Tag Archives: researchers
#435722 Stochastic Robots Use Randomness to ...
The idea behind swarm robots is to replace discrete, expensive, breakable uni-tasking components with a whole bunch of much simpler, cheaper, and replaceable robots that can work together to do the same sorts of tasks. Unfortunately, all of those swarm robots end up needing their own computing and communications and stuff if you want to get them to do what you want them to do.
A different approach to swarm robotics is to use a swarm of much cheaper robots that are far less intelligent. In fact, they may not have to be intelligent at all, if you can rely on their physical characteristics to drive them instead. These swarms are “stochastic,” meaning that their motions are randomly determined, but if you’re clever and careful, you can still get them to do specific things.
Georgia Tech has developed some little swarm robots called “smarticles” that can’t really do much at all on their own, but once you put them together into a jumble, their randomness can actually accomplish something.
Honestly, calling these particle robots “smart” might be giving them a bit too much credit, because they’re actually kind of dumb and strictly speaking not capable of all that much on their own. A single smarticle weighs 35 grams, and consists of some little 3D-printed flappy bits attached to servos, plus an Arduino Pro Mini, a battery, and a light or sound sensor. When its little flappy bits are activated, each smarticle can move slightly, but a single one mostly just moves around in a square and then will gradually drift in a mostly random direction over time.
It gets more interesting when you throw a whole bunch of smarticles into a constrained area. A small collection of five or 10 smarticles constrained together form a “supersmarticle,” but besides being in close proximity to one another, the smarticles within the supersmarticle aren’t communicating or anything like that. As far as each smarticle is concerned, they’re independent, but weirdly, a bumble of them can work together without working together.
“These are very rudimentary robots whose behavior is dominated by mechanics and the laws of physics,” said Dan Goldman, a Dunn Family Professor in the School of Physics at the Georgia Institute of Technology.
The researchers noticed that if one small robot stopped moving, perhaps because its battery died, the group of smarticles would begin moving in the direction of that stalled robot. Graduate student Ross Warkentin learned he could control the movement by adding photo sensors to the robots that halt the arm flapping when a strong beam of light hits one of them.
“If you angle the flashlight just right, you can highlight the robot you want to be inactive, and that causes the ring to lurch toward or away from it, even though no robots are programmed to move toward the light,” Goldman said. “That allowed steering of the ensemble in a very rudimentary, stochastic way.”
It turns out that it’s possible to model this behavior, and control a supersmarticle with enough fidelity to steer it through a maze. And while these particular smarticles aren’t all that small, strictly speaking, the idea is to develop techniques that will work when robots are scaled way way down to the point where you can't physically fit useful computing in there at all.
The researchers are also working on some other concepts, like these:
Image: Science Robotics
The Georgia Tech researchers envision stochastic robot swarms that don’t have a perfectly defined shape or delineation but are capable of self-propulsion, relying on the ensemble-level behaviors that lead to collective locomotion. In such a robot, the researchers say, groups of largely generic agents may be able to achieve complex goals, as observed in biological collectives.
Er, yeah. I’m…not sure I really want there to be a bipedal humanoid robot built out of a bunch of tiny robots. Like, that seems creepy somehow, you know? I’m totally okay with slugs, but let’s not get crazy.
“A robot made of robots: Emergent transport and control of a smarticle ensemble, by William Savoie, Thomas A. Berrueta, Zachary Jackson, Ana Pervan, Ross Warkentin, Shengkai Li, Todd D. Murphey, Kurt Wiesenfeld, and Daniel I. Goldman” from the Georgia Institute of Technology, appears in the current issue of Science Robotics. Continue reading
#435716 Watch This Drone Explode Into Maple Seed ...
As useful as conventional fixed-wing and quadrotor drones have become, they still tend to be relatively complicated, expensive machines that you really want to be able to use more than once. When a one-way trip is all that you have in mind, you want something simple, reliable, and cheap, and we’ve seen a bunch of different designs for drone gliders that more or less fulfill those criteria.
