Tag Archives: response

#436546 How AI Helped Predict the Coronavirus ...

Coronavirus has been all over the news for the last couple weeks. A dedicated hospital sprang up in just eight days, the stock market took a hit, Chinese New Year celebrations were spoiled, and travel restrictions are in effect.

But let’s rewind a bit; some crucial events took place before we got to this point.

A little under two weeks before the World Health Organization (WHO) alerted the public of the coronavirus outbreak, a Canadian artificial intelligence company was already sounding the alarm. BlueDot uses AI-powered algorithms to analyze information from a multitude of sources to identify disease outbreaks and forecast how they may spread. On December 31st 2019, the company sent out a warning to its customers to avoid Wuhan, where the virus originated. The WHO didn’t send out a similar public notice until January 9th, 2020.

The story of BlueDot’s early warning is the latest example of how AI can improve our identification of and response to new virus outbreaks.

Predictions Are Bad News
Global pandemic or relatively minor scare? The jury is still out on the coronavirus. However, the math points to signs that the worst is yet to come.

Scientists are still working to determine how infectious the virus is. Initial analysis suggests it may be somewhere between influenza and polio on the virus reproduction number scale, which indicates how many new cases one case leads to.

UK and US-based researchers have published a preliminary paper estimating that the confirmed infected people in Wuhan only represent five percent of those who are actually infected. If the models are correct, 190,000 people in Wuhan will be infected by now, major Chinese cities are on the cusp of large-scale outbreaks, and the virus will continue to spread to other countries.

Finding the Start
The spread of a given virus is partly linked to how long it remains undetected. Identifying a new virus is the first step towards mobilizing a response and, in time, creating a vaccine. Warning at-risk populations as quickly as possible also helps with limiting the spread.

These are among the reasons why BlueDot’s achievement is important in and of itself. Furthermore, it illustrates how AIs can sift through vast troves of data to identify ongoing virus outbreaks.

BlueDot uses natural language processing and machine learning to scour a variety of information sources, including chomping through 100,000 news reports in 65 languages a day. Data is compared with flight records to help predict virus outbreak patterns. Once the automated data sifting is completed, epidemiologists check that the findings make sense from a scientific standpoint, and reports are sent to BlueDot’s customers, which include governments, businesses, and public health organizations.

AI for Virus Detection and Prevention
Other companies, such as Metabiota, are also using data-driven approaches to track the spread of the likes of the coronavirus.

Researchers have trained neural networks to predict the spread of infectious diseases in real time. Others are using AI algorithms to identify how preventive measures can have the greatest effect. AI is also being used to create new drugs, which we may well see repeated for the coronavirus.

If the work of scientists Barbara Han and David Redding comes to fruition, AI and machine learning may even help us predict where virus outbreaks are likely to strike—before they do.

The Uncertainty Factor
One of AI’s core strengths when working on identifying and limiting the effects of virus outbreaks is its incredibly insistent nature. AIs never tire, can sift through enormous amounts of data, and identify possible correlations and causations that humans can’t.

However, there are limits to AI’s ability to both identify virus outbreaks and predict how they will spread. Perhaps the best-known example comes from the neighboring field of big data analytics. At its launch, Google Flu Trends was heralded as a great leap forward in relation to identifying and estimating the spread of the flu—until it underestimated the 2013 flu season by a whopping 140 percent and was quietly put to rest.

Poor data quality was identified as one of the main reasons Google Flu Trends failed. Unreliable or faulty data can wreak havoc on the prediction power of AIs.

In our increasingly interconnected world, tracking the movements of potentially infected individuals (by car, trains, buses, or planes) is just one vector surrounded by a lot of uncertainty.

The fact that BlueDot was able to correctly identify the coronavirus, in part due to its AI technology, illustrates that smart computer systems can be incredibly useful in helping us navigate these uncertainties.

Importantly, though, this isn’t the same as AI being at a point where it unerringly does so on its own—which is why BlueDot employs human experts to validate the AI’s findings.

