Tag Archives: robotic arm

#436042 Video Friday: Caltech’s Drone With ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

Caltech has been making progress on LEONARDO (LEg ON Aerial Robotic DrOne), their leggy thruster powered humanoid-thing. It can now balance and walk, which is quite impressive to see.

We’ll circle back again when they’ve got it jumping and floating around.

[ Caltech ]

Turn the subtitles on to learn how robots became experts at slicing bubbly, melty, delicious cheese.

These robots learned how to do the traditional Swiss raclette from demonstration. The Robot Learning & Interaction group at the Idiap Research Institute has developed an imitation learning technique allowing the robot to acquire new skills by considering position and force information, with an automatic adaptation to new situations. The range of applications is wide, including industrial robots, service robots, and assistive robots.

[ Idiap ]

Thanks Sylvain!

Some amazing news this week from Skydio, with the announcement of their better in every single way Skydio 2 autonomous drone. Read our full article for details, but here’s a getting started video that gives you an overview of what the drone can do.

The first batch sold out in 36 hours, but you can put down a $100 deposit to reserve the $999 drone for 2020 delivery.

[ Skydio ]

UBTECH is introducing a couple new robot kits for the holidays: ChampBot and FireBot.

$130 each, available on October 20.

[ Ubtech ]

NASA’s InSight lander on Mars is trying to use its robotic arm to get the mission’s heat flow probe, or mole, digging again. InSight team engineer Ashitey Trebbi-Ollennu, based at NASA’s Jet Propulsion Laboratory in Pasadena, California, explains what has been attempted and the game plan for the coming weeks. The next tactic they’ll try will be “pinning” the mole against the hole it’s in.

[ NASA ]

We introduce shape-changing swarm robots. A swarm of self-transformable robots can both individually and collectively change their configuration to display information, actuate objects, act as tangible controllers, visualize data, and provide physical affordances. ShapeBots is a concept prototype of shape-changing swarm robots. Each robot can change its shape by leveraging small linear actuators that are thin (2.5 cm) and highly extendable (up to 20cm) in both horizontal and vertical directions.

[ Ryo Suzuki ]

Robot abuse!

Vision 60 legged robot managing unstructured terrain without vision or force sensors in its legs. Using only high-transparency actuators and 2kHz algorithmic stability control… 4-limbs and 12-motors with only a velocity command.

[ Ghost Robotics ]

We asked real people to bring in real products they needed picked for their application. In MINUTES, we assembled the right tool.

This is a cool idea, but for a real challenge they should try it outside a supermarket. Or a pet store.

[ Soft Robotics ]

Good water quality is important to humans and to nature. In a country with as much water as the Netherlands has, ensuring water quality is a very labour-intensive undertaking. To address this issue, researchers from TU Delft have developed a ‘pelican drone’: a drone capable of taking water samples quickly, in combination with a measuring instrument that immediately analyses the water quality. The drone was tested this week at the new Marker Wadden nature area ‘Living Lab’.

[ MAVLab ]

In an international collaboration led by scientists in Switzerland, three amputees merge with their bionic prosthetic legs as they climb over various obstacles without having to look. The amputees report using and feeling their bionic leg as part of their own body, thanks to sensory feedback from the prosthetic leg that is delivered to nerves in the leg’s stump.

[ EPFL ]

It’s a little hard to see, but this is one way of testing out asteroid imaging spacecraft without actually going into space: a fake asteroid and a 2D microgravity simulator.

[ Caltech ]

Drones can help filmmakers do the kinds of shots that would be otherwise impossible.

[ DJI ]

Two long interviews this week from Lex Fridman’s AI Podcast, and both of them are worth watching: Gary Marcus, and Peter Norvig.

[ AI Podcast ]

This week’s CMU RI Seminar comes from Tucker Hermans at the University of Utah, on “Improving Multi-fingered Robot Manipulation by Unifying Learning and Planning.”

