Tag Archives: researchers

#437610 How Intel’s OpenBot Wants to Make ...

You could make a pretty persuasive argument that the smartphone represents the single fastest area of technological progress we’re going to experience for the foreseeable future. Every six months or so, there’s something with better sensors, more computing power, and faster connectivity. Many different areas of robotics are benefiting from this on a component level, but over at Intel Labs, they’re taking a more direct approach with a project called OpenBot that turns US $50 worth of hardware and your phone into a mobile robot that can support “advanced robotics workloads such as person following and real-time autonomous navigation in unstructured environments.”

This work aims to address two key challenges in robotics: accessibility and scalability. Smartphones are ubiquitous and are becoming more powerful by the year. We have developed a combination of hardware and software that turns smartphones into robots. The resulting robots are inexpensive but capable. Our experiments have shown that a $50 robot body powered by a smartphone is capable of person following and real-time autonomous navigation. We hope that the presented work will open new opportunities for education and large-scale learning via thousands of low-cost robots deployed around the world.

Smartphones point to many possibilities for robotics that we have not yet exploited. For example, smartphones also provide a microphone, speaker, and screen, which are not commonly found on existing navigation robots. These may enable research and applications at the confluence of human-robot interaction and natural language processing. We also expect the basic ideas presented in this work to extend to other forms of robot embodiment, such as manipulators, aerial vehicles, and watercraft.

One of the interesting things about this idea is how not-new it is. The highest profile phone robot was likely the $150 Romo, from Romotive, which raised a not-insignificant amount of money on Kickstarter in 2012 and 2013 for a little mobile chassis that accepted one of three different iPhone models and could be controlled via another device or operated somewhat autonomously. It featured “computer vision, autonomous navigation, and facial recognition” capabilities, but was really designed to be a toy. Lack of compatibility hampered Romo a bit, and there wasn’t a lot that it could actually do once the novelty wore off.

As impressive as smartphone hardware was in a robotics context (even back in 2013), we’re obviously way, way beyond that now, and OpenBot figures that smartphones now have enough clout and connectivity that turning them into mobile robots is a good idea. You know, again. We asked Intel Labs’ Matthias Muller why now was the right time to launch OpenBot, and he mentioned things like the existence of a large maker community with broad access to 3D printing as well as open source software that makes broader development easier.

And of course, there’s the smartphone hardware: “Smartphones have become extremely powerful and feature dedicated AI processors in addition to CPUs and GPUs,” says Mueller. “Almost everyone owns a very capable smartphone now. There has been a big boost in sensor performance, especially in cameras, and a lot of the recent developments for VR applications are well aligned with robotic requirements for state estimation.” OpenBot has been tested with 10 recent Android phones, and since camera placement tends to be similar and USB-C is becoming the charging and communications standard, compatibility is less of an issue nowadays.

Image: OpenBot

Intel researchers created this table comparing OpenBot to other wheeled robot platforms, including Amazon’s DeepRacer, MIT’s Duckiebot, iRobot’s Create-2, and Thymio. The top group includes robots based on RC trucks; the bottom group includes navigation robots for deployment at scale and in education. Note that the cost of the smartphone needed for OpenBot is not included in this comparison.

If you’d like an OpenBot of your own, you don’t need to know all that much about robotics hardware or software. For the hardware, you probably need some basic mechanical and electronics experience—think Arduino project level. The software is a little more complicated; there’s a pretty good walkthrough to get some relatively sophisticated behaviors (like autonomous person following) up and running, but things rapidly degenerate into a command line interface that could be intimidating for new users. We did ask about why OpenBot isn’t ROS-based to leverage the robustness and reach of that community, and Muller said that ROS “adds unnecessary overhead,” although “if someone insists on using ROS with OpenBot, it should not be very difficult.”

Without building OpenBot to explicitly be part of an existing ecosystem, the challenge going forward is to make sure that the project is consistently supported, lest it wither and die like so many similar robotics projects have before it. “We are committed to the OpenBot project and will do our best to maintain it,” Mueller assures us. “We have a good track record. Other projects from our group (e.g. CARLA, Open3D, etc.) have also been maintained for several years now.” The inherently open source nature of the project certainly helps, although it can be tricky to rely too much on community contributions, especially when something like this is first starting out.

