Tag Archives: research

#430874 12 Companies That Are Making the World a ...

The Singularity University Global Summit in San Francisco this week brought brilliant minds together from all over the world to share a passion for using science and technology to solve the world’s most pressing challenges.
Solving these challenges means ensuring basic needs are met for all people. It means improving quality of life and mitigating future risks both to people and the planet.
To recognize organizations doing outstanding work in these fields, SU holds the Global Grand Challenge Awards. Three participating organizations are selected in each of 12 different tracks and featured at the summit’s EXPO. The ones found to have the most potential to positively impact one billion people are selected as the track winners.
Here’s a list of the companies recognized this year, along with some details about the great work they’re doing.
Global Grand Challenge Awards winners at Singularity University’s Global Summit in San Francisco.
Disaster Resilience
LuminAID makes portable lanterns that can provide 24 hours of light on 10 hours of solar charging. The lanterns came from a project to assist post-earthquake relief efforts in Haiti, when the product’s creators considered the dangerous conditions at night in the tent cities and realized light was a critical need. The lights have been used in more than 100 countries and after disasters, including Hurricane Sandy, Typhoon Haiyan, and the earthquakes in Nepal.

Environment
BreezoMeter uses big data and machine learning to deliver accurate air quality information in real time. Users can see pollution details as localized as a single city block, and data is impacted by real-time traffic. Forecasting is also available, with air pollution information available up to four days ahead of time, or several years in the past.
Food
Aspire Food Group believes insects are the protein of the future, and that technology has the power to bring the tradition of eating insects that exists in many countries and cultures to the rest of the world. The company uses technologies like robotics and automated data collection to farm insects that have the protein quality of meat and the environmental footprint of plants.
Energy
Rafiki Power acts as a rural utility company, building decentralized energy solutions in regions that lack basic services like running water and electricity. The company’s renewable hybrid systems are packed and standardized in recycled 20-foot shipping containers, and they’re currently powering over 700 household and business clients in rural Tanzania.

Governance
MakeSense is an international community that brings together people in 128 cities across the world to help social entrepreneurs solve challenges in areas like education, health, food, and environment. Social entrepreneurs post their projects and submit challenges to the community, then participants organize workshops to mobilize and generate innovative solutions to help the projects grow.
Health
Unima developed a fast and low-cost diagnostic and disease surveillance tool for infectious diseases. The tool allows health professionals to diagnose diseases at the point of care, in less than 15 minutes, without the use of any lab equipment. A drop of the patient’s blood is put on a diagnostic paper, where the antibody generates a visual reaction when in contact with the biomarkers in the sample. The result is evaluated by taking a photo with an app in a smartphone, which uses image processing, artificial intelligence and machine learning.
Prosperity
Egalite helps people with disabilities enter the labor market, and helps companies develop best practices for inclusion of the disabled. Egalite’s founders are passionate about the potential of people with disabilities and the return companies get when they invest in that potential.
Learning
Iris.AI is an artificial intelligence system that reads scientific paper abstracts and extracts key concepts for users, presenting concepts visually and allowing users to navigate a topic across disciplines. Since its launch, Iris.AI has read 30 million research paper abstracts and more than 2,000 TED talks. The AI uses a neural net and deep learning technology to continuously improve its output.
Security
Hala Systems, Inc. is a social enterprise focused on developing technology-driven solutions to the world’s toughest humanitarian challenges. Hala is currently focused on civilian protection, accountability, and the prevention of violent extremism before, during, and after conflict. Ultimately, Hala aims to transform the nature of civilian defense during warfare, as well as to reduce casualties and trauma during post-conflict recovery, natural disasters, and other major crises.
Shelter
Billion Bricks designs and provides shelter and infrastructure solutions for the homeless. The company’s housing solutions are scalable, sustainable, and able to create opportunities for communities to emerge from poverty. Their approach empowers communities to replicate the solutions on their own, reducing dependency on support and creating ownership and pride.

