Tag Archives: reliable
#436100 Labrador Systems Developing Affordable ...
Developing robots for the home is still a challenge, especially if you want those robots to interact with people and help them do practical, useful things. However, the potential markets for home robots are huge, and one of the most compelling markets is for home robots that can assist humans who need them. Today, Labrador Systems, a startup based in California, is announcing a pre-seed funding round of $2 million (led by SOSV’s hardware accelerator HAX with participation from Amazon’s Alexa Fund and iRobot Ventures, among others) with the goal of expanding development and conducting pilot studies of “a new [assistive robot] platform for supporting home health.”
Labrador was founded two years ago by Mike Dooley and Nikolai Romanov. Both Mike and Nikolai have backgrounds in consumer robotics at Evolution Robotics and iRobot, but as an ’80s gamer, Mike’s bio (or at least the parts of his bio on LinkedIn) caught my attention: From 1995 to 1997, Mike worked at Brøderbund Software, helping to manage play testing for games like Myst and Riven and the Where in the World is Carmen San Diego series. He then spent three years at Lego as the product manager for MindStorms. After doing some marginally less interesting things, Mike was the VP of product development at Evolution Robotics from 2006 to 2012, where he led the team that developed the Mint floor sweeping robot. Evolution was acquired by iRobot in 2012, and Mike ended up as the VP of product development over there until 2017, when he co-founded Labrador.
I was pretty much sold at Where in the World is Carmen San Diego (the original version of which I played from a 5.25” floppy on my dad’s Apple IIe)*, but as you can see from all that other stuff, Mike knows what he’s doing in robotics as well.
And according to Labrador’s press release, what they’re doing is this:
Labrador Systems is an early stage technology company developing a new generation of assistive robots to help people live more independently. The company’s core focus is creating affordable solutions that address practical and physical needs at a fraction of the cost of commercial robots. … Labrador’s technology platform offers an affordable solution to improve the quality of care while promoting independence and successful aging.
Labrador’s personal robot, the company’s first offering, will enter pilot studies in 2020.
That’s about as light on detail as a press release gets, but there’s a bit more on Labrador’s website, including:
Our core focus is creating affordable solutions that address practical and physical needs. (we are not a social robot company)
By affordable, we mean products and technologies that will be available at less than 1/10th the cost of commercial robots.
We achieve those low costs by fusing the latest technologies coming out of augmented reality with robotics to move things in the real world.
The only hardware we’ve actually seen from Labrador at this point is a demo that they put together for Amazon’s re:MARS conference, which took place a few months ago, showing a “demonstration project” called Smart Walker:
This isn’t the home assistance robot that Labrador got its funding for, but rather a demonstration of some of their technology. So of course, the question is, what’s Labrador working on, then? It’s still a secret, but Mike Dooley was able to give us a few more details.
IEEE Spectrum: Your website shows a smart walker concept—how is that related to the assistive robot that you’re working on?
Mike Dooley: The smart walker was a request from a major senior living organization to have our robot (which is really good at navigation) guide residents from place to place within their communities. To test the idea with residents, it turned out to be much quicker to take the navigation system from the robot and put it on an existing rollator walker. So when you see the clips of the technology in the smart walker video on our website, that’s actually the robot’s navigation system localizing in real time and path planning in an environment.
“Assistive robot” can cover a huge range of designs and capabilities—can you give us any more detail about your robot, and what it’ll be able to do?
One of the core features of our robot is to help people move things where they have difficulty moving themselves, particularly in the home setting. That may sound trivial, but to someone who has impaired mobility, it can be a major daily challenge and negatively impact their life and health in a number of ways. Some examples we repeatedly hear are people not staying hydrated or taking their medication on time simply because there is a distance between where they are and the items they need. Once we have those base capabilities, i.e. the ability to navigate around a home and move things within it, then the robot becomes a platform for a wider variety of applications.
What made you decide to develop assistive robots, and why are robots a good solution for seniors who want to live independently?