Multi-fingered hands offer autonomous robots increased dexterity, versatility, and stability over simple two-fingered grippers. Naturally, this increased ability comes with increased complexity in planning and executing manipulation actions. As such, I propose combining model-based planning with learned components to improve over purely data-driven or purely-model based approaches to manipulation. This talk examines multi-fingered autonomous manipulation when the robot has only partial knowledge of the object of interest. I will first present results on planning multi-fingered grasps for novel objects using a learned neural network. I will then present our approach to planning in-hand manipulation tasks when dynamic properties of objects are not known. I will conclude with a discussion of our ongoing and future research to further unify these two approaches.

[ CMU RI ] Continue reading

Posted in Human Robots

#435764 120 Million Dollar man with a robot arm!

Johnny Matheny controls his prosthetic arm with his mind!

Posted in Human Robots

#435775 Jaco Is a Low-Power Robot Arm That Hooks ...

We usually think of robots as taking the place of humans in various tasks, but robots of all kinds can also enhance human capabilities. This may be especially true for people with disabilities. And while the Cybathlon competition showed what's possible when cutting-edge research robotics is paired with expert humans, that competition isn't necessarily reflective of the kind of robotics available to most people today.

Kinova Robotics's Jaco arm is an assistive robotic arm designed to be mounted on an electric wheelchair. With six degrees of freedom plus a three-fingered gripper, the lightweight carbon fiber arm is frequently used in research because it's rugged and versatile. But from the start, Kinova created it to add autonomy to the lives of people with mobility constraints.

Earlier this year, Kinova shared the story of Mary Nelson, an 11-year-old girl with spinal muscular atrophy, who uses her Jaco arm to show her horse in competition. Spinal muscular atrophy is a neuromuscular disorder that impairs voluntary muscle movement, including muscles that help with respiration, and Mary depends on a power chair for mobility.

We wanted to learn more about how Kinova designs its Jaco arm, and what that means for folks like Mary, so we spoke with both Kinova and Mary's parents to find out how much of a difference a robot arm can make.

IEEE Spectrum: How did Mary interact with the world before having her arm, and what was involved in the decision to try a robot arm in general? And why then Kinova's arm specifically?

Ryan Nelson: Mary interacts with the world much like you and I do, she just uses different tools to do so. For example, she is 100 percent independent using her computer, iPad, and phone, and she prefers to use a mouse. However, she cannot move a standard mouse, so she connects her wheelchair to each device with Bluetooth to move the mouse pointer/cursor using her wheelchair joystick.

For years, we had a Manfrotto magic arm and super clamp attached to her wheelchair and she used that much like the robotic arm. We could put a baseball bat, paint brush, toys, etc. in the super clamp so that Mary could hold the object and interact as physically able children do. Mary has always wanted to be more independent, so we knew the robotic arm was something she must try. We had seen videos of the Kinova arm on YouTube and on their website, so we reached out to them to get a trial.

Can you tell us about the Jaco arm, and how the process of designing an assistive robot arm is different from the process of designing a conventional robot arm?

Nathaniel Swenson, Director of U.S. Operations — Assistive Technologies at Kinova: Jaco is our flagship robotic arm. Inspired by our CEO's uncle and its namesake, Jacques “Jaco” Forest, it was designed as assistive technology with power wheelchair users in mind.

The primary differences between Jaco and our other robots, such as the new Gen3, which was designed to meet the needs of academic and industry research teams, are speed and power consumption. Other robots such as the Gen3 can move faster and draw slightly more power because they aren't limited by the battery size of power wheelchairs. Depending on the use case, they might not interact directly with a human being in the research setting and can safely move more quickly. Jaco is designed to move at safe speeds and make direct contact with the end user and draw very little power directly from their wheelchair.

The most important consideration in the design process of an assistive robot is the safety of the end user. Jaco users operate their robots through their existing drive controls to assist them in daily activities such as eating, drinking, and opening doors and they don't have to worry about the robot draining their chair's batteries throughout the day. The elegant design that results from meeting the needs of our power chair users has benefited subsequent iterations, [of products] such as the Gen3, as well: Kinova's robots are lightweight, extremely efficient in their power consumption, and safe for direct human-robot interaction. This is not true of conventional industrial robots.

What was the learning process like for Mary? Does she feel like she's mastered the arm, or is it a continuous learning process?