For an even simpler gliding design, you want to minimize both airframe mass and control surfaces, and the maple tree provides some inspiration in the form of samara, those distinctive seed pods that whirl to the ground in the fall. Samara are essentially just an unbalanced wing that spins, and while the natural ones don’t steer, adding an actuated flap to the robotic version and moving it at just the right time results in enough controllability to aim for a specific point on the ground.
Roboticists at the Singapore University of Technology and Design (SUTD) have been experimenting with samara-inspired drones, and in a new paper in IEEE Robotics and Automation Letters they explore what happens if you attach five of the drones together and then separate them in mid air.
Image: Singapore University of Technology and Design
The drone with all five wings attached (top left), and details of the individual wings: (a) smaller 44.9-gram wing for semi-indoor testing; (b) larger 83.4-gram wing able to carry a Pixracer, GPS, and magnetometer for directional control experiments.
Fundamentally, a samara design acts as a decelerator for an aerial payload. You can think of it like a parachute: It makes sure that whatever you toss out of an airplane gets to the ground intact rather than just smashing itself to bits on impact. Steering is possible, but you don’t get a lot of stability or precision control. The RA-L paper describes one solution to this, which is to collaboratively use five drones at once in a configuration that looks a bit like a helicopter rotor.
And once the multi-drone is right where you want it, the five individual samara drones can split off all at once, heading out on their own missions. It's quite a sight:
The concept features a collaborative autorotation in the initial stage of drop whereby several wings are attached to each other to form a rotor hub. The combined form achieves higher rotational energy and a collaborative control strategy is possible. Once closer to the ground, they can exit the collaborative form and continue to descend to unique destinations. A section of each wing forms a flap and a small actuator changes its pitch cyclically. Since all wing-flaps can actuate simultaneously in collaborative mode, better maneuverability is possible, hence higher resistance against environmental conditions. The vertical and horizontal speeds can be controlled to a certain extent, allowing it to navigate towards a target location and land softly.
The samara autorotating wing drones themselves could conceivably carry small payloads like sensors or emergency medical supplies, with these small-scale versions in the video able to handle an extra 30 grams of payload. While they might not have as much capacity as a traditional fixed-wing glider, they have the advantage of being able to descent vertically, and can perform better than a parachute due to their ability to steer. The researchers plan on improving the design of their little drones, with the goal of increasing the rotation speed and improving the control performance of both the individual drones and the multi-wing collaborative version.
“Dynamics and Control of a Collaborative and Separating Descent of Samara Autorotating Wings,” by Shane Kyi Hla Win, Luke Soe Thura Win, Danial Sufiyan, Gim Song Soh, and Shaohui Foong from Singapore University of Technology and Design, appears in the current issue of IEEE Robotics and Automation Letters.
[ SUTD ]
< Back to IEEE Journal Watch Continue reading
#435707 AI Agents Startle Researchers With ...
After 25 million games, the AI agents playing hide-and-seek with each other had mastered four basic game strategies. The researchers expected that part.
After a total of 380 million games, the AI players developed strategies that the researchers didn’t know were possible in the game environment—which the researchers had themselves created. That was the part that surprised the team at OpenAI, a research company based in San Francisco.
The AI players learned everything via a machine learning technique known as reinforcement learning. In this learning method, AI agents start out by taking random actions. Sometimes those random actions produce desired results, which earn them rewards. Via trial-and-error on a massive scale, they can learn sophisticated strategies.
In the context of games, this process can be abetted by having the AI play against another version of itself, ensuring that the opponents will be evenly matched. It also locks the AI into a process of one-upmanship, where any new strategy that emerges forces the opponent to search for a countermeasure. Over time, this “self-play” amounted to what the researchers call an “auto-curriculum.”
According to OpenAI researcher Igor Mordatch, this experiment shows that self-play “is enough for the agents to learn surprising behaviors on their own—it’s like children playing with each other.”