Supporting independent living has been seen as a massive opportunity in robotics for some time, but also as something off in the future. The turning point for me was watching my mother enter that stage in her life and seeing her transition to using a cane, then a walker, and eventually to a wheelchair. That made the problems very real for me. It also made things much clearer about how we could start addressing specific needs with the tools that are becoming available now.
In terms of why robots can be a good solution, the basic answer is the level of need is so overwhelming that even helping with “basic” tasks can make an appreciable difference in the quality of someone’s daily life. It’s also very much about giving individuals a degree of control back over their environment. That applies to seniors as well as others whose world starts getting more complex to manage as their abilities become more impaired.
What are the particular challenges of developing assistive robots, and how are you addressing them? Why do you think there aren’t more robotics startups in this space?
The setting (operating in homes and personal spaces) and the core purpose of the product (aiding a wide variety of individuals) bring a lot of complexity to any capability you want to build into an assistive robot. Our approach is to put as much structure as we can into the system to make it functional, affordable, understandable and reliable.
I think one of the reasons you don’t see more startups in the space is that a lot of roboticists want to skip ahead and do the fancy stuff, such as taking on human-level capabilities around things like manipulation. Those are very interesting research topics, but we think those are also very far away from being practical solutions you can productize for people to use in their homes.
How do you think assistive robots and human caregivers should work together?
The ideal scenario is allowing caregivers to focus more of their time on the high-touch, personal side of care. The robot can offload the more basic support tasks as well as extend the impact of the caregiver for the long hours of the day they can’t be with someone at their home. We see that applying to both paid care providers as well as the 40 million unpaid family members and friends that provide assistance.
The robot is really there as a tool, both for individuals in need and the people that help them. What’s promising in the research discussions we’ve had so far, is that even when a caregiver is present, giving control back to the individual for simple things can mean a lot in the relationship between them and the caregiver.
What should we look forward to from Labrador in 2020?
Our big goal in 2020 is to start placing the next version of the robot with individuals with different types of needs to let them experience it naturally in their own homes and provide feedback on what they like, what don’t like and how we can make it better. We are currently reaching out to companies in the healthcare and home health fields to participate in those studies and test specific applications related to their services. We plan to share more detail about those studies and the robot itself as we get further into 2020.
If you’re an organization (or individual) who wants to possibly try out Labrador’s prototype, the company encourages you to connect with them through their website. And as we learn more about what Labrador is up to, we’ll have updates for you, presumably in 2020.
[ Labrador Systems ]
* I just lost an hour of my life after finding out that you can play Where in the World is Carmen San Diego in your browser for free. Continue reading →
#435784 Amazon Uses 800 Robots to Run This ...
At Amazon’s re:MARS conference in Las Vegas today, who else but Amazon is introducing two new robots designed to make its fulfillment centers even more fulfilling. Xanthus (named after a mythological horse that could very briefly talk but let’s not read too much into that) is a completely redesigned drive unit, one of the robotic mobile bases that carries piles of stuff around for humans to pick from. It has a thinner profile, a third of the parts, costs half as much, and can wear different modules on top to perform a much wider variety of tasks than its predecessor.
Pegasus (named after a mythological horse that could fly but let’s not read too much into that either) is also a mobile robot, but much smaller than Xanthus, designed to help the company quickly and accurately sort individual packages. For Amazon, it’s a completely new large-scale robotic system involving tightly coordinated fleets of robots tossing boxes down chutes, and it’s just as fun to watch as it sounds.
Amazon has 800 Pegasus units already deployed at a sorting facility in the United States, adding to their newly updated total of 200,000 robotic drive units worldwide.
If the Pegasus system looks familiar, it’s because other warehouse automation companies have had something that’s at least superficially very similar up and running for years.
Photo: Amazon
Pegasus is one of Amazon’s new warehouse robots, equipped with a conveyor belt on top and used in the company’s sorting facilities.
But the most interesting announcement that Amazon made, kind of low key and right at the end of their re:MARS talk, is that they’re working on ways of making some of their mobile robots actually collaborative, leveraging some of the technology that they acquired from Boulder, Colo.-based warehouse robotics startup Canvas Technology earlier this year:
“With our recent acquisition of Canvas, we expect to be able to combine this drive platform with AI and autonomous mobility capabilities, and for the first time, allow our robots to move outside of our robotic drive fields, and interact collaboratively with our associates to do a number of mobility tasks,” said Brad Porter, VP of robotics at Amazon.
