Tag Archives: roboticists
#436005 NASA Hiring Engineers to Develop “Next ...
It’s been nearly six years since NASA unveiled Valkyrie, a state-of-the-art full-size humanoid robot. After the DARPA Robotics Challenge, NASA has continued to work with Valkyrie at Johnson Space Center, and has also provided Valkyrie robots to several different universities. Although it’s not a new platform anymore (six years is a long time in robotics), Valkyrie is still very capable, with plenty of potential for robotics research.
With that in mind, we were caught by surprise when over the last several months, Jacobs, a Dallas-based engineering company that appears to provide a wide variety of technical services to anyone who wants them, has posted several open jobs in need of roboticists in the Houston, Texas, area who are interested in working with NASA on “the next generation of humanoid robot.”
Here are the relevant bullet points from the one of the job descriptions (which you can view at this link):
Work directly with NASA Johnson Space Center in designing the next generation of humanoid robot.
Join the Valkyrie humanoid robot team in NASA’s Robotic Systems Technology Branch.
Build on the success of the existing Valkyrie and Robonaut 2 humanoid robots and advance NASA’s ability to project a remote human presence and dexterous manipulation capability into challenging, dangerous, and distant environments both in space and here on earth.
The question is, why is NASA developing its own humanoid robot (again) when it could instead save a whole bunch of time and money by using a platform that already exists, whether it’s Atlas, Digit, Valkyrie itself, or one of the small handful of other humanoids that are more or less available? The only answer that I can come up with is that no existing platforms meet NASA’s requirements, whatever those may be. And if that’s the case, what kind of requirements are we talking about? The obvious one would be the ability to work in the kinds of environments that NASA specializes in—space, the Moon, and Mars.
Image: NASA
Artist’s concept of NASA’s Valkyrie humanoid robot working on the surface of Mars.
NASA’s existing humanoid robots, including Robonaut 2 and Valkyrie, were designed to operate on Earth. Robonaut 2 ended up going to space anyway (it’s recently returned to Earth for repairs), but its hardware was certainly never intended to function outside of the International Space Station. Working in a vacuum involves designing for a much more rigorous set of environmental challenges, and things get even worse on the Moon or on Mars, where highly abrasive dust gets everywhere.
We know that it’s possible to design robots for long term operation in these kinds of environments because we’ve done it before. But if you’re not actually going to send your robot off-world, there’s very little reason to bother making sure that it can operate through (say) 300° Celsius temperature swings like you’d find on the Moon. In the past, NASA has quite sensibly focused on designing robots that can be used as platforms for the development of software and techniques that could one day be applied to off-world operations, without over-engineering those specific robots to operate in places that they would almost certainly never go. As NASA increasingly focuses on a return to the Moon, though, maybe it’s time to start thinking about a humanoid robot that could actually do useful stuff on the lunar surface.
Image: NASA
Artist’s concept of the Gateway moon-orbiting space station (seen on the right) with an Orion crew vehicle approaching.
The other possibility that I can think of, and perhaps the more likely one, is that this next humanoid robot will be a direct successor to Robonaut 2, intended for NASA’s Gateway space station orbiting the Moon. Some of the robotics folks at NASA that we’ve talked to recently have emphasized how important robotics will be for Gateway:
Trey Smith, NASA Ames: Everybody at NASA is really excited about work on the Gateway space station that would be in near lunar space. We don’t have definite plans for what would happen on the Gateway yet, but there’s a general recognition that intra-vehicular robots are important for space stations. And so, it would not be surprising to see a mobile manipulator like Robonaut, and a free flyer like Astrobee, on the Gateway.
If you have an un-crewed cargo vehicle that shows up stuffed to the rafters with cargo bags and it docks with the Gateway when there’s no crew there, it would be very useful to have intra-vehicular robots that can pull all those cargo bags out, unpack them, stow all the items, and then even allow the cargo vehicle to detach before the crew show up so that the crew don’t have to waste their time with that.
Julia Badger, NASA JSC: One of the systems on board Gateway is going to be intravehicular robots. They’re not going to necessarily look like Robonaut, but they’ll have some of the same functionality as Robonaut—being mobile, being able to carry payloads from one part of the module to another, doing some dexterous manipulation tasks, inspecting behind panels, those sorts of things.
Image: NASA
Artist’s concept of NASA’s Valkyrie humanoid robot working inside a spacecraft.
