Tag Archives: recognize
#437667 17 Teams to Take Part in DARPA’s ...
Among all of the other in-person events that have been totally wrecked by COVID-19 is the Cave Circuit of the DARPA Subterranean Challenge. DARPA has already hosted the in-person events for the Tunnel and Urban SubT circuits (see our previous coverage here), and the plan had always been for a trio of events representing three uniquely different underground environments in advance of the SubT Finals, which will somehow combine everything into one bonkers course.
While the SubT Urban Circuit event snuck in just under the lockdown wire in late February, DARPA made the difficult (but prudent) decision to cancel the in-person Cave Circuit event. What this means is that there will be no Systems Track Cave competition, which is a serious disappointment—we were very much looking forward to watching teams of robots navigating through an entirely unpredictable natural environment with a lot of verticality. Fortunately, DARPA is still running a Virtual Cave Circuit, and 17 teams will be taking part in this competition featuring a simulated cave environment that’s as dynamic and detailed as DARPA can make it.
From DARPA’s press releases:
DARPA’s Subterranean (SubT) Challenge will host its Cave Circuit Virtual Competition, which focuses on innovative solutions to map, navigate, and search complex, simulated cave environments November 17. Qualified teams have until Oct. 15 to develop and submit software-based solutions for the Cave Circuit via the SubT Virtual Portal, where their technologies will face unknown cave environments in the cloud-based SubT Simulator. Until then, teams can refine their roster of selected virtual robot models, choose sensor payloads, and continue to test autonomy approaches to maximize their score.
The Cave Circuit also introduces new simulation capabilities, including digital twins of Systems Competition robots to choose from, marsupial-style platforms combining air and ground robots, and breadcrumb nodes that can be dropped by robots to serve as communications relays. Each robot configuration has an associated cost, measured in SubT Credits – an in-simulation currency – based on performance characteristics such as speed, mobility, sensing, and battery life.
Each team’s simulated robots must navigate realistic caves, with features including natural terrain and dynamic rock falls, while they search for and locate various artifacts on the course within five meters of accuracy to score points during a 60-minute timed run. A correct report is worth one point. Each course contains 20 artifacts, which means each team has the potential for a maximum score of 20 points. Teams can leverage numerous practice worlds and even build their own worlds using the cave tiles found in the SubT Tech Repo to perfect their approach before they submit one official solution for scoring. The DARPA team will then evaluate the solution on a set of hidden competition scenarios.
Of the 17 qualified teams (you can see all of them here), there are a handful that we’ll quickly point out. Team BARCS, from Michigan Tech, was the winner of the SubT Virtual Urban Circuit, meaning that they may be the team to beat on Cave as well, although the course is likely to be unique enough that things will get interesting. Some Systems Track teams to watch include Coordinated Robotics, CTU-CRAS-NORLAB, MARBLE, NUS SEDS, and Robotika, and there are also a handful of brand new teams as well.
Now, just because there’s no dedicated Cave Circuit for the Systems Track teams, it doesn’t mean that there won’t be a Cave component (perhaps even a significant one) in the final event, which as far as we know is still scheduled to happen in fall of next year. We’ve heard that many of the Systems Track teams have been testing out their robots in caves anyway, and as the virtual event gets closer, we’ll be doing a sort of Virtual Systems Track series that highlights how different teams are doing mock Cave Circuits in caves they’ve found for themselves.
For more, we checked in with DARPA SubT program manager Dr. Timothy H. Chung.
IEEE Spectrum: Was it a difficult decision to cancel the Systems Track for Cave?
Tim Chung: The decision to go virtual only was heart wrenching, because I think DARPA’s role is to offer up opportunities that may be unimaginable for some of our competitors, like opening up a cave-type site for this competition. We crawled and climbed through a number of these sites, and I share the sense of disappointment that both our team and the competitors have that we won’t be able to share all the advances that have been made since the Urban Circuit. But what we’ve been able to do is pour a lot of our energy and the insights that we got from crawling around in those caves into what’s going to be a really great opportunity on the Virtual Competition side. And whether it’s a global pandemic, or just lack of access to physical sites like caves, virtual environments are an opportunity that we want to develop.
“The simulator offers us a chance to look at where things could be … it really allows for us to find where some of those limits are in the technology based only on our imagination.”
—Timothy H. Chung, DARPA
What kind of new features will be included in the Virtual Cave Circuit for this competition?