Reinforcement is a hot field of AI research right now. OpenAI’s researchers used the technique when they trained a team of bots to play the video game Dota 2, which squashed a world-champion human team last April. The Alphabet subsidiary DeepMind has used it to triumph in the ancient board game Go and the video game StarCraft.
Aniruddha Kembhavi, a researcher at the Allen Institute for Artificial Intelligence (AI2) in Seattle, says games such as hide-and-seek offer a good way for AI agents to learn “foundational skills.” He worked on a team that taught their AllenAI to play Pictionary with humans, viewing the gameplay as a way for the AI to work on common sense reasoning and communication. “We are, however, quite far away from being able to translate these preliminary findings in highly simplified environments into the real world,” says Kembhavi.
Illustration: OpenAI
AI agents construct a fort during a hide-and-seek game developed by OpenAI.
In OpenAI’s game of hide-and-seek, both the hiders and the seekers received a reward only if they won the game, leaving the AI players to develop their own strategies. Within a simple 3D environment containing walls, blocks, and ramps, the players first learned to run around and chase each other (strategy 1). The hiders next learned to move the blocks around to build forts (2), and then the seekers learned to move the ramps (3), enabling them to jump inside the forts. Then the hiders learned to move all the ramps into their forts before the seekers could use them (4).
The two strategies that surprised the researchers came next. First the seekers learned that they could jump onto a box and “surf” it over to a fort (5), allowing them to jump in—a maneuver that the researchers hadn’t realized was physically possible in the game environment. So as a final countermeasure, the hiders learned to lock all the boxes into place (6) so they weren’t available for use as surfboards.
Illustration: OpenAI
An AI agent uses a nearby box to surf its way into a competitor’s fort.
In this circumstance, having AI agents behave in an unexpected way wasn’t a problem: They found different paths to their rewards, but didn’t cause any trouble. However, you can imagine situations in which the outcome would be rather serious. Robots acting in the real world could do real damage. And then there’s Nick Bostrom’s famous example of a paper clip factory run by an AI, whose goal is to make as many paper clips as possible. As Bostrom told IEEE Spectrum back in 2014, the AI might realize that “human bodies consist of atoms, and those atoms could be used to make some very nice paper clips.”
Bowen Baker, another member of the OpenAI research team, notes that it’s hard to predict all the ways an AI agent will act inside an environment—even a simple one. “Building these environments is hard,” he says. “The agents will come up with these unexpected behaviors, which will be a safety problem down the road when you put them in more complex environments.”
AI researcher Katja Hofmann at Microsoft Research Cambridge, in England, has seen a lot of gameplay by AI agents: She started a competition that uses Minecraft as the playing field. She says the emergent behavior seen in this game, and in prior experiments by other researchers, shows that games can be a useful for studies of safe and responsible AI.
“I find demonstrations like this, in games and game-like settings, a great way to explore the capabilities and limitations of existing approaches in a safe environment,” says Hofmann. “Results like these will help us develop a better understanding on how to validate and debug reinforcement learning systems–a crucial step on the path towards real-world applications.”
Baker says there’s also a hopeful takeaway from the surprises in the hide-and-seek experiment. “If you put these agents into a rich enough environment they will find strategies that we never knew were possible,” he says. “Maybe they can solve problems that we can’t imagine solutions to.” Continue reading
#435691 Squeezing Rocket Fuel From Moon Rocks
Illustration: John MacNeill
Engineers and Architects Are Already Designing Lunar Habitats
Squeezing Rocket Fuel From Moon Rocks
Robots Will Navigate the Moon With Maps They Make Themselves
Kim Stanley Robinson Built a Moon Base in His Mind
The most valuable natural resource on the moon may be water. In addition to sustaining lunar colonists, it could also be broken down into its constituent elements—hydrogen and oxygen—and used to make rocket propellant.
