Tag Archives: robotic

#438720 Credit card-sized soft pumps power ...

Robotic clothing that is entirely soft and could help people to move more easily is a step closer to reality thanks to the development of a new flexible and lightweight power system for soft robotics. Continue reading

Posted in Human Robots

#438611 A new framework for robotics ...

Reservoir computing is a highly promising computational framework based on artificial recurrent neural networks (RNNs). Over the past few years, this framework was successfully applied to a variety of tasks, ranging from time-series predictions (i.e., stock market or weather forecasting), to robotic motion planning and speech recognition. Continue reading

Posted in Human Robots

#438606 Hyundai Motor Group Introduces Two New ...

Over the past few weeks, we’ve seen a couple of new robots from Hyundai Motor Group. This is a couple more robots than I think I’ve seen from Hyundai Motor Group, like, ever. We’re particularly interested in them right now mostly because Hyundai Motor Group are the new owners of Boston Dynamics, and so far, these robots represent one of the most explicit indications we’ve got about exactly what Hyundai Motor Group wants their robots to be doing.

We know it would be a mistake to read too much into these new announcements, but we can’t help reading something into them, right? So let’s take a look at what Hyundai Motor Group has been up to recently. This first robot is DAL-e, what HMG is calling an “Advanced Humanoid Robot.”

According to Hyundai, DAL-e is “designed to pioneer the future of automated customer services,” and is equipped with “state-of-the-art artificial intelligence technology for facial recognition as well as an automatic communication system based on a language-comprehension platform.” You’ll find it in car showrooms, but only in Seoul, for now.

We don’t normally write about robots like these because they tend not to represent much that’s especially new or interesting in terms of robotic technology, capabilities, or commercial potential. There’s certainly nothing wrong with DAL-e—it’s moderately cute and appears to be moderately functional. We’ve seen other platforms (like Pepper) take on similar roles, and our impression is that the long-term cost effectiveness of these greeter robots tends to be somewhat limited. And unless there’s some hidden functionality that we’re not aware of, this robot doesn’t really seem to be pushing the envelope, but we’d love to be wrong about that.

The other new robot, announced yesterday, is TIGER (Transforming Intelligent Ground Excursion Robot). It’s a bit more interesting, although you’ll have to skip ahead about 1:30 in the video to get to it.

We’ve talked about how adding wheels can make legged robots faster and more efficient, but I’m honestly not sure that it works all that well going the other way (adding legs to wheeled robots) because rather than adding a little complexity to get a multi-modal system that you can use much of the time, you’re instead adding a lot of complexity to get a multi-modal system that you’re going to use sometimes.

You could argue, as perhaps Hyundai would, that the multi-modal system is critical to get TIGER to do what they want it to do, which seems to be primarily remote delivery. They mention operating in urban areas as well, where TIGER could use its legs to climb stairs, but I think it would be beat by more traditional wheeled platforms, or even whegged platforms, that are almost as capable while being much simpler and cheaper. For remote delivery, though, legs might be a necessary feature.

That is, if you assume that using a ground-based system is really the best way to go.

The TIGER concept can be integrated with a drone to transport it from place to place, so why not just use the drone to make the remote delivery instead? I guess maybe if you’re dealing with a thick tree canopy, the drone could drop TIGER off in a clearing and the robot could drive to its destination, but now we’re talking about developing a very complex system for a very specific use case. Even though Hyundai has said that they’re going to attempt to commercialize TIGER over the next five years, I think it’ll be tricky for them to successfully do so.

The best part about these robots from Hyundai is that between the two of them, they suggest that the company is serious about developing commercial robots as well as willing to invest in something that seems a little crazy. And you know who else is both of those things? Boston Dynamics. To be clear, it’s almost certain that both of Hyundai’s robots were developed well before the company was even thinking about acquiring Boston Dynamics, so the real question is: Where do these two companies go from here? Continue reading

Posted in Human Robots

#438294 Video Friday: New Entertainment Robot ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

Engineered Arts' latest Mesmer entertainment robot is Cleo. It sings, gesticulates, and even does impressions.

[ Engineered Arts ]

I do not know what this thing is or what it's saying but Panasonic is going to be selling them and I will pay WHATEVER. IT. COSTS.