Space
Tellus Labs uses satellite data to tackle challenges like food security, water scarcity, and sustainable urban and industrial systems, and drive meaningful change. The company built a planetary-scale model of all 170 million acres of US corn and soy crops to more accurately forecast yields and help stabilize the market fluctuations that accompany the USDA’s monthly forecasts.
Water
Loowatt designed a toilet that uses a patented sealing technology to contain human waste within biodegradable film. The toilet is designed for linking to anaerobic digestion technology to provide a source of biogas for cooking, electricity, and other applications, creating the opportunity to offset capital costs with energy production.
Image Credit: LuminAID via YouTube Continue reading

Posted in Human Robots

#430761 How Robots Are Getting Better at Making ...

The multiverse of science fiction is populated by robots that are indistinguishable from humans. They are usually smarter, faster, and stronger than us. They seem capable of doing any job imaginable, from piloting a starship and battling alien invaders to taking out the trash and cooking a gourmet meal.
The reality, of course, is far from fantasy. Aside from industrial settings, robots have yet to meet The Jetsons. The robots the public are exposed to seem little more than over-sized plastic toys, pre-programmed to perform a set of tasks without the ability to interact meaningfully with their environment or their creators.
To paraphrase PayPal co-founder and tech entrepreneur Peter Thiel, we wanted cool robots, instead we got 140 characters and Flippy the burger bot. But scientists are making progress to empower robots with the ability to see and respond to their surroundings just like humans.
Some of the latest developments in that arena were presented this month at the annual Robotics: Science and Systems Conference in Cambridge, Massachusetts. The papers drilled down into topics that ranged from how to make robots more conversational and help them understand language ambiguities to helping them see and navigate through complex spaces.
Improved Vision
Ben Burchfiel, a graduate student at Duke University, and his thesis advisor George Konidaris, an assistant professor of computer science at Brown University, developed an algorithm to enable machines to see the world more like humans.
In the paper, Burchfiel and Konidaris demonstrate how they can teach robots to identify and possibly manipulate three-dimensional objects even when they might be obscured or sitting in unfamiliar positions, such as a teapot that has been tipped over.
The researchers trained their algorithm by feeding it 3D scans of about 4,000 common household items such as beds, chairs, tables, and even toilets. They then tested its ability to identify about 900 new 3D objects just from a bird’s eye view. The algorithm made the right guess 75 percent of the time versus a success rate of about 50 percent for other computer vision techniques.
In an email interview with Singularity Hub, Burchfiel notes his research is not the first to train machines on 3D object classification. How their approach differs is that they confine the space in which the robot learns to classify the objects.
“Imagine the space of all possible objects,” Burchfiel explains. “That is to say, imagine you had tiny Legos, and I told you [that] you could stick them together any way you wanted, just build me an object. You have a huge number of objects you could make!”
The infinite possibilities could result in an object no human or machine might recognize.
To address that problem, the researchers had their algorithm find a more restricted space that would host the objects it wants to classify. “By working in this restricted space—mathematically we call it a subspace—we greatly simplify our task of classification. It is the finding of this space that sets us apart from previous approaches.”
Following Directions
Meanwhile, a pair of undergraduate students at Brown University figured out a way to teach robots to understand directions better, even at varying degrees of abstraction.
The research, led by Dilip Arumugam and Siddharth Karamcheti, addressed how to train a robot to understand nuances of natural language and then follow instructions correctly and efficiently.
“The problem is that commands can have different levels of abstraction, and that can cause a robot to plan its actions inefficiently or fail to complete the task at all,” says Arumugam in a press release.
In this project, the young researchers crowdsourced instructions for moving a virtual robot through an online domain. The space consisted of several rooms and a chair, which the robot was told to manipulate from one place to another. The volunteers gave various commands to the robot, ranging from general (“take the chair to the blue room”) to step-by-step instructions.
The researchers then used the database of spoken instructions to teach their system to understand the kinds of words used in different levels of language. The machine learned to not only follow instructions but to recognize the level of abstraction. That was key to kickstart its problem-solving abilities to tackle the job in the most appropriate way.
The research eventually moved from virtual pixels to a real place, using a Roomba-like robot that was able to respond to instructions within one second 90 percent of the time. Conversely, when unable to identify the specificity of the task, it took the robot 20 or more seconds to plan a task about 50 percent of the time.
One application of this new machine-learning technique referenced in the paper is a robot worker in a warehouse setting, but there are many fields that could benefit from a more versatile machine capable of moving seamlessly between small-scale operations and generalized tasks.
“Other areas that could possibly benefit from such a system include things from autonomous vehicles… to assistive robotics, all the way to medical robotics,” says Karamcheti, responding to a question by email from Singularity Hub.
More to Come
These achievements are yet another step toward creating robots that see, listen, and act more like humans. But don’t expect Disney to build a real-life Westworld next to Toon Town anytime soon.
“I think we’re a long way off from human-level communication,” Karamcheti says. “There are so many problems preventing our learning models from getting to that point, from seemingly simple questions like how to deal with words never seen before, to harder, more complicated questions like how to resolve the ambiguities inherent in language, including idiomatic or metaphorical speech.”
Even relatively verbose chatbots can run out of things to say, Karamcheti notes, as the conversation becomes more complex.
The same goes for human vision, according to Burchfiel.
While deep learning techniques have dramatically improved pattern matching—Google can find just about any picture of a cat—there’s more to human eyesight than, well, meets the eye.
“There are two big areas where I think perception has a long way to go: inductive bias and formal reasoning,” Burchfiel says.
The former is essentially all of the contextual knowledge people use to help them reason, he explains. Burchfiel uses the example of a puddle in the street. People are conditioned or biased to assume it’s a puddle of water rather than a patch of glass, for instance.
“This sort of bias is why we see faces in clouds; we have strong inductive bias helping us identify faces,” he says. “While it sounds simple at first, it powers much of what we do. Humans have a very intuitive understanding of what they expect to see, [and] it makes perception much easier.”
Formal reasoning is equally important. A machine can use deep learning, in Burchfiel’s example, to figure out the direction any river flows once it understands that water runs downhill. But it’s not yet capable of applying the sort of human reasoning that would allow us to transfer that knowledge to an alien setting, such as figuring out how water moves through a plumbing system on Mars.
“Much work was done in decades past on this sort of formal reasoning… but we have yet to figure out how to merge it with standard machine-learning methods to create a seamless system that is useful in the actual physical world.”
Robots still have a lot to learn about being human, which should make us feel good that we’re still by far the most complex machines on the planet.
Image Credit: Alex Knight via Unsplash Continue reading

