Tag Archives: reality

#437261 How AI Will Make Drug Discovery ...

If you had to guess how long it takes for a drug to go from an idea to your pharmacy, what would you guess? Three years? Five years? How about the cost? $30 million? $100 million?

Well, here’s the sobering truth: 90 percent of all drug possibilities fail. The few that do succeed take an average of 10 years to reach the market and cost anywhere from $2.5 billion to $12 billion to get there.

But what if we could generate novel molecules to target any disease, overnight, ready for clinical trials? Imagine leveraging machine learning to accomplish with 50 people what the pharmaceutical industry can barely do with an army of 5,000.

Welcome to the future of AI and low-cost, ultra-fast, and personalized drug discovery. Let’s dive in.

GANs & Drugs
Around 2012, computer scientist-turned-biophysicist Alex Zhavoronkov started to notice that artificial intelligence was getting increasingly good at image, voice, and text recognition. He knew that all three tasks shared a critical commonality. In each, massive datasets were available, making it easy to train up an AI.

But similar datasets were present in pharmacology. So, back in 2014, Zhavoronkov started wondering if he could use these datasets and AI to significantly speed up the drug discovery process. He’d heard about a new technique in artificial intelligence known as generative adversarial networks (or GANs). By pitting two neural nets against one another (adversarial), the system can start with minimal instructions and produce novel outcomes (generative). At the time, researchers had been using GANs to do things like design new objects or create one-of-a-kind, fake human faces, but Zhavoronkov wanted to apply them to pharmacology.

He figured GANs would allow researchers to verbally describe drug attributes: “The compound should inhibit protein X at concentration Y with minimal side effects in humans,” and then the AI could construct the molecule from scratch. To turn his idea into reality, Zhavoronkov set up Insilico Medicine on the campus of Johns Hopkins University in Baltimore, Maryland, and rolled up his sleeves.

Instead of beginning their process in some exotic locale, Insilico’s “drug discovery engine” sifts millions of data samples to determine the signature biological characteristics of specific diseases. The engine then identifies the most promising treatment targets and—using GANs—generates molecules (that is, baby drugs) perfectly suited for them. “The result is an explosion in potential drug targets and a much more efficient testing process,” says Zhavoronkov. “AI allows us to do with fifty people what a typical drug company does with five thousand.”

The results have turned what was once a decade-long war into a month-long skirmish.

In late 2018, for example, Insilico was generating novel molecules in fewer than 46 days, and this included not just the initial discovery, but also the synthesis of the drug and its experimental validation in computer simulations.

Right now, they’re using the system to hunt down new drugs for cancer, aging, fibrosis, Parkinson’s, Alzheimer’s, ALS, diabetes, and many others. The first drug to result from this work, a treatment for hair loss, is slated to start Phase I trials by the end of 2020.

They’re also in the early stages of using AI to predict the outcomes of clinical trials in advance of the trial. If successful, this technique will enable researchers to strip a bundle of time and money out of the traditional testing process.

Protein Folding
Beyond inventing new drugs, AI is also being used by other scientists to identify new drug targets—that is, the place to which a drug binds in the body and another key part of the drug discovery process.

Between 1980 and 2006, despite an annual investment of $30 billion, researchers only managed to find about five new drug targets a year. The trouble is complexity. Most potential drug targets are proteins, and a protein’s structure—meaning the way a 2D sequence of amino acids folds into a 3D protein—determines its function.

But a protein with merely a hundred amino acids (a rather small protein) can produce a googol-cubed worth of potential shapes—that’s a one followed by three hundred zeroes. This is also why protein-folding has long been considered an intractably hard problem for even the most powerful of supercomputers.

Back in 1994, to monitor supercomputers’ progress in protein-folding, a biannual competition was created. Until 2018, success was fairly rare. But then the creators of DeepMind turned their neural networks loose on the problem. They created an AI that mines enormous datasets to determine the most likely distance between a protein’s base pairs and the angles of their chemical bonds—aka, the basics of protein-folding. They called it AlphaFold.

