Tag Archives: real

#430761 How Robots Are Getting Better at Making ...

The multiverse of science fiction is populated by robots that are indistinguishable from humans. They are usually smarter, faster, and stronger than us. They seem capable of doing any job imaginable, from piloting a starship and battling alien invaders to taking out the trash and cooking a gourmet meal.
The reality, of course, is far from fantasy. Aside from industrial settings, robots have yet to meet The Jetsons. The robots the public are exposed to seem little more than over-sized plastic toys, pre-programmed to perform a set of tasks without the ability to interact meaningfully with their environment or their creators.
To paraphrase PayPal co-founder and tech entrepreneur Peter Thiel, we wanted cool robots, instead we got 140 characters and Flippy the burger bot. But scientists are making progress to empower robots with the ability to see and respond to their surroundings just like humans.
Some of the latest developments in that arena were presented this month at the annual Robotics: Science and Systems Conference in Cambridge, Massachusetts. The papers drilled down into topics that ranged from how to make robots more conversational and help them understand language ambiguities to helping them see and navigate through complex spaces.
Improved Vision
Ben Burchfiel, a graduate student at Duke University, and his thesis advisor George Konidaris, an assistant professor of computer science at Brown University, developed an algorithm to enable machines to see the world more like humans.
In the paper, Burchfiel and Konidaris demonstrate how they can teach robots to identify and possibly manipulate three-dimensional objects even when they might be obscured or sitting in unfamiliar positions, such as a teapot that has been tipped over.
The researchers trained their algorithm by feeding it 3D scans of about 4,000 common household items such as beds, chairs, tables, and even toilets. They then tested its ability to identify about 900 new 3D objects just from a bird’s eye view. The algorithm made the right guess 75 percent of the time versus a success rate of about 50 percent for other computer vision techniques.
In an email interview with Singularity Hub, Burchfiel notes his research is not the first to train machines on 3D object classification. How their approach differs is that they confine the space in which the robot learns to classify the objects.
“Imagine the space of all possible objects,” Burchfiel explains. “That is to say, imagine you had tiny Legos, and I told you [that] you could stick them together any way you wanted, just build me an object. You have a huge number of objects you could make!”
The infinite possibilities could result in an object no human or machine might recognize.
To address that problem, the researchers had their algorithm find a more restricted space that would host the objects it wants to classify. “By working in this restricted space—mathematically we call it a subspace—we greatly simplify our task of classification. It is the finding of this space that sets us apart from previous approaches.”
Following Directions
Meanwhile, a pair of undergraduate students at Brown University figured out a way to teach robots to understand directions better, even at varying degrees of abstraction.
The research, led by Dilip Arumugam and Siddharth Karamcheti, addressed how to train a robot to understand nuances of natural language and then follow instructions correctly and efficiently.
“The problem is that commands can have different levels of abstraction, and that can cause a robot to plan its actions inefficiently or fail to complete the task at all,” says Arumugam in a press release.
In this project, the young researchers crowdsourced instructions for moving a virtual robot through an online domain. The space consisted of several rooms and a chair, which the robot was told to manipulate from one place to another. The volunteers gave various commands to the robot, ranging from general (“take the chair to the blue room”) to step-by-step instructions.
The researchers then used the database of spoken instructions to teach their system to understand the kinds of words used in different levels of language. The machine learned to not only follow instructions but to recognize the level of abstraction. That was key to kickstart its problem-solving abilities to tackle the job in the most appropriate way.
The research eventually moved from virtual pixels to a real place, using a Roomba-like robot that was able to respond to instructions within one second 90 percent of the time. Conversely, when unable to identify the specificity of the task, it took the robot 20 or more seconds to plan a task about 50 percent of the time.
One application of this new machine-learning technique referenced in the paper is a robot worker in a warehouse setting, but there are many fields that could benefit from a more versatile machine capable of moving seamlessly between small-scale operations and generalized tasks.
“Other areas that could possibly benefit from such a system include things from autonomous vehicles… to assistive robotics, all the way to medical robotics,” says Karamcheti, responding to a question by email from Singularity Hub.
More to Come
These achievements are yet another step toward creating robots that see, listen, and act more like humans. But don’t expect Disney to build a real-life Westworld next to Toon Town anytime soon.
“I think we’re a long way off from human-level communication,” Karamcheti says. “There are so many problems preventing our learning models from getting to that point, from seemingly simple questions like how to deal with words never seen before, to harder, more complicated questions like how to resolve the ambiguities inherent in language, including idiomatic or metaphorical speech.”
Even relatively verbose chatbots can run out of things to say, Karamcheti notes, as the conversation becomes more complex.
The same goes for human vision, according to Burchfiel.
While deep learning techniques have dramatically improved pattern matching—Google can find just about any picture of a cat—there’s more to human eyesight than, well, meets the eye.
“There are two big areas where I think perception has a long way to go: inductive bias and formal reasoning,” Burchfiel says.
The former is essentially all of the contextual knowledge people use to help them reason, he explains. Burchfiel uses the example of a puddle in the street. People are conditioned or biased to assume it’s a puddle of water rather than a patch of glass, for instance.
“This sort of bias is why we see faces in clouds; we have strong inductive bias helping us identify faces,” he says. “While it sounds simple at first, it powers much of what we do. Humans have a very intuitive understanding of what they expect to see, [and] it makes perception much easier.”
Formal reasoning is equally important. A machine can use deep learning, in Burchfiel’s example, to figure out the direction any river flows once it understands that water runs downhill. But it’s not yet capable of applying the sort of human reasoning that would allow us to transfer that knowledge to an alien setting, such as figuring out how water moves through a plumbing system on Mars.
“Much work was done in decades past on this sort of formal reasoning… but we have yet to figure out how to merge it with standard machine-learning methods to create a seamless system that is useful in the actual physical world.”
Robots still have a lot to learn about being human, which should make us feel good that we’re still by far the most complex machines on the planet.
Image Credit: Alex Knight via Unsplash Continue reading