Posted in Human Robots

#430734 Why XPRIZE Is Asking Writers to Take Us ...

In a world of accelerating change, educating the public about the implications of technological advancements is extremely important. We can continue to write informative articles and speculate about the kind of future that lies ahead. Or instead, we can take readers on an immersive journey by using science fiction to paint vivid images of the future for society.
The XPRIZE Foundation recently announced a science fiction storytelling competition. In recent years, the organization has backed and launched a range of competitions to propel innovation in science and technology. These have been aimed at a variety of challenges, such as transforming the lives of low-literacy adults, tackling climate change, and creating water from thin air.
Their sci-fi writing competition asks participants to envision a groundbreaking future for humanity. The initiative, in partnership with Japanese airline ANA, features 22 sci-fi stories from noteworthy authors that are now live on the website. Each of these stories is from the perspective of a different passenger on a plane that travels 20 years into the future through a wormhole. Contestants will compete to tell the story of the passenger in Seat 14C.
In addition to the competition, XPRIZE has brought together a science fiction advisory council to work with the organization and imagine what the future will look like. According to Peter Diamandis, founder and executive chairman, “As the future becomes harder and harder to predict, we look forward to engaging some of the world’s most visionary storytellers to help us imagine what’s just beyond the horizon and chart a path toward a future of abundance.”
The Importance of Science Fiction
Why is an organization like XPRIZE placing just as much importance on fiction as it does on reality? As Isaac Asimov has pointed out, “Modern science fiction is the only form of literature that consistently considers the nature of the changes that face us.” While the rest of the world reports on a new invention, sci-fi authors examine how these advancements affect the human condition.
True science fiction is distinguished from pure fantasy in that everything that happens is within the bounds of the physical laws of the universe. We’ve already seen how sci-fi can inspire generations and shape the future. 3D printers, wearable technology, and smartphones were first seen in Star Trek. Targeted advertising and air touch technology was first seen in Philip K. Dick’s 1958 story “The Minority Report.” Tanning beds, robot vacuums, and flatscreen TVs were seen in The Jetsons. The internet and a world of global instant communication was predicted by Arthur C. Clarke in his work long before it became reality.
Sci-fi shows like Black Mirror or Star Trek aren’t just entertainment. They allow us to imagine and explore the influence of technology on humanity. For instance, how will artificial intelligence impact human relationships? How will social media affect privacy? What if we encounter alien life? Good sci-fi stories take us on journeys that force us to think critically about the societal impacts of technological advancements.
As sci-fi author Yaasha Moriah points out, the genre is universal because “it tackles hard questions about human nature, morality, and the evolution of society, all through the narrative of speculation about the future. If we continue to do A, will it necessarily lead to problems B and C? What implicit lessons are being taught when we insist on a particular policy? When we elevate the importance of one thing over another—say, security over privacy—what could be the potential benefits and dangers of that mentality? That’s why science fiction has such an enduring appeal. We want to explore deep questions, without being preached at. We want to see the principles in action, and observe their results.”
An Extension of STEAM Education
At its core, this genre is a harmonious symbiosis between two distinct disciplines: science and literature. It is an extension of STEAM education, an educational approach that combines science, technology, engineering, the arts, and mathematics. Story-telling with science fiction allows us to use the arts in order to educate and engage the public about scientific advancements and its implications.
