA Subterranean Challenge coverage here and on Twitter, but here are short recap videos of each day just in case you missed something.

[ DARPA SubT ]

After Laikago, Unitree Robotics is now introducing AlienGo, which is looking mighty spry:

We’ve seen MIT’s Mini Cheetah doing backflips earlier this year, but apparently AlienGo is now the largest and heaviest quadruped to perform the maneuver.

[ Unitree ]

The majority of soft robots today rely on external power and control, keeping them tethered to off-board systems or rigged with hard components. Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Caltech have developed soft robotic systems, inspired by origami, that can move and change shape in response to external stimuli, paving the way for fully untethered soft robots.

The Rollbot begins as a flat sheet, about 8 centimeters long and 4 centimeters wide. When placed on a hot surface, about 200°C, one set of hinges folds and the robot curls into a pentagonal wheel.

Another set of hinges is embedded on each of the five sides of the wheel. A hinge folds when in contact with the hot surface, propelling the wheel to turn to the next side, where the next hinge folds. As they roll off the hot surface, the hinges unfold and are ready for the next cycle.

[ Harvard SEAS ]

A new research effort at Caltech aims to help people walk again by combining exoskeletons with spinal stimulation. This initiative, dubbed RoAM (Robotic Assisted Mobility), combines the research of two Caltech roboticists: Aaron Ames, who creates the algorithms that enable walking by bipedal robots and translates these to govern the motion of exoskeletons and prostheses; and Joel Burdick, whose transcutaneous spinal implants have already helped paraplegics in clinical trials to recover some leg function and, crucially, torso control.

[ Caltech ]

Once ExoMars lands, it’s going to have to get itself off of the descent stage and onto the surface, which could be tricky. But practice makes perfect, or as near as you can get on Earth.

That wheel walking technique is pretty cool, and it looks like ExoMars will be able to handle terrain that would scare NASA’s Mars rovers away.

[ ExoMars ]

I am honestly not sure whether this would make the game of golf more or less fun to watch:

[ Nissan ]

Finally, a really exciting use case for Misty!

It can pick up those balls too, right?

[ Misty ]

You know you’re an actual robot if this video doesn’t make you crave Peeps.

[ Soft Robotics ]

COMANOID investigates the deployment of robotic solutions in well-identified Airbus airliner assembly operations that are tedious for human workers and for which access is impossible for wheeled or rail-ported robotic platforms. This video presents a demonstration of autonomous placement of a part inside the aircraft fuselage. The task is performed by TORO, the torque-controlled humanoid robot developed at DLR.

[ COMANOID ]

It’s a little hard to see in this video, but this is a cable-suspended robot arm that has little tiny robot arms that it waves around to help damp down vibrations.

[ CoGiRo ]

This week in Robots in Depth, Per speaks with author Cristina Andersson.

In 2013 she organized events in Finland during European robotics week and found that many people was very interested but that there was also a big lack of knowledge.

She also talks about introducing robotics in society in a way that makes it easy for everyone to understand the benefits as this will make the process much easier. When people see the clear benefits in one field or situation they will be much more interested in bringing robotics in to their private or professional lives.

[ Robots in Depth ] Continue reading

Posted in Human Robots

#435597 Water Jet Powered Drone Takes Off With ...

At ICRA 2015, the Aerial Robotics Lab at the Imperial College London presented a concept for a multimodal flying swimming robot called AquaMAV. The really difficult thing about a flying and swimming robot isn’t so much the transition from the first to the second, since you can manage that even if your robot is completely dead (thanks to gravity), but rather the other way: going from water to air, ideally in a stable and repetitive way. The AquaMAV concept solved this by basically just applying as much concentrated power as possible to the problem, using a jet thruster to hurl the robot out of the water with quite a bit of velocity to spare.

In a paper appearing in Science Robotics this week, the roboticists behind AquaMAV present a fully operational robot that uses a solid-fuel powered chemical reaction to generate an explosion that powers the robot into the air.

The 2015 version of AquaMAV, which was mostly just some very vintage-looking computer renderings and a little bit of hardware, used a small cylinder of CO2 to power its water jet thruster. This worked pretty well, but the mass and complexity of the storage and release mechanism for the compressed gas wasn’t all that practical for a flying robot designed for long-term autonomy. It’s a familiar challenge, especially for pneumatically powered soft robots—how do you efficiently generate gas on-demand, especially if you need a lot of pressure all at once?

An explosion propels the drone out of the water
There’s one obvious way of generating large amounts of pressurized gas all at once, and that’s explosions. We’ve seen robots use explosive thrust for mobility before, at a variety of scales, and it’s very effective as long as you can both properly harness the explosion and generate the fuel with a minimum of fuss, and this latest version of AquaMAV manages to do both:

The water jet coming out the back of this robot aircraft is being propelled by a gas explosion. The gas comes from the reaction between a little bit of calcium carbide powder stored inside the robot, and water. Water is mixed with the powder one drop at a time, producing acetylene gas, which gets piped into a combustion chamber along with air and water. When ignited, the acetylene air mixture explodes, forcing the water out of the combustion chamber and providing up to 51 N of thrust, which is enough to launch the 160-gram robot 26 meters up and over the water at 11 m/s. It takes just 50 mg of calcium carbide (mixed with 3 drops of water) to generate enough acetylene for each explosion, and both air and water are of course readily available. With 0.2 g of calcium carbide powder on board, the robot has enough fuel for multiple jumps, and the jump is powerful enough that the robot can get airborne even under fairly aggressive sea conditions.

Image: Science Robotics

The robot can transition from a floating state to an airborne jetting phase and back to floating (A). A 3D model render of the underside of the robot (B) shows the electronics capsule. The capsule contains the fuel tank (C), where calcium carbide reacts with air and water to propel the vehicle.

Next step: getting the robot to fly autonomously
Providing adequate thrust is just one problem that needs to be solved when attempting to conquer the water-air transition with a fixed-wing robot. The overall design of the robot itself is a challenge as well, because the optimal design and balance for the robot is quite different in each phase of operation, as the paper describes:

For the vehicle to fly in a stable manner during the jetting phase, the center of mass must be a significant distance in front of the center of pressure of the vehicle. However, to maintain a stable floating position on the water surface and the desired angle during jetting, the center of mass must be located behind the center of buoyancy. For the gliding phase, a fine balance between the center of mass and the center of pressure must be struck to achieve static longitudinal flight stability passively. During gliding, the center of mass should be slightly forward from the wing’s center of pressure.

The current version is mostly optimized for the jetting phase of flight, and doesn’t have any active flight control surfaces yet, but the researchers are optimistic that if they added some they’d have no problem getting the robot to fly autonomously. It’s just a glider at the moment, but a low-power propeller is the obvious step after that, and to get really fancy, a switchable gearbox could enable efficient movement on water as well as in the air. Long-term, the idea is that robots like these would be useful for tasks like autonomous water sampling over large areas, but I’d personally be satisfied with a remote controlled version that I could take to the beach.

“Consecutive aquatic jump-gliding with water-reactive fuel,” by R. Zufferey, A. Ortega Ancel, A. Farinha, R. Siddall, S. F. Armanini, M. Nasr, R. V. Brahmal, G. Kennedy, and M. Kovac from Imperial College in London, is published in the current issue of Science Robotics. Continue reading

Posted in Human Robots