Although the ancients called the dark areas on the moon maria (Latin for “seas”), it has long been clear that liquid water can’t exist on the lunar surface, where it would swiftly evaporate. Since the 1960s, though, scientists have hypothesized that the moon indeed harbors water, in the form of ice. Because the moon has a very small axial tilt—just 1.5 degrees—the floors of many polar craters remain in perpetual darkness. Water could thus condense and survive in such polar “cold traps,” where it might one day be mined.
1/5
Water Water Everywhere: Finding rich deposits of ice and extracting it should be possible but will be technically challenging for lunar settlers. Illustration: John MacNeill
2/5
Mapping the Moon: Several lunar missions have produced strong evidence of water ice. A NASA instrument called the Moon Mineralogy Mapper (M3) found indications of water ice on the permanently shadowed floors of some polar craters. However, the measurements suggest that only a small fraction of cold traps contain ice [colored areas], and that the ice is probably mixed with lunar regolith. Data source.
3/5
Rover-Mounted Drill: The most straightforward strategy for extracting water from polar ice deposits uses a rover-mounted drill. Honeybee Robotics has designed a Planetary Volatiles Extractor with a heated auger, which would cause any water ice in the drilled regolith to vaporize. That vapor would then move through a tube to a condenser unit, where it would turn back into ice. Illustration: John MacNeill
4/5
Thermal Mining: A more ambitious scheme for extracting water from the moon is “thermal mining.” Researchers at the Colorado School of Mines have proposed redirecting the sun’s rays , using heliostats mounted on a crater rim. Water trapped in the regolith would turn into vapor that would be collected in a large tent, then vented into refrigerated cold traps, where it would condense as pure water ice. Illustration: John MacNeill
5/5
Compressed-Gas Transport: To produce rocket fuel from water ice would require an electrolyzer to break the water into hydrogen and oxygen, which would then be compressed and stored for later use. In situ production would also require vehicles to transport the processed fuel to rocket pads. Illustration: John MacNeill
Previous
Next Continue reading
#435687 Humanoid Robots Teach Coping Skills to ...
Photo: Rob Felt
IEEE Senior Member Ayanna Howard with one of the interactive androids that help children with autism improve their social and emotional engagement.
THE INSTITUTEChildren with autism spectrum disorder can have a difficult time expressing their emotions and can be highly sensitive to sound, sight, and touch. That sometimes restricts their participation in everyday activities, leaving them socially isolated. Occupational therapists can help them cope better, but the time they’re able to spend is limited and the sessions tend to be expensive.
Roboticist Ayanna Howard, an IEEE senior member, has been using interactive androids to guide children with autism on ways to socially and emotionally engage with others—as a supplement to therapy. Howard is chair of the School of Interactive Computing and director of the Human-Automation Systems Lab at Georgia Tech. She helped found Zyrobotics, a Georgia Tech VentureLab startup that is working on AI and robotics technologies to engage children with special needs. Last year Forbes named Howard, Zyrobotics’ chief technology officer, one of the Top 50 U.S. Women in Tech.
In a recent study, Howard and other researchers explored how robots might help children navigate sensory experiences. The experiment involved 18 participants between the ages of 4 and 12; five had autism, and the rest were meeting typical developmental milestones. Two humanoid robots were programmed to express boredom, excitement, nervousness, and 17 other emotional states. As children explored stations set up for hearing, seeing, smelling, tasting, and touching, the robots modeled what the socially acceptable responses should be.
“If a child’s expression is one of happiness or joy, the robot will have a corresponding response of encouragement,” Howard says. “If there are aspects of frustration or sadness, the robot will provide input to try again.” The study suggested that many children with autism exhibit stronger levels of engagement when the robots interact with them at such sensory stations.
It is one of many robotics projects Howard has tackled. She has designed robots for researching glaciers, and she is working on assistive robots for the home, as well as an exoskeleton that can help children who have motor disabilities.
Howard spoke about her work during the Ethics in AI: Impacts of (Anti?) Social Robotics panel session held in May at the IEEE Vision, Innovation, and Challenges Summit in San Diego. You can watch the session on IEEE.tv.