According to the National Science Foundation, research on art-based learning of STEM, including the use of narrative writing, works “beyond expectation.” It has been shown to have a powerful impact on creative thinking, collaborative behavior and application skills.
What does it feel like to travel through a wormhole? What are some ethical challenges of AI? How could we terraform Mars? For decades, science fiction writers and producers have answered these questions through the art of storytelling.
What better way to engage more people with science and technology than through sparking their imaginations? The method makes academic subject areas many traditionally perceived as boring or dry far more inspiring and engaging.
A Form of Time Travel
XPRIZE’s competition theme of traveling 20 years into the future through a wormhole is an appropriate beacon for the genre. In many ways, sci-fi is a precautionary form of time travel. Before we put a certain technology, scientific invention, or policy to use, we can envision and explore what our world would be like if we were to do so.
Sci-fi lets us explore different scenarios for the future of humanity before deciding which ones are more desirable. Some of these scenarios may be radically beyond our comfort zone. Yet when we’re faced with the seemingly impossible, we must remind ourselves that if something is within the domain of the physical laws of the universe, then it’s absolutely possible.
Stock Media provided by NASA_images / Pond5 Continue reading

Posted in Human Robots

#430686 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
DeepMind’s AI Is Teaching Itself Parkour, and the Results Are AdorableJames Vincent | The Verge“The research explores how reinforcement learning (or RL) can be used to teach a computer to navigate unfamiliar and complex environments. It’s the sort of fundamental AI research that we’re now testing in virtual worlds, but that will one day help program robots that can navigate the stairs in your house.”
VIRTUAL REALITY
Now You Can Broadcast Facebook Live Videos From Virtual RealityDaniel Terdiman | Fast Company“The idea is fairly simple. Spaces allows up to four people—each of whom must have an Oculus Rift VR headset—to hang out together in VR. Together, they can talk, chat, draw, create new objects, watch 360-degree videos, share photos, and much more. And now, they can live-broadcast everything they do in Spaces, much the same way that any Facebook user can produce live video of real life and share it with the world.”
ROBOTICS
I Watched Two Robots Chat Together on Stage at a Tech EventJon Russell | TechCrunch“The robots in question are Sophia and Han, and they belong to Hanson Robotics, a Hong Kong-based company that is developing and deploying artificial intelligence in humanoids. The duo took to the stage at Rise in Hong Kong with Hanson Robotics’ Chief Scientist Ben Goertzel directing the banter. The conversation, which was partially scripted, wasn’t as slick as the human-to-human panels at the show, but it was certainly a sight to behold for the packed audience.”
BIOTECH
Scientists Used CRISPR to Put a GIF Inside a Living Organism’s DNAEmily Mullin | MIT Technology Review“They delivered the GIF into the living bacteria in the form of five frames: images of a galloping horse and rider, taken by English photographer Eadweard Muybridge…The researchers were then able to retrieve the data by sequencing the bacterial DNA. They reconstructed the movie with 90 percent accuracy by reading the pixel nucleotide code.”
DIGITAL MEDIA
AI Creates Fake ObamaCharles Q. Choi | IEEE Spectrum“In the new study, the neural net learned what mouth shapes were linked to various sounds. The researchers took audio clips and dubbed them over the original sound files of a video. They next took mouth shapes that matched the new audio clips and grafted and blended them onto the video. Essentially, the researchers synthesized videos where Obama lip-synched words he said up to decades beforehand.”
Stock Media provided by adam121 / Pond5 Continue reading

Posted in Human Robots

#430668 Why Every Leader Needs to Be Obsessed ...