Image Credit: Coronavirus molecular illustration, Gianluca Tomasello/Wikimedia Commons Continue reading

Posted in Human Robots

#436530 How Smart Roads Will Make Driving ...

Roads criss-cross the landscape, but while they provide vital transport links, in many ways they represent a huge amount of wasted space. Advances in “smart road” technology could change that, creating roads that can harvest energy from cars, detect speeding, automatically weigh vehicles, and even communicate with smart cars.

“Smart city” projects are popping up in countries across the world thanks to advances in wireless communication, cloud computing, data analytics, remote sensing, and artificial intelligence. Transportation is a crucial element of most of these plans, but while much of the focus is on public transport solutions, smart roads are increasingly being seen as a crucial feature of these programs.

New technology is making it possible to tackle a host of issues including traffic congestion, accidents, and pollution, say the authors of a paper in the journal Proceedings of the Royal Society A. And they’ve outlined ten of the most promising advances under development or in planning stages that could feature on tomorrow’s roads.

Energy harvesting

A variety of energy harvesting technologies integrated into roads have been proposed as ways to power street lights and traffic signals or provide a boost to the grid. Photovoltaic panels could be built into the road surface to capture sunlight, or piezoelectric materials installed beneath the asphalt could generate current when deformed by vehicles passing overhead.

Musical roads

Countries like Japan, Denmark, the Netherlands, Taiwan, and South Korea have built roads that play music as cars pass by. By varying the spacing of rumble strips, it’s possible to produce a series of different notes as vehicles drive over them. The aim is generally to warn of hazards or help drivers keep to the speed limit.

Automatic weighing

Weight-in-motion technology that measures vehicles’ loads as they drive slowly through a designated lane has been around since the 1970s, but more recently high speed weight-in-motion tech has made it possible to measure vehicles as they travel at regular highway speeds. The latest advance has been integration with automatic licence plate reading and wireless communication to allow continuous remote monitoring both to enforce weight restrictions and monitor wear on roads.

Vehicle charging

The growing popularity of electric vehicles has spurred the development of technology to charge cars and buses as they drive. The most promising of these approaches is magnetic induction, which involves burying cables beneath the road to generate electromagnetic fields that a receiver device in the car then transforms into electrical power to charge batteries.

Smart traffic signs

Traffic signs aren’t always as visible as they should be, and it can often be hard to remember what all of them mean. So there are now proposals for “smart signs” that wirelessly beam a sign’s content to oncoming cars fitted with receivers, which can then alert the driver verbally or on the car’s display. The approach isn’t affected by poor weather and lighting, can be reprogrammed easily, and could do away with the need for complex sign recognition technology in future self-driving cars.

Traffic violation detection and notification

Sensors and cameras can be combined with these same smart signs to detect and automatically notify drivers of traffic violations. The automatic transmission of traffic signals means drivers won’t be able to deny they’ve seen the warnings or been notified of any fines, as a record will be stored on their car’s black box.

Talking cars

Car-to-car communication technology and V2X, which lets cars share information with any other connected device, are becoming increasingly common. Inter-car communication can be used to propagate accidents or traffic jam alerts to prevent congestion, while letting vehicles communicate with infrastructure can help signals dynamically manage timers to keep traffic flowing or automatically collect tolls.

Smart intersections

Combing sensors and cameras with object recognition systems that can detect vehicles and other road users can help increase safety and efficiency at intersections. It can be used to extend green lights for slower road users like pedestrians and cyclists, sense jaywalkers, give priority to emergency vehicles, and dynamically adjust light timers to optimize traffic flow. Information can even be broadcast to oncoming vehicles to highlight blind spots and potential hazards.

Automatic crash detection

There’s a “golden hour” after an accident in which the chance of saving lives is greatly increased. Vehicle communication technology can ensure that notification of a crash reaches the emergency services rapidly, and can also provide vital information about the number and type of vehicles involved, which can help emergency response planning. It can also be used to alert other drivers to slow down or stop to prevent further accidents.