The OpenBot folks at Intel, we’re told, are already working on a “bigger, faster and more powerful robot body that will be suitable for mass production,” which would certainly help entice more people into giving this thing a go. They’ll also be focusing on documentation, which is probably the most important but least exciting part about building a low-cost community focused platform like this. And as soon as they’ve put together a way for us actual novices to turn our phones into robots that can do cool stuff for cheap, we’ll definitely let you know. Continue reading

Posted in Human Robots

#437603 Throwable Robot Car Always Lands on Four ...

Throwable or droppable robots seem like a great idea for a bunch of applications, including exploration and search and rescue. But such robots do come with some constraints—namely, if you’re going to throw or drop a robot, you should be prepared for that robot to not land the way you want it to land. While we’ve seen some creative approaches to this problem, or more straightforward self-righting devices, usually you’re in for significant trade-offs in complexity, mobility, and mass.

What would be ideal is a robot that can be relied upon to just always land the right way up. A robotic cat, of sorts. And while we’ve seen this with a tail, for wheeled vehicles, it turns out that a tail isn’t necessary: All it takes is some wheel spin.

The reason that AGRO (Agile Ground RObot), developed at the U.S. Military Academy at West Point, can do this is because each of its wheels is both independently driven and steerable. The wheels are essentially reaction wheels, which are a pretty common way to generate forces on all kinds of different robots, but typically you see such reaction wheels kludged onto these robots as sort of an afterthought—using the existing wheels of a wheeled robot is a more elegant way to do it.

Four steerable wheels with in-hub motors provide control in all three axes (yaw, pitch, and roll). You’ll notice that when the robot is tossed, the wheels all toe inwards (or outwards, I guess) by 45 degrees, positioning them orthogonal to the body of the robot. The front left and rear right wheels are spun together, as are the front right and rear left wheels. When one pair of wheels spins in the same direction, the body of the robot twists in the opposite way along an axis between those wheels, in a combination of pitch and roll. By combining different twisting torques from both pairs of wheels, pitch and roll along each axis can be adjusted independently. When the same pair of wheels spin in directions opposite to each other, the robot yaws, although yaw can also be derived by adjusting the ratio between pitch authority and roll authority. And lastly, if you want to sacrifice pitch control for more roll control (or vice versa) the wheel toe-in angle can be changed. Put all this together, and you get an enormous amount of mid-air control over your robot.

Image: Robotics Research Center/West Point

The AGRO robot features four steerable wheels with in-hub motors, which provide control in all three axes (yaw, pitch, and roll).

According to a paper that the West Point group will present at the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), the overall objective here is for the robot to reach a state of zero pitch or roll by the time the robot impacts with the ground, to distribute the impact as much as possible. AGRO doesn’t yet have a suspension to make falling actually safe, so in the short term, it lands on a foam pad, but the mid-air adjustments it’s currently able to make result in a 20 percent reduction of impact force and a 100 percent reduction in being sideways or upside-down.

The toss that you see in the video isn’t the most aggressive, but lead author Daniel J. Gonzalez tells us that AGRO can do much better, theoretically stabilizing from an initial condition of 22.5 degrees pitch and 22.5 degrees roll in a mere 250 milliseconds, with room for improvement beyond that through optimizing the angles of individual wheels in real time. The limiting factor is really the amount of time that AGRO has between the point at which it’s released and the point at which it hits the ground, since more time in the air gives the robot more time to change its orientation.

Given enough height, the current generation of AGRO can recover from any initial orientation as long as it’s spinning at 66 rpm or less. And the only reason this is a limitation at all is because of the maximum rotation speed of the in-wheel hub motors, which can be boosted by increasing the battery voltage, as Gonzalez and his colleagues, Mark C. Lesak, Andres H. Rodriguez, Joseph A. Cymerman, and Christopher M. Korpela from the Robotics Research Center at West Point, describe in the IROS paper, “Dynamics and Aerial Attitude Control for Rapid Emergency Deployment of the Agile Ground Robot AGRO.”

Image: Robotics Research Center/West Point

AGRO 2 will include a new hybrid wheel-leg and non-pneumatic tire design that will allow it to hop up stairs and curbs.

While these particular experiments focus on a robot that’s being thrown, the concept is potentially effective (and useful) on any wheeled robot that’s likely to find itself in mid-air. You can imagine it improving the performance of robots doing all sorts of stunts, from driving off ramps or ledges to being dropped out of aircraft. And as it turns out, being able to self-stabilize during an airdrop is an important skill that some Humvees could use to keep themselves from getting tangled in their own parachute lines and avoid mishaps.