Ryan Nelson: The learning process was super quick for Mary. However, she amazes us every day with the new things that she can do with the arm. Literally within minutes of installing the arm on her chair, Mary had it figured out and was shaking hands with the Kinova rep. The control of the arm is super intuitive and the Kinova reps say that SMA (Spinal Muscular Atrophy) children are perfect users because they are so smart—they pick it up right away. Mary has learned to do many fine motor tasks with the arm, from picking up small objects like a pencil or a ruler, to adjusting her glasses on her face, to doing science experiments.

Photo: The Nelson Family

Mary uses a headset microphone to amplify her voice, and she will use the arm and finger to adjust the microphone in front of her mouth after she is done eating (also a task she mastered quickly with the arm). Additionally, Mary will use the arms to reach down and adjust her feet or leg by grabbing them with the arm and moving them to a more comfortable position. All of these examples are things she never really asked us to do, but something she needed and just did on her own, with the help of the arm.

What is the most common feedback that you get from new users of the arm? How about from experienced users who have been using the arm for a while?

Nathaniel Swenson: New users always tell us how excited they are to see what they can accomplish with their new Jaco. From day one, they are able to do things that they have longed to do without assistance from a caregiver: take a drink of water or coffee, scratch an itch, push the button to open an “accessible” door or elevator, or even feed their baby with a bottle.

The most common feedback I hear from experienced users is that Jaco has changed their life. Our experienced users like Mary are rock stars: everywhere they go, people get excited to see what they'll do next. The difference between a new user and an experienced user could be as little as two weeks. People who operate power wheelchairs every day are already expert drivers and we just add a new “gear” to their chair: robot mode. It's fun to see how quickly new users master the intuitive Jaco control modes.

What changes would you like to see in the next generation of Jaco arm?

Ryan Nelson: Titanium fingers! Make it lift heavier objects, hold heavier items like a baseball bat, machine gun, flame thrower, etc., and Mary literally said this last night: “I wish the arm moved fast enough to play the piano.”

Nathaniel Swenson: I love the idea of titanium fingers! Jaco's fingers are made from a flexible polymer and designed to avoid harm. This allows the fingers to bend or dislocate, rather than break, but it also means they are not as durable as a material like titanium. Increased payload, the ability to manipulate heavier objects, requires increased power consumption. We've struck a careful balance between providing enough strength to accomplish most medically necessary Activities of Daily Living and efficient use of the power chair's batteries.

We take Isaac Asimov's Laws of Robotics pretty seriously. When we start to combine machine guns, flame throwers, and artificial intelligence with robots, I get very nervous!

I wish the arm moved fast enough to play the piano, too! I am also a musician and I share Mary's dream of an assistive robot that would enable her to make music. In the meantime, while we work on that, please enjoy this beautiful violin piece by Manami Ito and her one-of-a-kind violin prosthesis:

To what extent could more autonomy for the arm be helpful for users? What would be involved in implementing that?

Nathaniel Swenson: Artificial intelligence, machine learning, and deep learning will introduce greater autonomy in future iterations of assistive robots. This will enable them to perform more complex tasks that aren't currently possible, and enable them to accomplish routine tasks more quickly and with less input than the current manual control requires.

For assistive robots, implementation of greater autonomy involves a focus on end-user safety and improvements in the robot's awareness of its environment. Autonomous robots that work in close proximity with humans need vision. They must be able to see to avoid collisions and they use haptic feedback to tell the robot how much force is being exerted on objects. All of these technologies exist, but the largest obstacle to bringing them to the assistive technology market is to prove to the health insurance companies who will fund them that they are both safe and medically necessary. Continue reading

Posted in Human Robots

#435757 Robotic Animal Agility

An off-shore wind power platform, somewhere in the North Sea, on a freezing cold night, with howling winds and waves crashing against the impressive structure. An imperturbable ANYmal is quietly conducting its inspection.