At the moment, Amazon’s robots are physically separated from humans except for one highly structured station where the human only interacts with the robot in one or two very specific ways. We were told a few months ago that Amazon would like to have mobile robots that are able to move things through the areas of fulfillment centers that have people in them, but that they’re (quite rightly) worried about the safety aspects of having robots and humans work around each other. Other companies are already doing this on a smaller scale, and it means developing a reliable safety system that can handle randomly moving humans, environmental changes, and all kinds of other stuff. It’s much more difficult than having a nice, clean, roped-off area to work in where a wayward human would be an exception rather than just another part of the job.
Photo: Canvas Technology
A robot created by Canvas Technology, a Boulder, Colo.-based warehouse robotics startup acquired by Amazon earlier this year.
It now seems like Canvas has provided the secret sauce that Amazon needed to start implementing this level of autonomy. As for what it’s going to look like, our best guess is that Amazon is going to have to do a little bit more than slap some extra sensors onto Xanthus or Pegasus, if for no other reason than the robots will almost certainly need more ground clearance to let them operate away from the reliably flat floors that they’re accustomed to. We’re expecting to see them performing many of the tasks that companies like Fetch Robotics and OTTO Motors are doing already—moving everything from small boxes to large pallets to keep humans from having to waste time walking.
Of course, this all feeds back into what drives Amazon more than anything else: efficiency. And for better or worse, humans are not uniquely good at moving things from place to place, so it’s no surprise that Amazon wants to automate that, too. The good news is that, at least for now, Amazon still needs humans to babysit all those robots.
[ Amazon ] Continue reading →
#435757 Robotic Animal Agility
An off-shore wind power platform, somewhere in the North Sea, on a freezing cold night, with howling winds and waves crashing against the impressive structure. An imperturbable ANYmal is quietly conducting its inspection.
ANYmal, a medium sized dog-like quadruped robot, walks down the stairs, lifts a “paw” to open doors or to call the elevator and trots along corridors. Darkness is no problem: it knows the place perfectly, having 3D-mapped it. Its laser sensors keep it informed about its precise path, location and potential obstacles. It conducts its inspection across several rooms. Its cameras zoom in on counters, recording the measurements displayed. Its thermal sensors record the temperature of machines and equipment and its ultrasound microphone checks for potential gas leaks. The robot also inspects lever positions as well as the correct positioning of regulatory fire extinguishers. As the electronic buzz of its engines resumes, it carries on working tirelessly.
After a little over two hours of inspection, the robot returns to its docking station for recharging. It will soon head back out to conduct its next solitary patrol. ANYmal played alongside Mulder and Scully in the “X-Files” TV series*, but it is in no way a Hollywood robot. It genuinely exists and surveillance missions are part of its very near future.
Off-shore oil platforms, the first test fields and probably the first actual application of ANYmal. ©ANYbotics
This quadruped robot was designed by ANYbotics, a spinoff of the Swiss Federal Institute of Technology in Zurich (ETH Zurich). Made of carbon fibre and aluminium, it weighs about thirty kilos. It is fully ruggedised, water- and dust-proof (IP-67). A kevlar belly protects its main body, carrying its powerful brain, batteries, network device, power management system and navigational systems.
ANYmal was designed for all types of terrain, including rubble, sand or snow. It has been field tested on industrial sites and is at ease with new obstacles to overcome (and it can even get up after a fall). Depending on its mission, its batteries last 2 to 4 hours.
On its jointed legs, protected by rubber pads, it can walk (at the speed of human steps), trot, climb, curl upon itself to crawl, carry a load or even jump and dance. It is the need to move on all surfaces that has driven its designers to choose a quadruped. “Biped robots are not easy to stabilise, especially on irregular terrain” explains Dr Péter Fankhauser, co-founder and chief business development officer of ANYbotics. “Wheeled or tracked robots can carry heavy loads, but they are bulky and less agile. Flying drones are highly mobile, but cannot carry load, handle objects or operate in bad weather conditions. We believe that quadrupeds combine the optimal characteristics, both in terms of mobility and versatility.”