The next IEEE Vision, Innovation, and Challenges Summit and Honors Ceremony will be held on 15 May 2020 at the JW Marriott Parq Vancouver hotel, in Vancouver.
In this interview with The Institute, Howard talks about how she got involved with assistive technologies, the need for a more diverse workforce, and ways IEEE has benefited her career.
FOCUS ON ACCESSIBILITY
Howard was inspired to work on technology that can improve accessibility in 2008 while teaching high school students at a summer camp devoted to science, technology, engineering, and math.
“A young lady with a visual impairment attended camp. The robot programming tools being used at the camp weren’t accessible to her,” Howard says. “As an engineer, I want to fix problems when I see them, so we ended up designing tools to enable access to programming tools that could be used in STEM education.
“That was my starting motivation, and this theme of accessibility has expanded to become a main focus of my research. One of the things about this world of accessibility is that when you start interacting with kids and parents, you discover another world out there of assistive technologies and how robotics can be used for good in education as well as therapy.”
DIVERSITY OF THOUGHT
The Institute asked Howard why it’s important to have a more diverse STEM workforce and what could be done to increase the number of women and others from underrepresented groups.
“The makeup of the current engineering workforce isn’t necessarily representative of the world, which is composed of different races, cultures, ages, disabilities, and socio-economic backgrounds,” Howard says. “We’re creating products used by people around the globe, so we have to ensure they’re being designed for a diverse population. As IEEE members, we also need to engage with people who aren’t engineers, and we don’t do that enough.”
Educational institutions are doing a better job of increasing diversity in areas such as gender, she says, adding that more work is needed because the enrollment numbers still aren’t representative of the population and the gains don’t necessarily carry through after graduation.
“There has been an increase in the number of underrepresented minorities and females going into engineering and computer science,” she says, “but data has shown that their numbers are not sustained in the workforce.”
ROLE MODEL
Because there are more underrepresented groups on today’s college campuses that can form a community, the lack of engineering role models—although a concern on campuses—is more extreme for preuniversity students, Howard says.
“Depending on where you go to school, you may not know what an engineer does or even consider engineering as an option,” she says, “so there’s still a big disconnect there.”
Howard has been involved for many years in math- and science-mentoring programs for at-risk high school girls. She tells them to find what they’re passionate about and combine it with math and science to create something. She also advises them not to let anyone tell them that they can’t.
Howard’s father is an engineer. She says he never encouraged or discouraged her to become one, but when she broke something, he would show her how to fix it and talk her through the process. Along the way, he taught her a logical way of thinking she says all engineers have.
“When I would try to explain something, he would quiz me and tell me to ‘think more logically,’” she says.
Howard earned a bachelor’s degree in engineering from Brown University, in Providence, R.I., then she received both a master’s and doctorate degree in electrical engineering from the University of Southern California. Before joining the faculty of Georgia Tech in 2005, she worked at NASA’s Jet Propulsion Laboratory at the California Institute of Technology for more than a decade as a senior robotics researcher and deputy manager in the Office of the Chief Scientist.
ACTIVE VOLUNTEER
Howard’s father was also an IEEE member, but that’s not why she joined the organization. She says she signed up when she was a student because, “that was something that you just did. Plus, my student membership fee was subsidized.”
She kept the membership as a grad student because of the discounted rates members receive on conferences.
Those conferences have had an impact on her career. “They allow you to understand what the state of the art is,” she says. “Back then you received a printed conference proceeding and reading through it was brutal, but by attending it in person, you got a 15-minute snippet about the research.”
Howard is an active volunteer with the IEEE Robotics and Automation and the IEEE Systems, Man, and Cybernetics societies, holding many positions and serving on several committees. She is also featured in the IEEE Impact Creators campaign. These members were selected because they inspire others to innovate for a better tomorrow.
“I value IEEE for its community,” she says. “One of the nice things about IEEE is that it’s international.” Continue reading