This article is part of a series exploring the skills leaders must learn to make the most of rapid change in an increasingly disruptive world. The first article in the series, “How the Most Successful Leaders Will Thrive in an Exponential World,” broadly outlines four critical leadership skills—futurist, technologist, innovator, and humanitarian—and how they work together.
Today’s post, part five in the series, takes a more detailed look at leaders as technologists. Be sure to check out part two of the series, “How Leaders Dream Boldly to Bring New Futures to Life,” part three of the series, “How All Leaders Can Make the World a Better Place,” and part four of the series, “How Leaders Can Make Innovation Everyone’s Day Job”.
In the 1990s, Tower Records was the place to get new music. Successful and popular, the California chain spread far and wide, and in 1998, they took on $110 million in debt to fund aggressive further expansion. This wasn’t, as it turns out, the best of timing.
The first portable digital music player went on sale the same year. The following year brought Napster, a file sharing service allowing users to freely share music online. By 2000, Napster hosted 20 million users swapping songs. Then in 2001, Apple’s iPod and iTunes arrived, and when the iTunes Music Store opened in 2003, Apple sold over a million songs the first week.
As music was digitized, hard copies began to go out of style, and sales and revenue declined.
Tower first filed for bankruptcy in 2004 and again (for the last time) in 2006. The internet wasn’t the only reason for Tower’s demise. Mismanagement and price competition from electronics retailers like Best Buy also played a part. Still, today, the vast majority of music is purchased or streamed entirely online, and record stores are for the most part a niche market.
The writing was on the wall, but those impacted most had trouble reading it.
Why is it difficult for leaders to see technological change coming and right the ship before it’s too late? Why did Tower go all out on expansion just as the next big thing took the stage?
This is one story of many. Digitization has moved beyond music and entertainment, and now many big retailers operating physical stores are struggling to stay relevant. Meanwhile, the pace of change is accelerating, and new potentially disruptive technologies are on the horizon.
More than ever, leaders need to develop a strong understanding of and perspective on technology. They need to survey new innovations, forecast their pace, gauge the implications, and adopt new tools and strategy to change course as an industry shifts, not after it’s shifted.
Simply, leaders need to adopt the mindset of a technologist. Here’s what that means.
Survey the Landscape
Nurturing curiosity is the first step to understanding technological change. To know how technology might disrupt your industry, you have to know what’s in the pipeline and identify which new inventions are directly or indirectly related to your industry.
Becoming more technologically minded takes discipline and focus as well as unstructured time to explore the non-obvious connections between what is right in front of us and what might be. It requires a commitment to ongoing learning and discovery.
Read outside your industry and comfort zone, not just Fast Company and Wired, but Science and Nature to expand your horizons. Identify experts with the ability to demystify specific technology areas—many have a solid following on Twitter or a frequently cited blog.
But it isn’t all about reading. Consider going where the change is happening too.
Visit one of the technology hubs around the world or a local university research lab in your own back yard. Or bring the innovation to you by building an internal exploration lab stocked with the latest technologies, creating a technology advisory board, hosting an internal innovation challenge, or a local pitch night where aspiring entrepreneurs can share their newest ideas.
You might even ask the crowd by inviting anyone to suggest what innovation is most likely to disrupt your product, service, or sector. And don’t hesitate to engage younger folks—the digital natives all around you—by asking questions about what technology they are using or excited about. Consider going on a field trip with them to see how they use technology in different aspects of their lives. Invite the seasoned executives on your team to explore long-term “reverse mentoring” with someone who can expose them to the latest technology and teach them to use it.
Whatever your strategy, the goal should be to develop a healthy obsession with technology.
By exploring fresh perspectives outside traditional work environments and then giving ourselves permission to see how these new ideas might influence existing products and strategies, we have a chance to be ready for what we’re not ready for—but is likely right around the corner.
Estimate the Pace of Progress
The next step is forecasting when a technology will mature.
One of the most challenging aspects of the changes underway is that in many technology arenas, we are quickly moving from a linear to an exponential pace. It is hard enough to envision what is needed in an industry buffeted by progress that is changing 10% per year, but what happens when technological progress doubles annually? That is another world altogether.