What served as a source of inspiration for the team behind the project, the Robotic Systems Lab of the ETH Zurich, is a champion of agility on rugged terrain: the mountain goat. “We are of course still a long way” says Fankhauser. “However, it remains our objective on the longer term.
The first prototype, ALoF, was designed already back in 2009. It was still rather slow, very rigid and clumsy – more of a proof of concept than a robot ready for application. In 2012, StarlETH, fitted with spring joints, could hop, jump and climb. It was with this robot that the team started participating in 2014 in ARGOS, a full-scale challenge, launched by the Total oil group. The idea was to present a robot capable of inspecting an off-shore drilling station autonomously.
Up against dozens of competitors, the ETH Zurich team was the only team to enter the competition with such a quadrupedal robot. They didn’t win, but the multiple field tests were growing evermore convincing. Especially because, during the challenge, the team designed new joints with elastic actuators made in-house. These joints, inspired by tendons and muscles, are compact, sealed and include their own custom control electronics. They can regulate joint torque, position and impedance directly. Thanks to this innovation, the team could enter the same competition with a new version of its robot, ANYmal, fitted with three joints on each leg.
The ARGOS experience confirms the relevance of the selected means of locomotion. “Our robot is lighter, takes up less space on site and it is less noisy” says Fankhauser. “It also overcomes bigger obstacles than larger wheeled or tracked robots!” As ANYmal generated public interest and its transformation into a genuine product seemed more than possible, the startup ANYbotics was launched in 2016. It sold not only its robot, but also its revolutionary joints, called ANYdrive.
Today, ANYmal is not yet ready for sale to companies. However, ANYbotics has a growing number of partnerships with several industries, testing the robot for a few days or several weeks, for all types of tasks. Last October, for example, ANYmal navigated its way through the dark sewage system of the city of Zurich in order to test its capacity to help workers in similar difficult, repetitive and even dangerous tasks.
Why such an early interest among companies? “Because many companies want to integrate robots into their maintenance tasks” answers Fankhauser. “With ANYmal, they can actually evaluate its feasibility and plan their strategy. Eventually, both the architecture and the equipment of buildings could be rethought to be adapted to these maintenance robots”.
ANYmal requires ruggedised, sealed and extremely reliable interconnection solutions, such as LEMO. ©ANYbotics
Through field demonstrations and testing, ANYbotics can gather masses of information (up to 50,000 measurements are recorded every second during each test!) “It helps us to shape the product.” In due time, the startup will be ready to deliver a commercial product which really caters for companies’ needs.
Inspection and surveillance tasks on industrial sites are not the only applications considered. The startup is also thinking of agricultural inspections – with its onboard sensors, ANYmal is capable of mapping its environment, measuring bio mass and even taking soil samples. In the longer term, it could also be used for search and rescue operations. By the way, the robot can already be switched to “remote control” mode at any time and can be easily tele-operated. It is also capable of live audio and video transmission.
The transition from the prototype to the marketed product stage will involve a number of further developments. These include increasing ANYmal’s agility and speed, extending its capacity to map large-scale environments, improving safety, security, user handling and integrating the system with the customer’s data management software. It will also be necessary to enhance the robot’s reliability “so that it can work for days, weeks, or even months without human supervision.” All required certifications will have to be obtained. The locomotion system, which had triggered the whole business, is only one of a number of considerations of ANYbotics.
Designed for extreme environments, for ANYmal smoke is not a problem and it can walk in the snow, through rubble or in water. ©ANYbotics
The startup is not all alone. In fact, it has sold ANYmal robots to a dozen major universities who use them to develop their know-how in robotics. The startup has also founded ANYmal Research, a community including members such as Toyota Research Institute, the German Aerospace Center and the computer company Nvidia. Members have full access to ANYmal’s control software, simulations and documentation. Sharing has boosted both software and hardware ideas and developments (built on ROS, the open-source Robot Operating System). In particular, payload variations, providing for expandability and scalability. For instance, one of the universities uses a robotic arm which enables ANYmal to grasp or handle objects and open doors.