ANYmal, a medium sized dog-like quadruped robot, walks down the stairs, lifts a “paw” to open doors or to call the elevator and trots along corridors. Darkness is no problem: it knows the place perfectly, having 3D-mapped it. Its laser sensors keep it informed about its precise path, location and potential obstacles. It conducts its inspection across several rooms. Its cameras zoom in on counters, recording the measurements displayed. Its thermal sensors record the temperature of machines and equipment and its ultrasound microphone checks for potential gas leaks. The robot also inspects lever positions as well as the correct positioning of regulatory fire extinguishers. As the electronic buzz of its engines resumes, it carries on working tirelessly.

After a little over two hours of inspection, the robot returns to its docking station for recharging. It will soon head back out to conduct its next solitary patrol. ANYmal played alongside Mulder and Scully in the “X-Files” TV series*, but it is in no way a Hollywood robot. It genuinely exists and surveillance missions are part of its very near future.

Off-shore oil platforms, the first test fields and probably the first actual application of ANYmal. ©ANYbotics

This quadruped robot was designed by ANYbotics, a spinoff of the Swiss Federal Institute of Technology in Zurich (ETH Zurich). Made of carbon fibre and aluminium, it weighs about thirty kilos. It is fully ruggedised, water- and dust-proof (IP-67). A kevlar belly protects its main body, carrying its powerful brain, batteries, network device, power management system and navigational systems.

ANYmal was designed for all types of terrain, including rubble, sand or snow. It has been field tested on industrial sites and is at ease with new obstacles to overcome (and it can even get up after a fall). Depending on its mission, its batteries last 2 to 4 hours.

On its jointed legs, protected by rubber pads, it can walk (at the speed of human steps), trot, climb, curl upon itself to crawl, carry a load or even jump and dance. It is the need to move on all surfaces that has driven its designers to choose a quadruped. “Biped robots are not easy to stabilise, especially on irregular terrain” explains Dr Péter Fankhauser, co-founder and chief business development officer of ANYbotics. “Wheeled or tracked robots can carry heavy loads, but they are bulky and less agile. Flying drones are highly mobile, but cannot carry load, handle objects or operate in bad weather conditions. We believe that quadrupeds combine the optimal characteristics, both in terms of mobility and versatility.”

What served as a source of inspiration for the team behind the project, the Robotic Systems Lab of the ETH Zurich, is a champion of agility on rugged terrain: the mountain goat. “We are of course still a long way” says Fankhauser. “However, it remains our objective on the longer term.

The first prototype, ALoF, was designed already back in 2009. It was still rather slow, very rigid and clumsy – more of a proof of concept than a robot ready for application. In 2012, StarlETH, fitted with spring joints, could hop, jump and climb. It was with this robot that the team started participating in 2014 in ARGOS, a full-scale challenge, launched by the Total oil group. The idea was to present a robot capable of inspecting an off-shore drilling station autonomously.

Up against dozens of competitors, the ETH Zurich team was the only team to enter the competition with such a quadrupedal robot. They didn’t win, but the multiple field tests were growing evermore convincing. Especially because, during the challenge, the team designed new joints with elastic actuators made in-house. These joints, inspired by tendons and muscles, are compact, sealed and include their own custom control electronics. They can regulate joint torque, position and impedance directly. Thanks to this innovation, the team could enter the same competition with a new version of its robot, ANYmal, fitted with three joints on each leg.

The ARGOS experience confirms the relevance of the selected means of locomotion. “Our robot is lighter, takes up less space on site and it is less noisy” says Fankhauser. “It also overcomes bigger obstacles than larger wheeled or tracked robots!” As ANYmal generated public interest and its transformation into a genuine product seemed more than possible, the startup ANYbotics was launched in 2016. It sold not only its robot, but also its revolutionary joints, called ANYdrive.

Today, ANYmal is not yet ready for sale to companies. However, ANYbotics has a growing number of partnerships with several industries, testing the robot for a few days or several weeks, for all types of tasks. Last October, for example, ANYmal navigated its way through the dark sewage system of the city of Zurich in order to test its capacity to help workers in similar difficult, repetitive and even dangerous tasks.

Why such an early interest among companies? “Because many companies want to integrate robots into their maintenance tasks” answers Fankhauser. “With ANYmal, they can actually evaluate its feasibility and plan their strategy. Eventually, both the architecture and the equipment of buildings could be rethought to be adapted to these maintenance robots”.