This kind of change can be deceiving. For example, machine learning and big data are finally reaching critical momentum after more than twenty years of being right around the corner. The advances in applications like speech and image recognition that we’ve seen in recent years dwarf what came before and many believe we’ve just begun to understand the implications.
Even as we begin to embrace disruptive change in one technology arena, far more exciting possibilities unfold when we explore how multiple arenas are converging.
Artificial intelligence and big data are great examples. As Hod Lipson, professor of Mechanical Engineering and Data Science at Columbia University and co-author of Driverless: Intelligent Cars and the Road Ahead, says, “AI is the engine, but big data is the fuel. They need each other.”
This convergence paired with an accelerating pace makes for surprising applications.
To keep his research lab agile and open to new uses of advancing technologies, Lipson routinely asks his PhD students, “How might AI disrupt this industry?” to prompt development of applications across a wide spectrum of sectors from healthcare to agriculture to food delivery.
Explore the Consequences
New technology inevitably gives rise to new ethical, social, and moral questions that we have never faced before. Rather than bury our heads in the sand, as leaders we must explore the full range of potential consequences of whatever is underway or still to come.
We can add AI to kids’ toys, like Mattel’s Hello Barbie or use cutting-edge gene editing technology like CRISPR-Cas9 to select for preferred gene sequences beyond basic health. But just because we can do something doesn’t mean we should.
Take time to listen to skeptics and understand the risks posed by technology.
Elon Musk, Stephen Hawking, Steve Wozniak, Bill Gates, and other well-known names in science and technology have expressed concern in the media and via open letters about the risks posed by AI. Microsoft’s CEO, Satya Nadella, has even argued tech companies shouldn’t build artificial intelligence systems that will replace people rather than making them more productive.
Exploring unintended consequences goes beyond having a Plan B for when something goes wrong. It requires broadening our view of what we’re responsible for. Beyond customers, shareholders, and the bottom line, we should understand how our decisions may impact employees, communities, the environment, our broader industry, and even our competitors.
The minor inconvenience of mitigating these risks now is far better than the alternative. Create forums to listen to and value voices outside of the board room and C-Suite. Seek out naysayers, ethicists, community leaders, wise elders, and even neophytes—those who may not share our preconceived notions of right and wrong or our narrow view of our role in the larger world.
The question isn’t: If we build it, will they come? It’s now: If we can build it, should we?
Adopt New Technologies and Shift Course
The last step is hardest. Once you’ve identified a technology (or technologies) as a potential disruptor and understand the implications, you need to figure out how to evolve your organization to make the most of the opportunity. Simply recognizing disruption isn’t enough.
Take today’s struggling brick-and-mortar retail business. Online shopping isn’t new. Amazon isn’t a plucky startup. Both have been changing how we buy stuff for years. And yet many who still own and operate physical stores—perhaps most prominently, Sears—are now on the brink of bankruptcy.
There’s hope though. Netflix began as a DVD delivery service in the 90s, but quickly realized its core business didn’t have staying power. It would have been laughable to stream movies when Netflix was founded. Still, computers and bandwidth were advancing fast. In 2007, the company added streaming to its subscription. Even then it wasn’t a totally compelling product.
But Netflix clearly saw a streaming future would likely end their DVD business.
In recent years, faster connection speeds, a growing content library, and the company’s entrance into original programming have given Netflix streaming the upper hand over DVDs. Since 2011, DVD subscriptions have steadily declined. Yet the company itself is doing fine. Why? It anticipated the shift to streaming and acted on it.
Never Stop Looking for the Next Big Thing
Technology is and will increasingly be a driver of disruption, destabilizing entrenched businesses and entire industries while also creating new markets and value not yet imagined.
When faced with the rapidly accelerating pace of change, many companies still default to old models and established practices. Leading like a technologist requires vigilant understanding of potential sources of disruption—what might make your company’s offering obsolete? The answers may not always be perfectly clear. What’s most important is relentlessly seeking them.
Stock Media provided by MJTierney / Pond5 Continue reading

Posted in Human Robots