Among possible applications, ANYbotics mentions entertainment. It is not only about playing in more films or TV series, but rather about participating in various attractions (trade shows, museums, etc.). “ANYmal is so novel that it attracts a great amount of interest” confirms Fankhauser with a smile. “Whenever we present it somewhere, people gather around.”
Videos of these events show a fascinated and sometimes slightly fearful audience, when ANYmal gets too close to them. Is it fear of the “bad robot”? “This fear exists indeed and we are happy to be able to use ANYmal also to promote public awareness towards robotics and robots.” Reminiscent of a young dog, ANYmal is truly adapted for the purpose.
However, Péter Fankhauser softens the image of humans and sophisticated robots living together. “These coming years, robots will continue to work in the background, like they have for a long time in factories. Then, they will be used in public places in a selective and targeted way, for instance for dangerous missions. We will need to wait another ten years before animal-like robots, such as ANYmal will share our everyday lives!”
At the Consumer Electronics Show (CES) in Las Vegas in January, Continental, the German automotive manufacturing company, used robots to demonstrate a last-mile delivery. It showed ANYmal getting out of an autonomous vehicle with a parcel, climbing onto the front porch, lifting a paw to ring the doorbell, depositing the parcel before getting back into the vehicle. This futuristic image seems very close indeed.
*X-Files, season 11, episode 7, aired in February 2018 Continue reading →
#435752 T-RHex Is a Hexapod Robot With ...
In Aaron Johnson’s “Robot Design & Experimentation” class at CMU, teams of students have a semester to design and build an experimental robotic system based on a theme. For spring 2019, that theme was “Bioinspired Robotics,” which is definitely one of our favorite kinds of robotics—animals can do all kinds of crazy things, and it’s always a lot of fun watching robots try to match them. They almost never succeed, of course, but even basic imitation can lead to robots with some unique capabilities.
One of the projects from this year’s course, from Team ScienceParrot, is a new version of RHex called T-RHex (pronounced T-Rex, like the dinosaur). T-RHex comes with a tail, but more importantly, it has tiny tapered toes, which help it grip onto rough surfaces like bricks, wood, and concrete. It’s able to climb its way up very steep slopes, and hang from them, relying on its toes to keep itself from falling off.
T-RHex’s toes are called microspines, and we’ve seen them in all kinds of robots. The most famous of these is probably JPL’s LEMUR IIB (which wins on sheer microspine volume), although the concept goes back at least 15 years to Stanford’s SpinyBot. Robots that use microspines to climb tend to be fairly methodical at it, since the microspines have to be engaged and disengaged with care, limiting their non-climbing mobility.
T-RHex manages to perform many of the same sorts of climbing and hanging maneuvers without losing RHex’s ability for quick, efficient wheel-leg (wheg) locomotion.
If you look closely at T-RHex walking in the video, you’ll notice that in its normal forward gait, it’s sort of walking on its ankles, rather than its toes. This means that the microspines aren’t engaged most of the time, so that the robot can use its regular wheg motion to get around. To engage the microspines, the robot moves its whegs backwards, meaning that its tail is arguably coming out of its head. But since all of T-RHex’s capability is mechanical in nature and it has no active sensors, it doesn’t really need a head, so that’s fine.
The highest climbable slope that T-RHex could manage was 55 degrees, meaning that it can’t, yet, conquer vertical walls. The researchers were most surprised by the robot’s ability to cling to surfaces, where it was perfectly happy to hang out on a slope of 135 degrees, which is a 45 degree overhang (!). I have no idea how it would ever reach that kind of position on its own, but it’s nice to know that if it ever does, its spines will keep doing their job.
Photo: CMU
T-RHex uses laser-cut acrylic legs, with the microspines embedded into 3D-printed toes. The tail is needed to prevent the robot from tipping backward.
For more details about the project, we spoke with Team ScienceParrot member (and CMU PhD student) Catherine Pavlov via email.