On its first foray into the competition, contestant AIs were given 43 protein-folding problems to solve. AlphaFold got 25 right. The second-place team managed a meager three. By predicting the elusive ways in which various proteins fold on the basis of their amino acid sequences, AlphaFold may soon have a tremendous impact in aiding drug discovery and fighting some of today’s most intractable diseases.

Drug Delivery
Another theater of war for improved drugs is the realm of drug delivery. Even here, converging exponential technologies are paving the way for massive implications in both human health and industry shifts.

One key contender is CRISPR, the fast-advancing gene-editing technology that stands to revolutionize synthetic biology and treatment of genetically linked diseases. And researchers have now demonstrated how this tool can be applied to create materials that shape-shift on command. Think: materials that dissolve instantaneously when faced with a programmed stimulus, releasing a specified drug at a highly targeted location.

Yet another potential boon for targeted drug delivery is nanotechnology, whereby medical nanorobots have now been used to fight incidences of cancer. In a recent review of medical micro- and nanorobotics, lead authors (from the University of Texas at Austin and University of California, San Diego) found numerous successful tests of in vivo operation of medical micro- and nanorobots.

Drugs From the Future
Covid-19 is uniting the global scientific community with its urgency, prompting scientists to cast aside nation-specific territorialism, research secrecy, and academic publishing politics in favor of expedited therapeutic and vaccine development efforts. And in the wake of rapid acceleration across healthcare technologies, Big Pharma is an area worth watching right now, no matter your industry. Converging technologies will soon enable extraordinary strides in longevity and disease prevention, with companies like Insilico leading the charge.

Riding the convergence of massive datasets, skyrocketing computational power, quantum computing, cognitive surplus capabilities, and remarkable innovations in AI, we are not far from a world in which personalized drugs, delivered directly to specified targets, will graduate from science fiction to the standard of care.

Rejuvenational biotechnology will be commercially available sooner than you think. When I asked Alex for his own projection, he set the timeline at “maybe 20 years—that’s a reasonable horizon for tangible rejuvenational biotechnology.”

How might you use an extra 20 or more healthy years in your life? What impact would you be able to make?

Join Me
(1) A360 Executive Mastermind: If you’re an exponentially and abundance-minded entrepreneur who would like coaching directly from me, consider joining my Abundance 360 Mastermind, a highly selective community of 360 CEOs and entrepreneurs who I coach for 3 days every January in Beverly Hills, Ca. Through A360, I provide my members with context and clarity about how converging exponential technologies will transform every industry. I’m committed to running A360 for the course of an ongoing 25-year journey as a “countdown to the Singularity.”

If you’d like to learn more and consider joining our 2021 membership, apply here.

(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs—those who want to get involved and play at a higher level. Click here to learn more.

(Both A360 and Abundance-Digital are part of Singularity University—your participation opens you to a global community.)

This article originally appeared on diamandis.com. Read the original article here.

Image Credit: andreas160578 from Pixabay Continue reading

Posted in Human Robots

#437230 How Drones and Aerial Vehicles Could ...

Drones, personal flying vehicles, and air taxis may be part of our everyday life in the very near future. Drones and air taxis will create new means of mobility and transport routes. Drones will be used for surveillance, delivery, and in the construction sector as it moves towards automation.

The introduction of these aerial craft into cities will require the built environment to change dramatically. Drones and other new aerial vehicles will require landing pads, charging points, and drone ports. They could usher in new styles of building, and lead to more sustainable design.

My research explores the impact of aerial vehicles on urban design, mapping out possible future trajectories.

An Aerial Age
Already, civilian drones can vary widely in size and complexity. They can carry a range of items from high-resolution cameras, delivery mechanisms, and thermal image technology to speakers and scanners. In the public sector, drones are used in disaster response and by the fire service to tackle fires which could endanger firefighters.

During the coronavirus pandemic, drones have been used by the police to enforce lockdown. Drones normally used in agriculture have sprayed disinfectant over cities. In the UK, drone delivery trials are taking place to carry medical items to the Isle of Wight.