I’m really excited about these particular features because we’re seeing an opportunity for increased synergy between the physical and the virtual. The first I’d say is that we scanned some of the Systems Track robots using photogrammetry and combined that with some additional models that we got from the systems competitors themselves to turn their systems robots into virtual models. We often talk about the sim to real transfer and how successful we can get a simulation to transfer over to the physical world, but now we’ve taken something from the physical world and made it virtual. We’ve validated the controllers as well as the kinematics of the robots, we’ve iterated with the systems competitors themselves, and now we have these 13 robots (air and ground) in the SubT Tech Repo that now all virtual competitors can take advantage of.
We also have additional robot capability. Those comms bread crumbs are common among many of the competitors, so we’ve adopted that in the virtual world, and now you have comms relay nodes that are baked in to the SubT Simulator—you can have either six or twelve comms nodes that you can drop from a variety of our ground robot platforms. We have the marsupial deployment capability now, so now we have parent ground robots that can be mixed and matched with different child drones to become marsupial pairs.
And this is something I’ve been planning for for a while: we now have the ability to trigger things like rock falls. They still don’t quite look like Indiana Jones with the boulder coming down the corridor, but this comes really close. In addition to it just being an interesting and realistic consideration, we get to really dynamically test and stress the robots’ ability to navigate and recognize that something has changed in the environment and respond to it.
Image: DARPA
DARPA is still running a Virtual Cave Circuit, and 17 teams will be taking part in this competition featuring a simulated cave environment.
No simulation is perfect, so can you talk to us about what kinds of things aren’t being simulated right now? Where does the simulator not match up to reality?
I think that question is foundational to any conversation about simulation. I’ll give you a couple of examples:
We have the ability to represent wholesale damage to a robot, but it’s not at the actuator or component level. So there’s not a reliability model, although I think that would be really interesting to incorporate so that you could do assessments on things like mean time to failure. But if a robot falls off a ledge, it can be disabled by virtue of being too damaged to continue.
With communications, and this is one that’s near and dear not only to my heart but also to all of those that have lived through developing communication systems and robotic systems, we’ve gone through and conducted RF surveys of underground environments to get a better handle on what propagation effects are. There’s a lot of research that has gone into this, and trying to carry through some of that realism, we do have path loss models for RF communications baked into the SubT Simulator. For example, when you drop a bread crumb node, it’s using a path loss model so that it can represent the degradation of signal as you go farther into a cave. Now, we’re not modeling it at the Maxwell equations level, which I think would be awesome, but we’re not quite there yet.
We do have things like battery depletion, sensor degradation to the extent that simulators can degrade sensor inputs, and things like that. It’s just amazing how close we can get in some places, and how far away we still are in others, and I think showing where the limits are of how far you can get simulation is all part and parcel of why SubT Challenge wants to have both System and Virtual tracks. Simulation can be an accelerant, but it’s not going to be the panacea for development and innovation, and I think all the competitors are cognizant those limitations.
One of the most amazing things about the SubT Virtual Track is that all of the robots operate fully autonomously, without the human(s) in the loop that the System Track teams have when they compete. Why make the Virtual Track even more challenging in that way?
I think it’s one of the defining, delineating attributes of the Virtual Track. Our continued vision for the simulation side is that the simulator offers us a chance to look at where things could be, and allows for us to explore things like larger scales, or increased complexity, or types of environments that we can’t physically gain access to—it really allows for us to find where some of those limits are in the technology based only on our imagination, and this is one of the intrinsic values of simulation.
But I think finding a way to incorporate human input, or more generally human factors like teleoperation interfaces and the in-situ stress that you might not be able to recreate in the context of a virtual competition provided a good reason for us to delineate the two competitions, with the Virtual Competition really being about the role of fully autonomous or self-sufficient systems going off and doing their solution without human guidance, while also acknowledging that the real world has conditions that would not necessarily be represented by a fully simulated version. Having said that, I think cognitive engineering still has an incredibly important role to play in human robot interaction.
What do we have to look forward to during the Virtual Competition Showcase?
We have a number of additional features and capabilities that we’ve baked into the simulator that will allow for us to derive some additional insights into our competition runs. Those insights might involve things like the performance of one or more robots in a given scenario, or the impact of the environment on different types of robots, and what I can tease is that this will be an opportunity for us to showcase both the technology and also the excitement of the robots competing in the virtual environment. I’m trying not to give too many spoilers, but we’ll have an opportunity to really get into the details.
Check back as we get closer to the 17 November event for more on the DARPA SubT Challenge. Continue reading
#437466 How Future AI Could Recognize a Kangaroo ...