Since Gateway won’t be crewed by humans all of the time, it’ll be important to have a permanent robotic presence to keep things running while nobody is home while saving on resources by virtue of the fact that robots aren’t always eating food, drinking water, consuming oxygen, demanding that the temperature stays just so, and producing a variety of disgusting kinds of waste. Obviously, the robot won’t be as capable as humans, but if they can manage to do even basic continuing maintenance tasks (most likely through at least partial teleoperation), that would be very useful.
Photo: Evan Ackerman/IEEE Spectrum
NASA’s Robonaut team plans to perform a variety of mobility and motion-planning experiments using the robot’s new legs, which can grab handrails on the International Space Station.
As for whether robots designed for Gateway would really fall into the “humanoid” category, it’s worth considering that Gateway is designed for humans, implying that an effective robotic system on Gateway would need to be able to interact with the station in similar ways to how a human astronaut would. So, you’d expect to see arms with end-effectors that can grip things as well as push buttons, and some kind of mobility system—the legged version of Robonaut 2 seems like a likely template, but redesigned from the ground up to work in space, incorporating all the advances in robotics hardware and computing that have taken place over the last decade.
We’ve been pestering NASA about this for a little bit now, and they’re not ready to comment on this project, or even to confirm it. And again, everything in this article (besides the job post, which you should totally check out and consider applying for) is just speculation on our part, and we could be wrong about absolutely all of it. As soon as we hear more, we’ll definitely let you know. Continue reading
#435716 Watch This Drone Explode Into Maple Seed ...
As useful as conventional fixed-wing and quadrotor drones have become, they still tend to be relatively complicated, expensive machines that you really want to be able to use more than once. When a one-way trip is all that you have in mind, you want something simple, reliable, and cheap, and we’ve seen a bunch of different designs for drone gliders that more or less fulfill those criteria.
For an even simpler gliding design, you want to minimize both airframe mass and control surfaces, and the maple tree provides some inspiration in the form of samara, those distinctive seed pods that whirl to the ground in the fall. Samara are essentially just an unbalanced wing that spins, and while the natural ones don’t steer, adding an actuated flap to the robotic version and moving it at just the right time results in enough controllability to aim for a specific point on the ground.
Roboticists at the Singapore University of Technology and Design (SUTD) have been experimenting with samara-inspired drones, and in a new paper in IEEE Robotics and Automation Letters they explore what happens if you attach five of the drones together and then separate them in mid air.
Image: Singapore University of Technology and Design
The drone with all five wings attached (top left), and details of the individual wings: (a) smaller 44.9-gram wing for semi-indoor testing; (b) larger 83.4-gram wing able to carry a Pixracer, GPS, and magnetometer for directional control experiments.
Fundamentally, a samara design acts as a decelerator for an aerial payload. You can think of it like a parachute: It makes sure that whatever you toss out of an airplane gets to the ground intact rather than just smashing itself to bits on impact. Steering is possible, but you don’t get a lot of stability or precision control. The RA-L paper describes one solution to this, which is to collaboratively use five drones at once in a configuration that looks a bit like a helicopter rotor.
And once the multi-drone is right where you want it, the five individual samara drones can split off all at once, heading out on their own missions. It's quite a sight:
The concept features a collaborative autorotation in the initial stage of drop whereby several wings are attached to each other to form a rotor hub. The combined form achieves higher rotational energy and a collaborative control strategy is possible. Once closer to the ground, they can exit the collaborative form and continue to descend to unique destinations. A section of each wing forms a flap and a small actuator changes its pitch cyclically. Since all wing-flaps can actuate simultaneously in collaborative mode, better maneuverability is possible, hence higher resistance against environmental conditions. The vertical and horizontal speeds can be controlled to a certain extent, allowing it to navigate towards a target location and land softly.
The samara autorotating wing drones themselves could conceivably carry small payloads like sensors or emergency medical supplies, with these small-scale versions in the video able to handle an extra 30 grams of payload. While they might not have as much capacity as a traditional fixed-wing glider, they have the advantage of being able to descent vertically, and can perform better than a parachute due to their ability to steer. The researchers plan on improving the design of their little drones, with the goal of increasing the rotation speed and improving the control performance of both the individual drones and the multi-wing collaborative version.
“Dynamics and Control of a Collaborative and Separating Descent of Samara Autorotating Wings,” by Shane Kyi Hla Win, Luke Soe Thura Win, Danial Sufiyan, Gim Song Soh, and Shaohui Foong from Singapore University of Technology and Design, appears in the current issue of IEEE Robotics and Automation Letters.
[ SUTD ]
< Back to IEEE Journal Watch Continue reading