Alongside drones, our future cities could also be populated by vertical takeoff and landing craft (VTOL), used as private vehicles and air taxis.

These vehicles are familiar to sci-fi fans. The late Syd Mead’s illustrations of the Spinner VTOL craft in the film Blade Runner captured the popular imagination, and the screens for the Spinners in Blade Runner 2049 created by Territory Studio provided a careful design fiction of the experience of piloting these types of vehicle.

Now, though, these flying vehicles are reality. A number of companies are developing eVTOL with electric multi-rotor jets, and a whole new motorsport is being established around them.

These aircraft have the potential to change our cities. However, they need to be tested extensively in urban airspace. A study conducted by Airbus found that public concerns about VTOL use focused on the safety of those on the ground and noise emissions.

New Cities
The widespread adoption of drones and VTOL will lead to new architecture and infrastructure. Existing buildings will require adaptations: landing pads, solar photovoltaic panels for energy efficiency, charging points for delivery drones, and landscaping to mitigate noise emissions.

A number of companies are already trialing drone delivery services. Existing buildings will need to be adapted to accommodate these new networks, and new design principles will have to be implemented in future ones.

The architect Saúl Ajuria Fernández has developed a design for a delivery drone port hub. This drone port acts like a beehive where drones recharge and collect parcels for distribution. Architectural firm Humphreys & Partners’ Pier 2, a design for a modular apartment building of the future, includes a cantilevered drone port for delivery services.

The Norman Foster Foundation has designed a drone port for delivery of medical supplies and other items for rural communities in Rwanda. The structure is also intended to function as a space for the public to congregate, as well as to receive training in robotics.

Drones may also help the urban environment become more sustainable. Researchers at the University of Stuttgart have developed a re-configurable architectural roof canopy system deployed by drones. By adjusting to follow the direction of the sun, the canopy provides shade and reduces reliance on ventilation systems.

Demand for air taxis and personal flying vehicles will develop where failures in other transport systems take place. The Airbus research found that of the cities surveyed, highest demand for VTOLs was in Los Angeles and Mexico City, urban areas famous for traffic pollution. To accommodate these aerial vehicles, urban space will need to transform to include landing pads, airport-like infrastructure, and recharge points.

Furthermore, this whole logistics system in lower airspace (below 500 feet), or what I term “hover space,” will need an urban traffic management system. One great example of how this hover space could work can be seen in a speculative project from design studio Superflux in their Drone Aviary project. A number of drones with different functions move around an urban area in a network, following different paths at varying heights.

We are at a critical period in urban history, faced by climatic breakdown and pandemic. Drones and aerial vehicles can be part of a profound rethink of the urban environment.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: NASA Continue reading

Posted in Human Robots

#437224 This Week’s Awesome Tech Stories From ...

VIRTUAL REALITY
How Holographic Tech Is Shrinking VR Displays to the Size of Sunglasses
Kyle Orland | Ars Technica
“…researchers at Facebook Reality Labs are using holographic film to create a prototype VR display that looks less like ski goggles and more like lightweight sunglasses. With a total thickness less than 9mm—and without significant compromises on field of view or resolution—these displays could one day make today’s bulky VR headset designs completely obsolete.”

TRANSPORTATION
Stock Surge Makes Tesla the World’s Most Valuable Automaker
Timothy B. Lee | Ars Technica
“It’s a remarkable milestone for a company that sells far fewer cars than its leading rivals. …But Wall Street is apparently very optimistic about Tesla’s prospects for future growth and profits. Many experts expect a global shift to battery electric vehicles over the next decade or two, and Tesla is leading that revolution.”

FUTURE OF FOOD
These Plant-Based Steaks Come Out of a 3D Printer
Adele Peters | Fast Company
“The startup, launched by cofounders who met while developing digital printers at HP, created custom 3D printers that aim to replicate meat by printing layers of what they call ‘alt-muscle,’ ‘alt-fat,’ and ‘alt-blood,’ forming a complex 3D model.”