Smart street lights

Street lights are increasingly being embedded with sensors, wireless connectivity, and micro-controllers to enable a variety of smart functions. These include motion activation to save energy, providing wireless access points, air quality monitoring, or parking and litter monitoring. This can also be used to send automatic maintenance requests if a light is faulty, and can even allow neighboring lights to be automatically brightened to compensate.

Image Credit: Image by David Mark from Pixabay Continue reading

Posted in Human Robots

#436488 Tech’s Biggest Leaps From the Last 10 ...

As we enter our third decade in the 21st century, it seems appropriate to reflect on the ways technology developed and note the breakthroughs that were achieved in the last 10 years.

The 2010s saw IBM’s Watson win a game of Jeopardy, ushering in mainstream awareness of machine learning, along with DeepMind’s AlphaGO becoming the world’s Go champion. It was the decade that industrial tools like drones, 3D printers, genetic sequencing, and virtual reality (VR) all became consumer products. And it was a decade in which some alarming trends related to surveillance, targeted misinformation, and deepfakes came online.

For better or worse, the past decade was a breathtaking era in human history in which the idea of exponential growth in information technologies powered by computation became a mainstream concept.

As I did last year for 2018 only, I’ve asked a collection of experts across the Singularity University faculty to help frame the biggest breakthroughs and moments that gave shape to the past 10 years. I asked them what, in their opinion, was the most important breakthrough in their respective fields over the past decade.

My own answer to this question, focused in the space of augmented and virtual reality, would be the stunning announcement in March of 2014 that Facebook acquired Oculus VR for $2 billion. Although VR technology had been around for a while, it was at this precise moment that VR arrived as a consumer technology platform. Facebook, largely fueled by the singular interest of CEO Mark Zuckerberg, has funded the development of this industry, keeping alive the hope that consumer VR can become a sustainable business. In the meantime, VR has continued to grow in sophistication and usefulness, though it has yet to truly take off as a mainstream concept. That will hopefully be a development for the 2020s.

Below is a decade in review across the technology areas that are giving shape to our modern world, as described by the SU community of experts.

Digital Biology
Dr. Tiffany Vora | Faculty Director and Vice Chair, Digital Biology and Medicine, Singularity University

In my mind, this decade of astounding breakthroughs in the life sciences and medicine rests on the achievement of the $1,000 human genome in 2016. More-than-exponentially falling costs of DNA sequencing have driven advances in medicine, agriculture, ecology, genome editing, synthetic biology, the battle against climate change, and our fundamental understanding of life and its breathtaking connections. The “digital” revolution in DNA constituted an important model for harnessing other types of biological information, from personalized bio data to massive datasets spanning populations and species.

Crucially, by aggressively driving down the cost of such analyses, researchers and entrepreneurs democratized access to the source code of life—with attendant financial, cultural, and ethical consequences. Exciting, but take heed: Veritas Genetics spearheaded a $600 genome in 2019, only to have to shutter USA operations due to a money trail tangled with the trade war with China. Stay tuned through the early 2020s to see the pricing of DNA sequencing fall even further … and to experience the many ways that cheaper, faster harvesting of biological data will enrich your daily life.

Cryptocurrency
Alex Gladstein | Chief Strategy Officer, Human Rights Foundation

The past decade has seen Bitcoin go from just an idea on an obscure online message board to a global financial network carrying more than 100 billion dollars in value. And we’re just getting started. One recent defining moment in the cryptocurrency space has been a stunning trend underway in Venezuela, where today, the daily dollar-denominated value of Bitcoin traded now far exceeds the daily dollar-denominated value traded on the Caracas Stock Exchange. It’s just one country, but it’s a significant country, and a paradigm shift.

Governments and corporations are following Bitcoin’s success too, and are looking to launch their own digital currencies. China will launch its “DC/EP” project in the coming months, and Facebook is trying to kickstart its Libra project. There are technical and regulatory uncertainties for both, but one thing is for certain: the era of digital currency has arrived.