IEEE Spectrum: We’re used to seeing RHex with compliant, springy legs—how do the new legs affect T-RHex’s mobility?
Catherine Pavlov: There’s some compliance in the legs, though not as much as RHex—this is driven by the use of acrylic, which was chosen for budget/manufacturing reasons. Matching the compliance of RHex with acrylic would have made the tines too weak (since often only a few hold the load of the robot during climbing). It definitely means you can’t use energy storage in the legs the way RHex does, for example when pronking. T-RHex is probably more limited by motor speed in terms of mobility though. We were using some borrowed Dynamixels that didn’t allow for good positioning at high speeds.
How did you design the climbing gait? Why not use the middle legs, and why is the tail necessary?
The gait was a lot of hand-tuning and trial-and-error. We wanted a left/right symmetric gait to enable load sharing among more spines and prevent out-of-plane twisting of the legs. When using all three pairs, you have to have very accurate angular positioning or one leg pair gets pushed off the wall. Since two legs should be able to hold the full robot gait, using the middle legs was hurting more than it was helping, with the middle legs sometimes pushing the rear ones off of the wall.
The tail is needed to prevent the robot from tipping backward and “sitting” on the wall. During static testing we saw the robot tip backward, disengaging the front legs, at around 35 degrees incline. The tail allows us to load the front legs, even when they’re at a shallow angle to the surface. The climbing gait we designed uses the tail to allow the rear legs to fully recirculate without the robot tipping backward.
Photo: CMU
Team ScienceParrot with T-RHex.
What prevents T-RHex from climbing even steeper surfaces?
There are a few limiting factors. One is that the tines of the legs break pretty easily. I think we also need a lighter platform to get fully vertical—we’re going to look at MiniRHex for future work. We’re also not convinced our gait is the best it can be, we can probably get marginal improvements with more tuning, which might be enough.
Can the microspines assist with more dynamic maneuvers?
Dynamic climbing maneuvers? I think that would only be possible on surfaces with very good surface adhesion and very good surface strength, but it’s certainly theoretically possible. The current instance of T-RHex would definitely break if you tried to wall jump though.
What are you working on next?
Our main target is exploring the space of materials for leg fabrication, such as fiberglass, PLA, urethanes, and maybe metallic glass. We think there’s a lot of room for improvement in the leg material and geometry. We’d also like to see MiniRHex equipped with microspines, which will require legs about half the scale of what we built for T-RHex. Longer-term improvements would be the addition of sensors e.g. for wall detection, and a reliable floor-to-wall transition and dynamic gait transitions.
[ T-RHex ] Continue reading →
#435738 Boing Goes the Trampoline Robot
There are a handful of quadrupedal robots out there that are highly dynamic, with the ability to run and jump, but those robots tend to be rather expensive and complicated, requiring powerful actuators and legs with elasticity. Boxing Wang, a Ph.D. student in the College of Control Science and Engineering at Zhejiang University in China, contacted us to share a project he’s been working to investigate quadruped jumping with simple, affordable hardware.
“The motivation for this project is quite simple,” Boxing says. “I wanted to study quadrupedal jumping control, but I didn’t have custom-made powerful actuators, and I didn’t want to have to design elastic legs. So I decided to use a trampoline to make a normal servo-driven quadruped robot to jump.”
Boxing and his colleagues had wanted to study quadrupedal running and jumping, so they built this robot with the most powerful servos they had access to: Kondo KRS6003RHV actuators, which have a maximum torque of 6 Nm. After some simple testing, it became clear that the servos were simply not fast or powerful enough to get the robot to jump, and that an elastic element was necessary to store energy to help the robot get off the ground.
“Normally, people would choose elastic legs,” says Boxing. “But nobody in my lab knew for sure how to design them. If we tried making elastic legs and we failed to make the robot jump, we couldn’t be sure whether the problem was the legs or the control algorithms. For hardware, we decided that it’s better to start with something reliable, something that definitely won’t be the source of the problem.”