AUTOMATION
The US Air Force Is Turning Old F-16s Into AI-Powered Fighters
Amit Katwala | Wired UK
“Maverick’s days are numbered. The long-awaited sequel to Top Gun is due to hit cinemas in December, but the virtuoso fighter pilots at its heart could soon be a thing of the past. The trustworthy wingman will soon be replaced by artificial intelligence, built into a drone, or an existing fighter jet with no one in the cockpit.”

ROBOTICS
NASA Wants to Build a Steam-Powered Hopping Robot to Explore Icy Worlds
Georgina Torbet | Digital Trends
“A bouncing, ball-like robot that’s powered by steam sounds like something out of a steampunk fantasy, but it could be the ideal way to explore some of the distant, icy environments of our solar system. …This round robot would be the size of a soccer ball, with instruments held in the center of a metal cage, and it would use steam-powered thrusters to make jumps from one area of terrain to the next.”

FUTURE
Could Teleporting Ever Work?
Daniel Kolitz | Gizmodo
“Have the major airlines spent decades suppressing teleportation research? Have a number of renowned scientists in the field of teleportation studies disappeared under mysterious circumstances? Is there a cork board at the FBI linking Delta Airlines, shady foreign security firms, and dozens of murdered research professors? …No. None of that is the case. Which begs the question: why doesn’t teleportation exist yet?”

ENERGY
Nuclear ‘Power Balls’ Could Make Meltdowns a Thing of the Past
Daniel Oberhaus | Wired
“Not only will these reactors be smaller and more efficient than current nuclear power plants, but their designers claim they’ll be virtually meltdown-proof. Their secret? Millions of submillimeter-size grains of uranium individually wrapped in protective shells. It’s called triso fuel, and it’s like a radioactive gobstopper.”

TECHNOLOGY
A Plan to Redesign the Internet Could Make Apps That No One Controls
Will Douglas Heaven | MIT Techology Review
“[John Perry] Barlow’s ‘home of Mind’ is ruled today by the likes of Google, Facebook, Amazon, Alibaba, Tencent, and Baidu—a small handful of the biggest companies on earth. Yet listening to the mix of computer scientists and tech investors speak at an online event on June 30 hosted by the Dfinity Foundation…it is clear that a desire for revolution is brewing.”

IMPACT
To Save the World, the UN Is Turning It Into a Computer Simulation
Will Bedingfield | Wired
“The UN has now announced its new secret recipe to achieve [its 17 sustainable development goals or SDGs]: a computer simulation called Policy Priority Inference (PPI). …PPI is a budgeting software—it simulates a government and its bureaucrats as they allocate money on projects that might move a country closer to an SDG.”

Image credit: Benjamin Suter / Unsplash Continue reading

Posted in Human Robots

#437204 Artificial skin heals wounds and makes ...

Imagine a dressing that releases antibiotics on demand and absorbs excessive wound exudate at the same time. Researchers at Eindhoven University of Technology hope to achieve just that, by developing a smart coating that actively releases and absorbs multiple fluids, triggered by a radio signal. This material is not only beneficial for the health care industry, it is also very promising in the field of robotics or even virtual reality. Continue reading

Posted in Human Robots

#436944 Is Digital Learning Still Second Best?

As Covid-19 continues to spread, the world has gone digital on an unprecedented scale. Tens of thousands of employees are working from home, and huge conferences, like the Google I/O and Apple WWDC software extravaganzas, plan to experiment with digital events.

Universities too are sending students home. This might have meant an extended break from school not too long ago. But no more. As lecture halls go empty, an experiment into digital learning at scale is ramping up. In the US alone, over 100 universities, from Harvard to Duke, are offering online classes to students to keep the semester going.

While digital learning has been improving for some time, Covid-19 may not only tip us further into a more digitally connected reality, but also help us better appreciate its benefits. This is important because historically, digital learning has been viewed as inferior to traditional learning. But that may be changing.

The Inversion
We often think about digital technologies as ways to reach people without access to traditional services—online learning for children who don’t have schools nearby or telemedicine for patients with no access to doctors. And while these solutions have helped millions of people, they’re often viewed as “second best” and “better than nothing.” Even in more resource-rich environments, there’s an assumption one should pay more to attend an event in person—a concert, a football game, an exercise class—while digital equivalents are extremely cheap or free. Why is this? And is the situation about to change?