Business Strategy and Entrepreneurship
Pascal Finnette | Chair, Entrepreneurship and Open Innovation, Singularity University

For me, without a doubt, the most interesting and quite possibly ground-shifting development in the fields of entrepreneurship and corporate innovation in the last ten years is the rapid maturing of customer-driven product development frameworks such as Lean Startup, and its subsequent adoption by corporates for their own innovation purposes.

Tools and frameworks like the Business Model Canvas, agile (software) development and the aforementioned Lean Startup methodology fundamentally shifted the way we think and go about building products, services, and companies, with many of these tools bursting onto the startup scene in the late 2000s and early 2010s.

As these tools matured they found mass adoption not only in startups around the world, but incumbent companies who eagerly adopted them to increase their own innovation velocity and success.

Energy
Ramez Naam | Co-Chair, Energy and Environment, Singularity University

The 2010s were the decade that saw clean electricity, energy storage, and electric vehicles break through price and performance barriers around the world. Solar, wind, batteries, and EVs started this decade as technologies that had to be subsidized. That was the first phase of their existence. Now they’re entering their third, most disruptive phase, where shifting to clean energy and mobility is cheaper than continuing to use existing coal, gas, or oil infrastructure.

Consider that at the start of 2010, there was no place on earth where building new solar or wind was cheaper than building new coal or gas power generation. By 2015, in some of the sunniest and windiest places on earth, solar and wind had entered their second phase, where they were cost-competitive for new power. And then, in 2018 and 2019, we started to see the edge of the third phase, as building new solar and wind, in some parts of the world, was cheaper than operating existing coal or gas power plants.

Food Technology
Liz Specht, Ph. D | Associate Director of Science & Technology, The Good Food Institute

The arrival of mainstream plant-based meat is easily the food tech advance of the decade. Meat analogs have, of course, been around forever. But only in the last decade have companies like Beyond Meat and Impossible Foods decided to cut animals out of the process and build no-compromise meat directly from plants.

Plant-based meat is already transforming the fast-food industry. For example, the introduction of the Impossible Whopper led Burger King to their most profitable quarter in many years. But the global food industry as a whole is shifting as well. Tyson, JBS, Nestle, Cargill, and many others are all embracing plant-based meat.

Augmented and Virtual Reality
Jody Medich | CEO, Superhuman-x

The breakthrough moment for augmented and virtual reality came in 2013 when Palmer Lucky took apart an Android smartphone and added optic lenses to make the first version of the Oculus Rift. Prior to that moment, we struggled with miniaturizing the components needed to develop low-latency head-worn devices. But thanks to the smartphone race started in 2006 with the iPhone, we finally had a suite of sensors, chips, displays, and computing power small enough to put on the head.

What will the next 10 years bring? Look for AR/VR to explode in a big way. We are right on the cusp of that tipping point when the tech is finally “good enough” for our linear expectations. Given all it can do today, we can’t even picture what’s possible. Just as today we can’t function without our phones, by 2029 we’ll feel lost without some AR/VR product. It will be the way we interact with computing, smart objects, and AI. Tim Cook, Apple CEO, predicts it will replace all of today’s computing devices. I can’t wait.

Philosophy of Technology
Alix Rübsaam | Faculty Fellow, Singularity University, Philosophy of Technology/Ethics of AI

The last decade has seen a significant shift in our general attitude towards the algorithms that we now know dictate much of our surroundings. Looking back at the beginning of the decade, it seems we were blissfully unaware of how the data we freely and willingly surrendered would feed the algorithms that would come to shape every aspect of our daily lives: the news we consume, the products we purchase, the opinions we hold, etc.

If I were to isolate a single publication that contributed greatly to the shift in public discourse on algorithms, it would have to be Cathy O’Neil’s Weapons of Math Destruction from 2016. It remains a comprehensive, readable, and highly informative insight into how algorithms dictate our finances, our jobs, where we go to school, or if we can get health insurance. Its publication represents a pivotal moment when the general public started to question whether we should be OK with outsourcing decision making to these opaque systems.