Before they move on to Humvees, though, the researchers are working on the next version of AGRO named AGRO 2. AGRO 2 will include a new hybrid wheel-leg and non-pneumatic tire design that will allow it to hop up stairs and curbs, which sounds like a lot of fun to us. Continue reading

Posted in Human Robots

#437600 Brain-Inspired Robot Controller Uses ...

Robots operating in the real world are starting to find themselves constrained by the amount of computing power they have available. Computers are certainly getting faster and more efficient, but they’re not keeping up with the potential of robotic systems, which have access to better sensors and more data, which in turn makes decision making more complex. A relatively new kind of computing device called a memristor could potentially help robotics smash through this barrier, through a combination of lower complexity, lower cost, and higher speed.

In a paper published today in Science Robotics, a team of researchers from the University of Southern California in Los Angeles and the Air Force Research Laboratory in Rome, N.Y., demonstrate a simple self-balancing robot that uses memristors to form a highly effective analog control system, inspired by the functional structure of the human brain.

First, we should go over just what the heck a memristor is. As the name suggests, it’s a type of memory that is resistance-based. That is, the resistance of a memristor can be programmed, and the memristor remembers that resistance even after it’s powered off (the resistance depends on the magnitude of the voltage applied to the memristor’s two terminals and the length of time that voltage has been applied). Memristors are potentially the ideal hybrid between RAM and flash memory, offering high speed, high density, non-volatile storage. So that’s cool, but what we’re most interested in as far as robot control systems go is that memristors store resistance, making them analog devices rather than digital ones.

By adding a memristor to an analog circuit with inputs from a gyroscope and an accelerometer, the researchers created a completely analog Kalman filter, which coupled to a second memristor functioned as a PD controller.

Nowadays, the word “analog” sounds like a bad thing, but robots are stuck in an analog world, and any physical interactions they have with the world (mediated through sensors) are fundamentally analog in nature. The challenge is that an analog signal is often “messy”—full of noise and non-linearities—and as such, the usual approach now is to get it converted to a digital signal and then processed to get anything useful out of it. This is fine, but it’s also not particularly fast or efficient. Where memristors come in is that they’re inherently analog, and in addition to storing data, they can also act as tiny analog computers, which is pretty wild.

By adding a memristor to an analog circuit with inputs from a gyroscope and an accelerometer, the researchers, led by Wei Wu, an associate professor of electrical engineering at USC, created a completely analog and completely physical Kalman filter to remove noise from the sensor signal. In addition, they used a second memristor can be used to turn that sensor data into a proportional-derivative (PD) controller. Next they put those two components together to build an analogy system that can do a bunch of the work required to keep an inverted pendulum robot upright far more efficiently than a traditional system. The difference in performance is readily apparent:

The shaking you see in the traditionally-controlled robot on the bottom comes from the non-linearity of the dynamic system, which changes faster than the on-board controller can keep up with. The memristors substantially reduce the cycle time, so the robot can balance much more smoothly. Specifically, cycle time is reduced from 3,034 microseconds to just 6 microseconds.

Of course, there’s more going on here, like motor drivers and a digital computer to talk to them, so this robot is really a hybrid system. But guess what? As the researchers point out, so are we!

The human brain consists of the cerebrum, the cerebellum, and the brainstem. The cerebrum is a major part of the brain in charge of vision, hearing, and thinking, whereas the cerebellum plays an important role in motion control. Through this cooperation of the cerebrum and the cerebellum, the human brain can conduct multiple tasks simultaneously with extremely low power consumption. Inspired by this, we developed a hybrid analog-digital computation platform, in which the digital component runs the high-level algorithm, whereas the analog component is responsible for sensor fusion and motion control.

By offloading a bunch of computation onto the memristors, the higher brain functions of the robot have more breathing room. Overall, you reduce power, space, and cost, while substantially improving performance. This has only become possible relatively recently due to memristor advances and availability, and the researchers expect that memristor-based hybrid computing will soon be able to “improve the robustness and the performance of mobile robotic systems with higher” degrees of freedom.

“A memristor-based hybrid analog-digital computing platform for mobile robotics,” by Buyun Chen, Hao Yang, Boxiang Song, Deming Meng, Xiaodong Yan, Yuanrui Li, Yunxiang Wang, Pan Hu, Tse-Hsien Ou, Mark Barnell, Qing Wu, Han Wang, and Wei Wu, from USC Viterbi and AFRL, was published in Science Robotics. Continue reading

Posted in Human Robots

#437598 Video Friday: Sarcos Is Developing a New ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

IROS 2020 – October 25-29, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today's videos.