Take the case of Dr. Sanjeev Arora, a professor of medicine at the University of New Mexico. Arora started Project Echo because he was frustrated by how many late-stage cases of hepatitis C he encountered in rural New Mexico. He realized that if he had reached patients sooner, he could have prevented needless deaths. The solution? Digital learning for local health workers.

Project Echo connects rural healthcare practitioners to specialists at top health centers by video. The approach is collaborative: Specialists share best practices and work through cases with participants to apply them in the real world and learn from edge cases. Added to expert presentations, there are lots of opportunities to ask questions and interact with specialists.

The method forms a digital loop of learning, practice, assessment, and adjustment.

Since 2003, Project Echo has scaled to 800 locations in 39 countries and trained over 90,000 healthcare providers. Most notably, a study in The New England Journal of Medicine found that the outcomes of hepatitis C treatment given by Project Echo trained healthcare workers in rural and underserved areas were similar to outcomes at university medical centers. That is, digital learning in this context was equivalent to high quality in-person learning.

If that is possible today, with simple tools, will they surpass traditional medical centers and schools in the future? Can digital learning more generally follow suit and have the same success? Perhaps. Going digital brings its own special toolset to the table too.

The Benefits of Digital
If you’re training people online, you can record the session to better understand their engagement levels—or even add artificial intelligence to analyze it in real time. Ahura AI, for example, founded by Bryan Talebi, aims to upskill workers through online training. Early study of their method suggests they can significantly speed up learning by analyzing users’ real-time emotions—like frustration or distraction—and adjusting the lesson plan or difficulty on the fly.

Other benefits of digital learning include the near-instantaneous download of course materials—rather than printing and shipping books—and being able to more easily report grades and other results, a requirement for many schools and social services organizations. And of course, as other digitized industries show, digital learning can grow and scale further at much lower costs.

To that last point, 360ed, a digital learning startup founded in 2016 by Hla Hla Win, now serves millions of children in Myanmar with augmented reality lesson plans. And Global Startup Ecosystem, founded by Christine Souffrant Ntim and Einstein Kofi Ntim in 2015, is the world’s first and largest digital accelerator program. Their entirely online programs support over 1,000 companies in 90 countries. It’s astonishing how fast both of these organizations have grown.

Notably, both examples include offline experiences too. Many of the 360ed lesson plans come with paper flashcards children use with their smartphones because the online-offline interaction improves learning. The Global Startup Ecosystem also hosts about 10 additional in-person tech summits around the world on various topics through a related initiative.

Looking further ahead, probably the most important benefit of online learning will be its potential to integrate with other digital systems in the workplace.

Imagine a medical center that has perfect information about every patient and treatment in real time and that this information is (anonymously and privately) centralized, analyzed, and shared with medical centers, research labs, pharmaceutical companies, clinical trials, policy makers, and medical students around the world. Just as self-driving cars can learn to drive better by having access to the experiences of other self-driving cars, so too can any group working to solve complex, time-sensitive challenges learn from and build on each other’s experiences.

Why This Matters
While in the long term the world will likely end up combining the best aspects of traditional and digital learning, it’s important in the near term to be more aware of the assumptions we make about digital technologies. Some of the most pioneering work in education, healthcare, and other industries may not be highly visible right now because it is in a virtual setting. Most people are unaware, for example, that the busiest emergency room in rural America is already virtual.

Once they start converging with other digital technologies, these innovations will likely become the mainstream system for all of us. Which raises more questions: What is the best business model for these virtual services? If they start delivering better healthcare and educational outcomes than traditional institutions, should they charge more? Hopefully, we will see an even bigger shift occurring, in which technology allows us to provide high quality education, healthcare, and other services to everyone at more affordable prices than today.

These are some of the topics we can consider as Covid-19 forces us into uncharted territory.

Image Credit: Andras Vas / Unsplash Continue reading

Posted in Human Robots