As it turns out, all you need is a trampoline, an inertial measurement unit (IMU), and little tactile switches on the end of each foot to detect touch-down and lift-off events, and you can do some useful jumping research without a jumping robot. And the trampoline has other benefits as well—because it’s stiffer at the edges than at the center, for example, the robot will tend to center itself on the trampoline, and you get some warning before things go wrong.
“I can’t say that it’s a breakthrough to make a quadruped robot jump on a trampoline,” Boxing tells us. “But I believe this is useful for prototype testing, especially for people who are interested in quadrupedal jumping control but without a suitable robot at hand.”
To learn more about the project, we emailed him some additional questions.
IEEE Spectrum: Where did this idea come from?
Boxing Wang: The idea of the trampoline came while we were drinking milk tea. I don’t know why it came up, maybe someone saw a trampoline in a gym recently. And I don’t remember who proposed it exactly. It was just like someone said it unintentionally. But I realized that a trampoline would be a perfect choice. It’s reliable, easy to buy, and should have a similar dynamic model with the one of jumping with springy legs (we have briefly analyzed this in a paper). So I decided to try the trampoline.
How much do you think you can learn using a quadruped on a trampoline, instead of using a jumping quadruped?
Generally speaking, no contact surfaces are strictly rigid. They all have elasticity. So there are no essential differences between jumping on a trampoline and jumping on a rigid surface. However, using a quadruped on a trampoline can give you more information on how to make use of elasticity to make jumping easier and more efficient. You can use quadruped robots with springy legs to address the same problem, but that usually requires much more time on hardware design.
We prefer to treat the trampoline experiment as a kind of early test for further real jumping quadruped design. Unless you’re interested in designing an acrobatic robot on a trampoline, a real jumping quadruped is probably a more useful application, and that is our ultimate goal. The point of the trampoline tests is to develop the control algorithms first, and to examine the stability of the general hardware structure. Due to the similarity between jumping on a trampoline with rigid legs and jumping on hard surfaces with springy legs, the control algorithms you develop could be transferred to hard-surface jumping robots.
“Unless you’re interested in designing an acrobatic robot on a trampoline, a real jumping quadruped is probably a more useful application, and that is our ultimate goal. The point of the trampoline tests is to develop the control algorithms first, and to examine the stability of the general hardware structure”
Do you think that this idea can be beneficial for other kinds of robotics research?
Yes. For jumping quadrupeds with springy legs, the control algorithms could be first designed through trampoline tests using simple rigid legs. And the hardware design for elastic legs could be accelerated with the help of the control algorithms you design. In addition, we believe our work could be a good example of using a position-control robot to realize dynamic motions such as jumping, or even running.
Unlike other dynamic robots, every active joint in our robot is controlled through commercial position-control servos and not custom torque control motors. Most people don’t think that a position-control robot could perform highly dynamic motions such as jumping, because position-control motors usually mean high a gear ratio and slow response. However, our work indicates that, with the help of elasticity, stable jumping could be realized through position-control servos. So for those who already have a position-control robot at hand, they could explore the potential of their robot through trampoline tests.
Why is teaching a robot to jump important?
There are many scenarios where a jumping robot is needed. For example, a real jumping quadruped could be used to design a running quadruped. Both experience moments when all four legs are in the air, and it is easier to start from jumping and then move to running. Specifically, hopping or pronking can easily transform to bounding if the pitch angle is not strictly controlled. A bounding quadruped is similar to a running rabbit, so for now it can already be called a running quadruped.
To the best of our knowledge, a practical use of jumping quadrupeds could be planet exploration, just like what SpaceBok was designed for. In a low-gravity environment, jumping is more efficient than walking, and it’s easier to jump over obstacles. But if I had a jumping quadruped on Earth, I would teach it to catch a ball that I throw at it by jumping. It would be fantastic!
That would be fantastic.
Since the whole point of the trampoline was to get jumping software up and running with a minimum of hardware, the next step is to add some springy legs to the robot so that the control system the researchers developed can be tested on hard surfaces. They have a journal paper currently under revision, and Boxing Wang is joined as first author by his adviser Chunlin Zhou, undergrads Ziheng Duan and Qichao Zhu, and researchers Jun Wu and Rong Xiong. Continue reading →