NASA’s Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) spacecraft unfurled its robotic arm Oct. 20, 2020, and in a first for the agency, briefly touched an asteroid to collect dust and pebbles from the surface for delivery to Earth in 2023.

[ NASA ]

New from David Zarrouk’s lab at BGU is AmphiSTAR, which Zarrouk describes as “a kind of a ground-water drone inspired by the cockroaches (sprawling) and by the Basilisk lizard (running over water). The robot hovers due to the collision of its propellers with the water (hydrodynamics not aerodynamics). The robot can crawl and swim at high and low speeds and smoothly transition between the two. It can reach 3.5 m/s on ground and 1.5m/s in water.”

AmphiSTAR will be presented at IROS, starting next week!

[ BGU ]

This is unfortunately not a great video of a video that was taken at a SoftBank Hawks baseball game in Japan last week, but it’s showing an Atlas robot doing an honestly kind of impressive dance routine to support the team.

ロボット応援団に人型ロボット『ATLAS』がアメリカからリモートで緊急参戦!!!
ホークスビジョンの映像をお楽しみ下さい♪#sbhawks #Pepper #spot pic.twitter.com/6aTYn8GGli
— 福岡ソフトバンクホークス(公式) (@HAWKS_official)
October 16, 2020

Editor’s Note: The tweet embed above is not working for some reason—see the video here.

[ SoftBank Hawks ]

Thanks Thomas!

Sarcos is working on a new robot, which looks to be the torso of their powered exoskeleton with the human relocated somewhere else.

[ Sarcos ]

The biggest holiday of the year, International Sloth Day, was on Tuesday! To celebrate, here’s Slothbot!

[ NSF ]

This is one of those simple-seeming tasks that are really difficult for robots.

I love self-resetting training environments.

[ MIT CSAIL ]

The Chiel lab collaborates with engineers at the Center for Biologically Inspired Robotics Research at Case Western Reserve University to design novel worm-like robots that have potential applications in search-and-rescue missions, endoscopic medicine, or other scenarios requiring navigation through narrow spaces.

[ Case Western ]

ANYbotics partnered with Losinger Marazzi to explore ANYmal’s potential of patrolling construction sites to identify and report safety issues. With such a complex environment, only a robot designed to navigate difficult terrain is able to bring digitalization to such a physically demanding industry.

[ ANYbotics ]

Happy 2018 Halloween from Clearpath Robotics!

[ Clearpath ]

Overcoming illumination variance is a critical factor in vision-based navigation. Existing methods tackled this radical illumination variance issue by proposing camera control or high dynamic range (HDR) image fusion. Despite these efforts, we have found that the vision-based approaches still suffer from overcoming darkness. This paper presents real-time image synthesizing from carefully controlled seed low dynamic range (LDR) image, to enable visual simultaneous localization and mapping (SLAM) in an extremely dark environment (less than 10 lux).

[ KAIST ]

What can MoveIt do? Who knows! Let's find out!

[ MoveIt ]

Thanks Dave!

Here we pick a cube from a starting point, manipulate it within the hand, and then put it back. To explore the capabilities of the hand, no sensors were used in this demonstration. The RBO Hand 3 uses soft pneumatic actuators made of silicone. The softness imparts considerable robustness against variations in object pose and size. This lets us design manipulation funnels that work reliably without needing sensor feedback. We take advantage of this reliability to chain these funnels into more complex multi-step manipulation plans.

[ TU Berlin ]

If this was a real solar array, King Louie would have totally cleaned it. Mostly.

[ BYU ]

Autonomous exploration is a fundamental problem for various applications of unmanned aerial vehicles(UAVs). Existing methods, however, were demonstrated to have low efficiency, due to the lack of optimality consideration, conservative motion plans and low decision frequencies. In this paper, we propose FUEL, a hierarchical framework that can support Fast UAV ExpLoration in complex unknown environments.

[ HKUST ]

Countless precise repetitions? This is the perfect task for a robot, thought researchers at the University of Liverpool in the Department of Chemistry, and without further ado they developed an automation solution that can carry out and monitor research tasks, making autonomous decisions about what to do next.

[ Kuka ]

This video shows a demonstration of central results of the SecondHands project. In the context of maintenance and repair tasks, in warehouse environments, the collaborative humanoid robot ARMAR-6 demonstrates a number of cognitive and sensorimotor abilities such as 1) recognition of the need of help based on speech, force, haptics and visual scene and action interpretation, 2) collaborative bimanual manipulation of large objects, 3) compliant mobile manipulation, 4) grasping known and unknown objects and tools, 5) human-robot interaction (object and tool handover) 6) natural dialog and 7) force predictive control.