The ubiquity of ethical guidelines for AI and algorithms published just in the last year (perhaps most comprehensively by the AI Now Institute) fully demonstrates the shift in public opinion of this decade.

Data Science
Ola Kowalewski | Faculty Fellow, Singularity University, Data Innovation

In the last decade we entered the era of internet and smartphone ubiquity. The number of internet users doubled, with nearly 60 percent of the global population connected online and now over 35 percent of the globe owns a smartphone. With billions of people in a state of constant connectedness and therefore in a state of constant surveillance, the companies that have built the tech infrastructure and information pipelines have dominated the global economy. This shift from tech companies being the underdogs to arguably the world’s major powers sets the landscape we enter for the next decade.

Global Grand Challenges
Darlene Damm | Vice Chair, Faculty, Global Grand Challenges, Singularity University

The biggest breakthrough over the last decade in social impact and technology is that the social impact sector switched from seeing technology as something problematic to avoid, to one of the most effective ways to create social change. We now see people using exponential technologies to solve all sorts of social challenges in areas ranging from disaster response to hunger to shelter.

The world’s leading social organizations, such as UNICEF and the World Food Programme, have launched their own venture funds and accelerators, and the United Nations recently declared that digitization is revolutionizing global development.

Digital Biology
Raymond McCauley | Chair, Digital Biology, Singularity University, Co-Founder & Chief Architect, BioCurious; Principal, Exponential Biosciences

CRISPR is bringing about a revolution in genetic engineering. It’s obvious, and it’s huge. What may not be so obvious is the widespread adoption of genetic testing. And this may have an even longer-lasting effect. It’s used to test new babies, to solve medical mysteries, and to catch serial killers. Thanks to holiday ads from 23andMe and Ancestry.com, it’s everywhere. Testing your DNA is now a common over-the-counter product. People are using it to set their diet, to pick drugs, and even for dating (or at least picking healthy mates).

And we’re just in the early stages. Further down the line, doing large-scale studies on more people, with more data, will lead to the use of polygenic risk scores to help us rank our genetic potential for everything from getting cancer to being a genius. Can you imagine what it would be like for parents to pick new babies, GATTACA-style, to get the smartest kids? You don’t have to; it’s already happening.

Artificial Intelligence
Neil Jacobstein | Chair, Artificial Intelligence and Robotics, Singularity University

The convergence of exponentially improved computing power, the deep learning algorithm, and access to massive data resulted in a series of AI breakthroughs over the past decade. These included: vastly improved accuracy in identifying images, making self driving cars practical, beating several world champions in Go, and identifying gender, smoking status, and age from retinal fundus photographs.

Combined, these breakthroughs convinced researchers and investors that after 50+ years of research and development, AI was ready for prime-time applications. Now, virtually every field of human endeavor is being revolutionized by machine learning. We still have a long way to go to achieve human-level intelligence and beyond, but the pace of worldwide improvement is blistering.

Hod Lipson | Professor of Engineering and Data Science, Columbia University

The biggest moment in AI in the past decade (and in its entire history, in my humble opinion) was midnight, Pacific time, September 30, 2012: the moment when machines finally opened their eyes. It was the moment when deep learning took off, breaking stagnant decades of machine blindness, when AI couldn’t reliably tell apart even a cat from a dog. That seemingly trivial accomplishment—a task any one-year-old child can do—has had a ripple effect on AI applications from driverless cars to health diagnostics. And this is just the beginning of what is sure to be a Cambrian explosion of AI.

Neuroscience
Divya Chander | Chair, Neuroscience, Singularity University

If the 2000s were the decade of brain mapping, then the 2010s were the decade of brain writing. Optogenetics, a technique for precisely mapping and controlling neurons and neural circuits using genetically-directed light, saw incredible growth in the 2010s.

Also in the last 10 years, neuromodulation, or the ability to rewire the brain using both invasive and non-invasive interfaces and energy, has exploded in use and form. For instance, the Braingate consortium showed us how electrode arrays implanted into the motor cortex could be used by paralyzed people to use their thoughts to direct a robotic arm. These technologies, alone or in combination with robotics, exoskeletons, and flexible, implantable, electronics also make possible a future of human augmentation.