ANYmal requires ruggedised, sealed and extremely reliable interconnection solutions, such as LEMO. ©ANYbotics

Through field demonstrations and testing, ANYbotics can gather masses of information (up to 50,000 measurements are recorded every second during each test!) “It helps us to shape the product.” In due time, the startup will be ready to deliver a commercial product which really caters for companies’ needs.

Inspection and surveillance tasks on industrial sites are not the only applications considered. The startup is also thinking of agricultural inspections – with its onboard sensors, ANYmal is capable of mapping its environment, measuring bio mass and even taking soil samples. In the longer term, it could also be used for search and rescue operations. By the way, the robot can already be switched to “remote control” mode at any time and can be easily tele-operated. It is also capable of live audio and video transmission.

The transition from the prototype to the marketed product stage will involve a number of further developments. These include increasing ANYmal’s agility and speed, extending its capacity to map large-scale environments, improving safety, security, user handling and integrating the system with the customer’s data management software. It will also be necessary to enhance the robot’s reliability “so that it can work for days, weeks, or even months without human supervision.” All required certifications will have to be obtained. The locomotion system, which had triggered the whole business, is only one of a number of considerations of ANYbotics.

Designed for extreme environments, for ANYmal smoke is not a problem and it can walk in the snow, through rubble or in water. ©ANYbotics

The startup is not all alone. In fact, it has sold ANYmal robots to a dozen major universities who use them to develop their know-how in robotics. The startup has also founded ANYmal Research, a community including members such as Toyota Research Institute, the German Aerospace Center and the computer company Nvidia. Members have full access to ANYmal’s control software, simulations and documentation. Sharing has boosted both software and hardware ideas and developments (built on ROS, the open-source Robot Operating System). In particular, payload variations, providing for expandability and scalability. For instance, one of the universities uses a robotic arm which enables ANYmal to grasp or handle objects and open doors.

Among possible applications, ANYbotics mentions entertainment. It is not only about playing in more films or TV series, but rather about participating in various attractions (trade shows, museums, etc.). “ANYmal is so novel that it attracts a great amount of interest” confirms Fankhauser with a smile. “Whenever we present it somewhere, people gather around.”

Videos of these events show a fascinated and sometimes slightly fearful audience, when ANYmal gets too close to them. Is it fear of the “bad robot”? “This fear exists indeed and we are happy to be able to use ANYmal also to promote public awareness towards robotics and robots.” Reminiscent of a young dog, ANYmal is truly adapted for the purpose.

However, Péter Fankhauser softens the image of humans and sophisticated robots living together. “These coming years, robots will continue to work in the background, like they have for a long time in factories. Then, they will be used in public places in a selective and targeted way, for instance for dangerous missions. We will need to wait another ten years before animal-like robots, such as ANYmal will share our everyday lives!”

At the Consumer Electronics Show (CES) in Las Vegas in January, Continental, the German automotive manufacturing company, used robots to demonstrate a last-mile delivery. It showed ANYmal getting out of an autonomous vehicle with a parcel, climbing onto the front porch, lifting a paw to ring the doorbell, depositing the parcel before getting back into the vehicle. This futuristic image seems very close indeed.

*X-Files, season 11, episode 7, aired in February 2018 Continue reading

Posted in Human Robots

#435748 Video Friday: This Robot Is Like a ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RSS 2019 – June 22-26, 2019 – Freiburg, Germany
Hamlyn Symposium on Medical Robotics – June 23-26, 2019 – London, U.K.
ETH Robotics Summer School – June 27-1, 2019 – Zurich, Switzerland
MARSS 2019 – July 1-5, 2019 – Helsinki, Finland
ICRES 2019 – July 29-30, 2019 – London, U.K.
DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, Pa., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

It’s been a while since we last spoke to Joe Jones, the inventor of Roomba, about his solar-powered, weed-killing robot, called Tertill, which he was launching as a Kickstarter project. Tertill is now available for purchase (US $300) and is shipping right now.

