Tag Archives: review
#431839 The Hidden Human Workforce Powering ...
The tech industry touts its ability to automate tasks and remove slow and expensive humans from the equation. But in the background, a lot of the legwork training machine learning systems, solving problems software can’t, and cleaning up its mistakes is still done by people.
This was highlighted recently when Expensify, which promises to automatically scan photos of receipts to extract data for expense reports, was criticized for sending customers’ personally identifiable receipts to workers on Amazon’s Mechanical Turk (MTurk) crowdsourcing platform.
The company uses text analysis software to read the receipts, but if the automated system falls down then the images are passed to a human for review. While entrusting this job to random workers on MTurk was maybe not so wise—and the company quickly stopped after the furor—the incident brought to light that this kind of human safety net behind AI-powered services is actually very common.
As Wired notes, similar services like Ibotta and Receipt Hog that collect receipt information for marketing purposes also use crowdsourced workers. In a similar vein, while most users might assume their Facebook newsfeed is governed by faceless algorithms, the company has been ramping up the number of human moderators it employs to catch objectionable content that slips through the net, as has YouTube. Twitter also has thousands of human overseers.
Humans aren’t always witting contributors either. The old text-based reCAPTCHA problems Google used to use to distinguish humans from machines was actually simultaneously helping the company digitize books by getting humans to interpret hard-to-read text.
“Every product that uses AI also uses people,” Jeffrey Bigham, a crowdsourcing expert at Carnegie Mellon University, told Wired. “I wouldn’t even say it’s a backstop so much as a core part of the process.”
Some companies are not shy about their use of crowdsourced workers. Startup Eloquent Labs wants to insert them between customer service chatbots and human agents who step in when the machines fail. Many times the AI is pretty certain what particular work means, and an MTurk worker can step in and quickly classify them faster and cheaper than a service agent.
Fashion retailer Gilt provides “pre-emptive shipping,” which uses data analytics to predict what people will buy to get products to them faster. The company uses MTurk workers to provide subjective critiques of clothing that feed into their models.
MTurk isn’t the only player. Companies like Cloudfactory and Crowdflower provide crowdsourced human manpower tailored to particular niches, and some companies prefer to maintain their own communities of workers. Unlabel uses an army of 50,000 humans to check and edit the translations its artificial intelligence system produces for customers.
Most of the time these human workers aren’t just filling in the gaps, they’re also helping to train the machine learning component of these companies’ services by providing new examples of how to solve problems. Other times humans aren’t used “in-the-loop” with AI systems, but to prepare data sets they can learn from by labeling images, text, or audio.
It’s even possible to use crowdsourced workers to carry out tasks typically tackled by machine learning, such as large-scale image analysis and forecasting.
Zooniverse gets citizen scientists to classify images of distant galaxies or videos of animals to help academics analyze large data sets too complex for computers. Almanis creates forecasts on everything from economics to politics with impressive accuracy by giving those who sign up to the website incentives for backing the correct answer to a question. Researchers have used MTurkers to power a chatbot, and there’s even a toolkit for building algorithms to control this human intelligence called TurKit.
So what does this prominent role for humans in AI services mean? Firstly, it suggests that many tools people assume are powered by AI may in fact be relying on humans. This has obvious privacy implications, as the Expensify story highlighted, but should also raise concerns about whether customers are really getting what they pay for.
One example of this is IBM’s Watson for oncology, which is marketed as a data-driven AI system for providing cancer treatment recommendations. But an investigation by STAT highlighted that it’s actually largely driven by recommendations from a handful of (admittedly highly skilled) doctors at Memorial Sloan Kettering Cancer Center in New York.
Secondly, humans intervening in AI-run processes also suggests AI is still largely helpless without us, which is somewhat comforting to know among all the doomsday predictions of AI destroying jobs. At the same time, though, much of this crowdsourced work is monotonous, poorly paid, and isolating.
As machines trained by human workers get better at all kinds of tasks, this kind of piecemeal work filling in the increasingly small gaps in their capabilities may get more common. While tech companies often talk about AI augmenting human intelligence, for many it may actually end up being the other way around.
Image Credit: kentoh / Shutterstock.com Continue reading
#431559 Drug Discovery AI to Scour a Universe of ...
On a dark night, away from city lights, the stars of the Milky Way can seem uncountable. Yet from any given location no more than 4,500 are visible to the naked eye. Meanwhile, our galaxy has 100–400 billion stars, and there are even more galaxies in the universe.
The numbers of the night sky are humbling. And they give us a deep perspective…on drugs.
Yes, this includes wow-the-stars-are-freaking-amazing-tonight drugs, but also the kinds of drugs that make us well again when we’re sick. The number of possible organic compounds with “drug-like” properties dwarfs the number of stars in the universe by over 30 orders of magnitude.
Next to this multiverse of possibility, the chemical configurations scientists have made into actual medicines are like the smattering of stars you’d glimpse downtown.
But for good reason.
Exploring all that potential drug-space is as humanly impossible as exploring all of physical space, and even if we could, most of what we’d find wouldn’t fit our purposes. Still, the idea that wonder drugs must surely lurk amid the multitudes is too tantalizing to ignore.
Which is why, Alex Zhavoronkov said at Singularity University’s Exponential Medicine in San Diego last week, we should use artificial intelligence to do more of the legwork and speed discovery. This, he said, could be one of the next big medical applications for AI.