Image Credit: Image by Jorge Guillen from Pixabay Continue reading

Posted in Human Robots

#436426 Video Friday: This Robot Refuses to Fall ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

Robotic Arena – January 25, 2020 – Wrocław, Poland
DARPA SubT Urban Circuit – February 18-27, 2020 – Olympia, Wash., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

In case you somehow missed the massive Skydio 2 review we posted earlier this week, the first batches of the drone are now shipping. Each drone gets a lot of attention before it goes out the door, and here’s a behind-the-scenes clip of the process.

[ Skydio ]

Sphero RVR is one of the 15 robots on our robot gift guide this year. Here’s a new video Sphero just released showing some of the things you can do with the robot.

[ RVR ]

NimbRo-OP2 has some impressive recovery skills from the obligatory research-motivated robot abuse.

[ NimbRo ]

Teams seeking to qualify for the Virtual Urban Circuit of the Subterranean Challenge can access practice worlds to test their approaches prior to submitting solutions for the competition. This video previews three of the practice environments.

[ DARPA SubT ]

Stretchable skin-like robots that can be rolled up and put in your pocket have been developed by a University of Bristol team using a new way of embedding artificial muscles and electrical adhesion into soft materials.

[ Bristol ]

Happy Holidays from ABB!

Helping New York celebrate the festive season, twelve ABB robots are interacting with visitors to Bloomingdale’s iconic holiday celebration at their 59th Street flagship store. ABB’s robots are the main attraction in three of Bloomingdale’s twelve-holiday window displays at Lexington and Third Avenue, as ABB demonstrates the potential for its robotics and automation technology to revolutionize visual merchandising and make the retail experience more dynamic and whimsical.

[ ABB ]

We introduce pelican eel–inspired dual-morphing architectures that embody quasi-sequential behaviors of origami unfolding and skin stretching in response to fluid pressure. In the proposed system, fluid paths were enclosed and guided by a set of entirely stretchable origami units that imitate the morphing principle of the pelican eel’s stretchable and foldable frames. This geometric and elastomeric design of fluid networks, in which fluid pressure acts in the direction that the whole body deploys first, resulted in a quasi-sequential dual-morphing response. To verify the effectiveness of our design rule, we built an artificial creature mimicking a pelican eel and reproduced biomimetic dual-morphing behavior.

And here’s a real pelican eel:

[ Science Robotics ]

Delft Dynamics’ updated anti-drone system involves a tether, mid-air net gun, and even a parachute.

[ Delft Dynamics ]

Teleoperation is a great way of helping robots with complex tasks, especially if you can do it through motion capture. But what if you’re teleoperating a non-anthropomorphic robot? Columbia’s ROAM Lab is working on it.

[ Paper ] via [ ROAM Lab ]

I don’t know how I missed this video last year because it’s got a steely robot hand squeezing a cute lil’ chick.

[ MotionLib ] via [ RobotStart ]

In this video we present results of a trajectory generation method for autonomous overtaking of unexpected obstacles in a dynamic urban environment. In these settings, blind spots can arise from perception limitations. For example when overtaking unexpected objects on the vehicle’s ego lane on a two-way street. In this case, a human driver would first make sure that the opposite lane is free and that there is enough room to successfully execute the maneuver, and then it would cut into the opposite lane in order to execute the maneuver successfully. We consider the practical problem of autonomous overtaking when the coverage of the perception system is impaired due to occlusion.

[ Paper ]

New weirdness from Toio!

[ Toio ]

Palo Alto City Library won a technology innovation award! Watch to see how Senior Librarian Dan Lou is using Misty to enhance their technology programs to inspire and educate customers.

[ Misty Robotics ]

We consider the problem of reorienting a rigid object with arbitrary known shape on a table using a two-finger pinch gripper. Reorienting problem is challenging because of its non-smoothness and high dimensionality. In this work, we focus on solving reorienting using pivoting, in which we allow the grasped object to rotate between fingers. Pivoting decouples the gripper rotation from the object motion, making it possible to reorient an object under strict robot workspace constraints.