Slightly worrisome is that Google Translate persistently thinks that part of the description involves “sleeping and flatulence.”

[ Panasonic ] via [ RobotStart ]

Spot Enterprise is here to help you safely ignore every alarm that goes off at work while you're snug at home in your jammies drinking cocoa.

That Spot needs a bath.

If you missed the launch event (with more on the arm), check it out here:

[ Boston Dynamics ]

PHASA-35, a 35m wingspan solar-electric aircraft successfully completed its maiden flight in Australia, February 2020. Designed to operate unmanned in the stratosphere, above the weather and conventional air traffic, PHASA-35 offers a persistent and affordable alternative to satellites combined with the flexibility of an aircraft, which could be used for a range of valuable applications including forest fire detection and maritime surveillance.

[ BAE Systems ]

As part of the Army Research Lab’s (ARL) Robotics Collaborative Technology Alliance (RCTA), we are developing new planning and control algorithms for quadrupedal robots. The goal of our project is to equip the robot LLAMA, developed by NASA JPL, with the skills it needs to move at operational tempo over difficult terrain to keep up with a human squad. This requires innovative perception, planning, and control techniques to make the robot both precise in execution for navigating technical obstacles and robust enough to reject disturbances and recover from unknown errors.

[ IHMC ]

Watch what happens to this drone when it tries to install a bird diverter on a high voltage power line:

[ GRVC ]

Soldiers navigate a wide variety of terrains to successfully complete their missions. As human/agent teaming and artificial intelligence advance, the same flexibility will be required of robots to maneuver across diverse terrain and become effective combat teammates.

[ Army ]

The goal of the GRIFFIN project is to create something similar to sort of robotic bird, which almost certainly won't look like this concept rendering.

While I think this research is great, at what point is it in fact easier to just, you know, train an actual bird?

[ GRIFFIN ]

Paul Newman narrates this video from two decades ago, which is a pretty neat trick.

[ Oxford Robotics Institute ]

The first step towards a LEGO-based robotic McMuffin creator is cracking and separating eggs.

[ Astonishing Studios ] via [ BB ]

Some interesting soft robotics projects at the University of Southern Denmark.

[ SDU ]

Chong Liu introduces Creature_02, his final presentation for Hod Lipson's Robotics Studio course at Columbia.

[ Chong Liu ]

The world needs more robot blimps.

[ Lab INIT Robots ]

Finishing its duty early, the KR CYBERTECH nano uses this time to play basketball.

[ Kuka ]

senseFly has a new aerial surveying drone that they call “affordable,” although they don't say what the price is.

[ senseFly ]

In summer 2020 participated several science teams of the ETH Zurich at the “Art Safiental” in the mountains of Graubunden. After the scientists packed their hiking gear and their robots, their only mission was “over hill and dale to the summit”. How difficult will it be to reach the summit with a legged robot and an exosceletton? What's the relation of synesthetic dance and robotic? How will the hikers react to these projects?

[ Rienerschnitzel Films ]

Thanks Robert!

Karen Liu: How robots perceive the physical world. A specialist in computer animation expounds upon her rapidly evolving specialty, known as physics-based simulation, and how it is helping robots become more physically aware of the world around them.

[ Stanford ]

This week's UPenn GRASP On Robotics seminar is by Maria Chiara Carrozza from Scuola Superiore Sant’Anna, on “Biorobotics for Personal Assistance – Translational Research and Opportunities for Human-Centered Developments.”

The seminar will focus on the opportunities and challenges offered by the digital transformation of healthcare which was accelerated in the COVID-19 Pandemia. In this framework rehabilitation and social robotics can play a fundamental role as enabling technologies for providing innovative therapies and services to patients even at home or in remote environments.

[ UPenn ] Continue reading

Posted in Human Robots

#438074 A new bio-inspired joint model to design ...

Recent advances in the field of robotics have enabled the fabrication of increasingly sophisticated robotic limbs and exoskeletons. Robotic exoskeletons are essentially wearable 'shells' made of different robotic parts. Exoskeletons can improve the strength, capabilities and stability of users, helping them to tackle heavy physical tasks with less effort or aiding their rehabilitation after accidents. Continue reading

Posted in Human Robots