Dogs, Diagnosis, and Drugs
Zhavoronkov is CEO of Insilico Medicine and CSO of the Biogerontology Research Foundation. Insilico is one of a number of AI startups aiming to accelerate drug discovery with AI.
In recent years, Zhavoronkov said, the now-famous machine learning technique, deep learning, has made progress on a number of fronts. Algorithms that can teach themselves to play games—like DeepMind’s AlphaGo Zero or Carnegie Mellon’s poker playing AI—are perhaps the most headline-grabbing of the bunch. But pattern recognition was the thing that kicked deep learning into overdrive early on, when machine learning algorithms went from struggling to tell dogs and cats apart to outperforming their peers and then their makers in quick succession.
[Watch this video for an AI update from Neil Jacobstein, chair of Artificial Intelligence and Robotics at Singularity University.]
In medicine, deep learning algorithms trained on databases of medical images can spot life-threatening disease with equal or greater accuracy than human professionals. There’s even speculation that AI, if we learn to trust it, could be invaluable in diagnosing disease. And, as Zhavoronkov noted, with more applications and a longer track record that trust is coming.
“Tesla is already putting cars on the street,” Zhavoronkov said. “Three-year, four-year-old technology is already carrying passengers from point A to point B, at 100 miles an hour, and one mistake and you’re dead. But people are trusting their lives to this technology.”
“So, why don’t we do it in pharma?”
Trial and Error and Try Again
AI wouldn’t drive the car in pharmaceutical research. It’d be an assistant that, when paired with a chemist or two, could fast-track discovery by screening more possibilities for better candidates.
There’s plenty of room to make things more efficient, according to Zhavoronkov.
Drug discovery is arduous and expensive. Chemists sift tens of thousands of candidate compounds for the most promising to synthesize. Of these, a handful will go on to further research, fewer will make it to human clinical trials, and a fraction of those will be approved.
The whole process can take many years and cost hundreds of millions of dollars.
This is a big data problem if ever there was one, and deep learning thrives on big data. Early applications have shown their worth unearthing subtle patterns in huge training databases. Although drug-makers already use software to sift compounds, such software requires explicit rules written by chemists. AI’s allure is its ability to learn and improve on its own.
“There are two strategies for AI-driven innovation in pharma to ensure you get better molecules and much faster approvals,” Zhavoronkov said. “One is looking for the needle in the haystack, and another one is creating a new needle.”
To find the needle in the haystack, algorithms are trained on large databases of molecules. Then they go looking for molecules with attractive properties. But creating a new needle? That’s a possibility enabled by the generative adversarial networks Zhavoronkov specializes in.
Such algorithms pit two neural networks against each other. One generates meaningful output while the other judges whether this output is true or false, Zhavoronkov said. Together, the networks generate new objects like text, images, or in this case, molecular structures.
“We started employing this particular technology to make deep neural networks imagine new molecules, to make it perfect right from the start. So, to come up with really perfect needles,” Zhavoronkov said. “[You] can essentially go to this [generative adversarial network] and ask it to create molecules that inhibit protein X at concentration Y, with the highest viability, specific characteristics, and minimal side effects.”
Zhavoronkov believes AI can find or fabricate more needles from the array of molecular possibilities, freeing human chemists to focus on synthesizing only the most promising. If it works, he hopes we can increase hits, minimize misses, and generally speed the process up.
Proof’s in the Pudding
Insilico isn’t alone on its drug-discovery quest, nor is it a brand new area of interest.
Last year, a Harvard group published a paper on an AI that similarly suggests drug candidates. The software trained on 250,000 drug-like molecules and used its experience to generate new molecules that blended existing drugs and made suggestions based on desired properties.
An MIT Technology Review article on the subject highlighted a few of the challenges such systems may still face. The results returned aren’t always meaningful or easy to synthesize in the lab, and the quality of these results, as always, is only as good as the data dined upon.
Stanford chemistry professor and Andreesen Horowitz partner, Vijay Pande, said that images, speech, and text—three of the areas deep learning’s made quick strides in—have better, cleaner data. Chemical data, on the other hand, is still being optimized for deep learning. Also, while there are public databases, much data still lives behind closed doors at private companies.
To overcome the challenges and prove their worth, Zhavoronkov said, his company is very focused on validating the tech. But this year, skepticism in the pharmaceutical industry seems to be easing into interest and investment.
AI drug discovery startup Exscientia inked a deal with Sanofi for $280 million and GlaxoSmithKline for $42 million. Insilico is also partnering with GlaxoSmithKline, and Numerate is working with Takeda Pharmaceutical. Even Google may jump in. According to an article in Nature outlining the field, the firm’s deep learning project, Google Brain, is growing its biosciences team, and industry watchers wouldn’t be surprised to see them target drug discovery.
With AI and the hardware running it advancing rapidly, the greatest potential may yet be ahead. Perhaps, one day, all 1060 molecules in drug-space will be at our disposal. “You should take all the data you have, build n new models, and search as much of that 1060 as possible” before every decision you make, Brandon Allgood, CTO at Numerate, told Nature.
Today’s projects need to live up to their promises, of course, but Zhavoronkov believes AI will have a big impact in the coming years, and now’s the time to integrate it. “If you are working for a pharma company, and you’re still thinking, ‘Okay, where is the proof?’ Once there is a proof, and once you can see it to believe it—it’s going to be too late,” he said.
Image Credit: Klavdiya Krinichnaya / Shutterstock.com Continue reading