[ CMU ]

How can a mobile robot be a good pedestrian without bumping into you on the sidewalk? It must be hard for a robot to navigate in crowded environments since the flow of traffic follows implied social rules. But researchers from MIT developed an algorithm that teaches mobile robots to maneuver in crowds of people, respecting their natural behaviour.

[ Roboy Research Reviews ]

What happens when humans and robots make art together? In this awe-inspiring talk, artist Sougwen Chung shows how she “taught” her artistic style to a machine — and shares the results of their collaboration after making an unexpected discovery: robots make mistakes, too. “Part of the beauty of human and machine systems is their inherent, shared fallibility,” she says.

[ TED ]

Last month at the Cooper Union in New York City, IEEE TechEthics hosted a public panel session on the facts and misperceptions of autonomous vehicles, part of the IEEE TechEthics Conversations Series. The speakers were: Jason Borenstein from Georgia Tech; Missy Cummings from Duke University; Jack Pokrzywa from SAE; and Heather M. Roff from Johns Hopkins Applied Physics Laboratory. The panel was moderated by Mark A. Vasquez, program manager for IEEE TechEthics.

[ IEEE TechEthics ]

Two videos this week from Lex Fridman’s AI podcast: Noam Chomsky, and Whitney Cummings.

[ AI Podcast ]

This week’s CMU RI Seminar comes from Jeff Clune at the University of Wyoming, on “Improving Robot and Deep Reinforcement Learning via Quality Diversity and Open-Ended Algorithms.”

Quality Diversity (QD) algorithms are those that seek to produce a diverse set of high-performing solutions to problems. I will describe them and a number of their positive attributes. I will then summarize our Nature paper on how they, when combined with Bayesian Optimization, produce a learning algorithm that enables robots, after being damaged, to adapt in 1-2 minutes in order to continue performing their mission, yielding state-of-the-art robot damage recovery. I will next describe our QD-based Go-Explore algorithm, which dramatically improves the ability of deep reinforcement learning algorithms to solve previously unsolvable problems wherein reward signals are sparse, meaning that intelligent exploration is required. Go-Explore solves Montezuma’s Revenge, considered by many to be a major AI research challenge. Finally, I will motivate research into open-ended algorithms, which seek to innovate endlessly, and introduce our POET algorithm, which generates its own training challenges while learning to solve them, automatically creating a curricula for robots to learn an expanding set of diverse skills. POET creates and solves challenges that are unsolvable with traditional deep reinforcement learning techniques.

[ CMU RI ] Continue reading

Posted in Human Robots

#436258 For Centuries, People Dreamed of a ...

This is part six of a six-part series on the history of natural language processing.

In February of this year, OpenAI, one of the foremost artificial intelligence labs in the world, announced that a team of researchers had built a powerful new text generator called the Generative Pre-Trained Transformer 2, or GPT-2 for short. The researchers used a reinforcement learning algorithm to train their system on a broad set of natural language processing (NLP) capabilities, including reading comprehension, machine translation, and the ability to generate long strings of coherent text.

But as is often the case with NLP technology, the tool held both great promise and great peril. Researchers and policy makers at the lab were concerned that their system, if widely released, could be exploited by bad actors and misappropriated for “malicious purposes.”

The people of OpenAI, which defines its mission as “discovering and enacting the path to safe artificial general intelligence,” were concerned that GPT-2 could be used to flood the Internet with fake text, thereby degrading an already fragile information ecosystem. For this reason, OpenAI decided that it would not release the full version of GPT-2 to the public or other researchers.

GPT-2 is an example of a technique in NLP called language modeling, whereby the computational system internalizes a statistical blueprint of a text so it’s able to mimic it. Just like the predictive text on your phone—which selects words based on words you’ve used before—GPT-2 can look at a string of text and then predict what the next word is likely to be based on the probabilities inherent in that text.