AI is continuously taking on new challenges, from detecting deepfakes (which, incidentally, are also made using AI) to winning at poker to giving synthetic biology experiments a boost. These impressive feats result partly from the huge datasets the systems are trained on. That training is costly and time-consuming, and it yields AIs that can really only do one thing well.
For example, to train an AI to differentiate between a picture of a dog and one of a cat, it’s fed thousands—if not millions—of labeled images of dogs and cats. A child, on the other hand, can see a dog or cat just once or twice and remember which is which. How can we make AIs learn more like children do?
A team at the University of Waterloo in Ontario has an answer: change the way AIs are trained.
Here’s the thing about the datasets normally used to train AI—besides being huge, they’re highly specific. A picture of a dog can only be a picture of a dog, right? But what about a really small dog with a long-ish tail? That sort of dog, while still being a dog, looks more like a cat than, say, a fully-grown Golden Retriever.
It’s this concept that the Waterloo team’s methodology is based on. They described their work in a paper published on the pre-print (or non-peer-reviewed) server arXiv last month. Teaching an AI system to identify a new class of objects using just one example is what they call “one-shot learning.” But they take it a step further, focusing on “less than one shot learning,” or LO-shot learning for short.
LO-shot learning consists of a system learning to classify various categories based on a number of examples that’s smaller than the number of categories. That’s not the most straightforward concept to wrap your head around, so let’s go back to the dogs and cats example. Say you want to teach an AI to identify dogs, cats, and kangaroos. How could that possibly be done without several clear examples of each animal?
The key, the Waterloo team says, is in what they call soft labels. Unlike hard labels, which label a data point as belonging to one specific class, soft labels tease out the relationship or degree of similarity between that data point and multiple classes. In the case of an AI trained on only dogs and cats, a third class of objects, say, kangaroos, might be described as 60 percent like a dog and 40 percent like a cat (I know—kangaroos probably aren’t the best animal to have thrown in as a third category).
“Soft labels can be used to represent training sets using fewer prototypes than there are classes, achieving large increases in sample efficiency over regular (hard-label) prototypes,” the paper says. Translation? Tell an AI a kangaroo is some fraction cat and some fraction dog—both of which it’s seen and knows well—and it’ll be able to identify a kangaroo without ever having seen one.
If the soft labels are nuanced enough, you could theoretically teach an AI to identify a large number of categories based on a much smaller number of training examples.
The paper’s authors use a simple machine learning algorithm called k-nearest neighbors (kNN) to explore this idea more in depth. The algorithm operates under the assumption that similar things are most likely to exist near each other; if you go to a dog park, there will be lots of dogs but no cats or kangaroos. Go to the Australian grasslands and there’ll be kangaroos but no cats or dogs. And so on.
To train a kNN algorithm to differentiate between categories, you choose specific features to represent each category (i.e. for animals you could use weight or size as a feature). With one feature on the x-axis and the other on the y-axis, the algorithm creates a graph where data points that are similar to each other are clustered near each other. A line down the center divides the categories, and it’s pretty straightforward for the algorithm to discern which side of the line new data points should fall on.
The Waterloo team kept it simple and used plots of color on a 2D graph. Using the colors and their locations on the graphs, the team created synthetic data sets and accompanying soft labels. One of the more simplistic graphs is pictured below, along with soft labels in the form of pie charts.
Image Credit: Ilia Sucholutsky & Matthias Schonlau
When the team had the algorithm plot the boundary lines of the different colors based on these soft labels, it was able to split the plot up into more colors than the number of data points it was given in the soft labels.
While the results are encouraging, the team acknowledges that they’re just the first step, and there’s much more exploration of this concept yet to be done. The kNN algorithm is one of the least complex models out there; what might happen when LO-shot learning is applied to a far more complex algorithm? Also, to apply it, you still need to distill a larger dataset down into soft labels.
One idea the team is already working on is having other algorithms generate the soft labels for the algorithm that’s going to be trained using LO-shot; manually designing soft labels won’t always be as easy as splitting up some pie charts into different colors.
LO-shot’s potential for reducing the amount of training data needed to yield working AI systems is promising. Besides reducing the cost and the time required to train new models, the method could also make AI more accessible to industries, companies, or individuals who don’t have access to large datasets—an important step for democratization of AI.
Image Credit: pen_ash from Pixabay Continue reading
#437454 Scientists develop ...
Using a brain-inspired approach, scientists from Nanyang Technological University, Singapore (NTU Singapore) have developed a way for robots to have the artificial intelligence (AI) to recognize pain and to self-repair when damaged. Continue reading