[ SecondHands ]

In celebration of Ada Lovelace Day, Silicon Valley Robotics hosted a panel of Women in Robotics.

[ Robohub ]

As part of the upcoming virtual IROS conference, HEBI robotics is putting together a tutorial on robotics actuation. While I’m sure HEBI would like you to take a long look at their own actuators, we’ve been assured that no matter what kind of actuators you use, this tutorial will still be informative and useful.

[ YouTube ] via [ HEBI Robotics ]

Thanks Dave!

This week’s UMD Lockheed Martin Robotics Seminar comes from Julie Shah at MIT, on “Enhancing Human Capability with Intelligent Machine Teammates.”

Every team has top performers- people who excel at working in a team to find the right solutions in complex, difficult situations. These top performers include nurses who run hospital floors, emergency response teams, air traffic controllers, and factory line supervisors. While they may outperform the most sophisticated optimization and scheduling algorithms, they cannot often tell us how they do it. Similarly, even when a machine can do the job better than most of us, it can’t explain how. In this talk I share recent work investigating effective ways to blend the unique decision-making strengths of humans and machines. I discuss the development of computational models that enable machines to efficiently infer the mental state of human teammates and thereby collaborate with people in richer, more flexible ways.

[ UMD ]

Matthew Piccoli gives a talk to the UPenn GRASP Lab on “Trading Complexities: Smart Motors and Dumb Vehicles.”

We will discuss my research journey through Penn making the world's smallest, simplest flying vehicles, and in parallel making the most complex brushless motors. What do they have in common? We'll touch on why the quadrotor went from an obscure type of helicopter to the current ubiquitous drone. Finally, we'll get into my life after Penn and what tools I'm creating to further drone and robot designs of the future.

[ UPenn ] Continue reading

Posted in Human Robots

#437585 Dart-Shooting Drone Attacks Trees for ...

We all know how robots are great at going to places where you can’t (or shouldn’t) send a human. We also know how robots are great at doing repetitive tasks. These characteristics have the potential to make robots ideal for setting up wireless sensor networks in hazardous environments—that is, they could deploy a whole bunch of self-contained sensor nodes that create a network that can monitor a very large area for a very long time.

When it comes to using drones to set up sensor networks, you’ve generally got two options: A drone that just drops sensors on the ground (easy but inaccurate and limited locations), or using a drone with some sort of manipulator on it to stick sensors in specific places (complicated and risky). A third option, under development by researchers at Imperial College London’s Aerial Robotics Lab, provides the accuracy of direct contact with the safety and ease of use of passive dropping by instead using the drone as a launching platform for laser-aimed, sensor-equipped darts.

These darts (which the researchers refer to as aerodynamically stabilized, spine-equipped sensor pods) can embed themselves in relatively soft targets from up to 4 meters away with an accuracy of about 10 centimeters after being fired from a spring-loaded launcher. They’re not quite as accurate as a drone with a manipulator, but it’s pretty good, and the drone can maintain a safe distance from the surface that it’s trying to add a sensor to. Obviously, the spine is only going to work on things like wood, but the researchers point out that there are plenty of attachment mechanisms that could be used, including magnets, adhesives, chemical bonding, or microspines.

Indoor tests using magnets showed the system to be quite reliable, but at close range (within a meter of the target) the darts sometimes bounced off rather than sticking. From between 1 and 4 meters away, the darts stuck between 90 and 100 percent of the time. Initial outdoor tests were also successful, although the system was under manual control. The researchers say that “regular and safe operations should be carried out autonomously,” which, yeah, you’d just have to deal with all of the extra sensing and hardware required to autonomously fly beneath the canopy of a forest. That’s happening next, as the researchers plan to add “vision state estimation and positioning, as well as a depth sensor” to avoid some trees and fire sensors into others.

And if all of that goes well, they’ll consider trying to get each drone to carry multiple darts. Look out, trees: You’re about to be pierced for science.

“Unmanned Aerial Sensor Placement for Cluttered Environments,” by André Farinha, Raphael Zufferey, Peter Zheng, Sophie F. Armanini, and Mirko Kovac from Imperial College London, was published in IEEE Robotics and Automation Letters.

< Back to IEEE Journal Watch Continue reading

Posted in Human Robots