[ Tertill ]

Usually, we don’t post videos that involve drone use that looks to be either illegal or unsafe. These flights over the protests in Hong Kong are almost certainly both. However, it’s also a unique perspective on the scale of these protests.

[ Team BlackSheep ]

ICYMI: iRobot announced this week that it has acquired Root Robotics.

[ iRobot ]

This Boston Dynamics parody video went viral this week.

The CGI is good but the gratuitous violence—even if it’s against a fake robot—is a bit too much?

This is still our favorite Boston Dynamics parody video:

[ Corridor ]

Biomedical Engineering Department Head Bin He and his team have developed the first-ever successful non-invasive mind-controlled robotic arm to continuously track a computer cursor.

[ CMU ]

Organic chemists, prepare to meet your replacement:

Automated chemical synthesis carries great promises of safety, efficiency and reproducibility for both research and industry laboratories. Current approaches are based on specifically-designed automation systems, which present two major drawbacks: (i) existing apparatus must be modified to be integrated into the automation systems; (ii) such systems are not flexible and would require substantial re-design to handle new reactions or procedures. In this paper, we propose a system based on a robot arm which, by mimicking the motions of human chemists, is able to perform complex chemical reactions without any modifications to the existing setup used by humans. The system is capable of precise liquid handling, mixing, filtering, and is flexible: new skills and procedures could be added with minimum effort. We show that the robot is able to perform a Michael reaction, reaching a yield of 34%, which is comparable to that obtained by a junior chemist (undergraduate student in Chemistry).

[ arXiv ] via [ NTU ]

So yeah, ICRA 2019 was huge and awesome. Here are some brief highlights.

[ Montreal Gazette ]

For about US $5, this drone will deliver raw meat and beer to you if you live on an uninhabited island in Tokyo Bay.

[ Nikkei ]

The Smart Microsystems Lab at Michigan State University has a new version of their Autonomous Surface Craft. It’s autonomous, open source, and awfully hard to sink.

[ SML ]

As drone shows go, this one is pretty good.

[ CCTV ]

Here’s a remote controlled robot shooting stuff with a very large gun.

[ HDT ]

Over a period of three quarters (September 2018 thru May 2019), we’ve had the opportunity to work with five graduating University of Denver students as they brought their idea for a Misty II arm extension to life.

[ Misty Robotics ]

If you wonder how it looks to inspect burners and superheaters of a boiler with an Elios 2, here you are! This inspection was performed by Svenska Elektrod in a peat-fired boiler for Vattenfall in Sweden. Enjoy!

[ Flyability ]

The newest Soft Robotics technology, mGrip mini fingers, made for tight spaces, small packaging, and delicate items, giving limitless opportunities for your applications.

[ Soft Robotics ]

What if legged robots were able to generate dynamic motions in real-time while interacting with a complex environment? Such technology would represent a significant step forward the deployment of legged systems in real world scenarios. This means being able to replace humans in the execution of dangerous tasks and to collaborate with them in industrial applications.

This workshop aims to bring together researchers from all the relevant communities in legged locomotion such as: numerical optimization, machine learning (ML), model predictive control (MPC) and computational geometry in order to chart the most promising methods to address the above-mentioned scientific challenges.

[ Num Opt Wkshp ]

Army researchers teamed with the U.S. Marine Corps to fly and test 3-D printed quadcopter prototypes a the Marine Corps Air Ground Combat Center in 29 Palms, California recently.

[ CCDC ARL ]

Lex Fridman’s Artificial Intelligence podcast featuring Rosalind Picard.

[ AI Podcast ]

In this week’s episode of Robots in Depth, per speaks with Christian Guttmann, executive director of the Nordic AI Artificial Intelligence Institute.

Christian Guttmann talks about AI and wanting to understand intelligence enough to recreate it. Christian has be focusing on AI in healthcare and has recently started to communicate the opportunities and challenges in artificial intelligence to the general public. This is something that the host Per Sjöborg is also very passionate about. We also get to hear about the Nordic AI institute and the work it does to inform all parts of society about AI.

[ Robots in Depth ] Continue reading

Posted in Human Robots