GPT-2 can be seen as a descendant of the statistical language modeling that the Russian mathematician A. A. Markov developed in the early 20th century (covered in part three of this series).

GPT-2 used cutting-edge machine learning algorithms to do linguistic analysis with over 1.5 million parameters.

What’s different with GPT-2, though, is the scale of the textual data modeled by the system. Whereas Markov analyzed a string of 20,000 letters to create a rudimentary model that could predict the likelihood of the next letter of a text being a consonant or a vowel, GPT-2 used 8 million articles scraped from Reddit to predict what the next word might be within that entire dataset.

And whereas Markov manually trained his model by counting only two parameters—vowels and consonants—GPT-2 used cutting-edge machine learning algorithms to do linguistic analysis with over 1.5 million parameters, burning through huge amounts of computational power in the process.

The results were impressive. In their blog post, OpenAI reported that GPT-2 could generate synthetic text in response to prompts, mimicking whatever style of text it was shown. If you prompt the system with a line of William Blake’s poetry, it can generate a line back in the Romantic poet’s style. If you prompt the system with a cake recipe, you get a newly invented recipe in response.

Perhaps the most compelling feature of GPT-2 is that it can answer questions accurately. For example, when OpenAI researchers asked the system, “Who wrote the book The Origin of Species?”—it responded: “Charles Darwin.” While only able to respond accurately some of the time, the feature does seem to be a limited realization of Gottfried Leibniz’s dream of a language-generating machine that could answer any and all human questions (described in part two of this series).

After observing the power of the new system in practice, OpenAI elected not to release the fully trained model. In the lead up to its release in February, there had been heightened awareness about “deepfakes”—synthetic images and videos, generated via machine learning techniques, in which people do and say things they haven’t really done and said. Researchers at OpenAI worried that GPT-2 could be used to essentially create deepfake text, making it harder for people to trust textual information online.

Responses to this decision varied. On one hand, OpenAI’s caution prompted an overblown reaction in the media, with articles about the “dangerous” technology feeding into the Frankenstein narrative that often surrounds developments in AI.

Others took issue with OpenAI’s self-promotion, with some even suggesting that OpenAI purposefully exaggerated GPT-2s power in order to create hype—while contravening a norm in the AI research community, where labs routinely share data, code, and pre-trained models. As machine learning researcher Zachary Lipton tweeted, “Perhaps what's *most remarkable* about the @OpenAI controversy is how *unremarkable* the technology is. Despite their outsize attention & budget, the research itself is perfectly ordinary—right in the main branch of deep learning NLP research.”

OpenAI stood by its decision to release only a limited version of GPT-2, but has since released larger models for other researchers and the public to experiment with. As yet, there has been no reported case of a widely distributed fake news article generated by the system. But there have been a number of interesting spin-off projects, including GPT-2 poetry and a webpage where you can prompt the system with questions yourself.

Mimicking humans on Reddit, the bots have long conversations about a variety of topics, including conspiracy theories and
Star Wars movies.

There’s even a Reddit group populated entirely with text produced by GPT-2-powered bots. Mimicking humans on Reddit, the bots have long conversations about a variety of topics, including conspiracy theories and Star Wars movies.

This bot-powered conversation may signify the new condition of life online, where language is increasingly created by a combination of human and non-human agents, and where maintaining the distinction between human and non-human, despite our best efforts, is increasingly difficult.

The idea of using rules, mechanisms, and algorithms to generate language has inspired people in many different cultures throughout history. But it’s in the online world that this powerful form of wordcraft may really find its natural milieu—in an environment where the identity of speakers becomes more ambiguous, and perhaps, less relevant. It remains to be seen what the consequences will be for language, communication, and our sense of human identity, which is so bound up with our ability to speak in natural language.

This is the sixth installment of a six-part series on the history of natural language processing. Last week’s post explained how an innocent Microsoft chatbot turned instantly racist on Twitter.

You can also check out our prior series on the untold history of AI. Continue reading

Posted in Human Robots