Posted in Human Robots

#430686 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
DeepMind’s AI Is Teaching Itself Parkour, and the Results Are AdorableJames Vincent | The Verge“The research explores how reinforcement learning (or RL) can be used to teach a computer to navigate unfamiliar and complex environments. It’s the sort of fundamental AI research that we’re now testing in virtual worlds, but that will one day help program robots that can navigate the stairs in your house.”
VIRTUAL REALITY
Now You Can Broadcast Facebook Live Videos From Virtual RealityDaniel Terdiman | Fast Company“The idea is fairly simple. Spaces allows up to four people—each of whom must have an Oculus Rift VR headset—to hang out together in VR. Together, they can talk, chat, draw, create new objects, watch 360-degree videos, share photos, and much more. And now, they can live-broadcast everything they do in Spaces, much the same way that any Facebook user can produce live video of real life and share it with the world.”
ROBOTICS
I Watched Two Robots Chat Together on Stage at a Tech EventJon Russell | TechCrunch“The robots in question are Sophia and Han, and they belong to Hanson Robotics, a Hong Kong-based company that is developing and deploying artificial intelligence in humanoids. The duo took to the stage at Rise in Hong Kong with Hanson Robotics’ Chief Scientist Ben Goertzel directing the banter. The conversation, which was partially scripted, wasn’t as slick as the human-to-human panels at the show, but it was certainly a sight to behold for the packed audience.”
BIOTECH
Scientists Used CRISPR to Put a GIF Inside a Living Organism’s DNAEmily Mullin | MIT Technology Review“They delivered the GIF into the living bacteria in the form of five frames: images of a galloping horse and rider, taken by English photographer Eadweard Muybridge…The researchers were then able to retrieve the data by sequencing the bacterial DNA. They reconstructed the movie with 90 percent accuracy by reading the pixel nucleotide code.”
DIGITAL MEDIA
AI Creates Fake ObamaCharles Q. Choi | IEEE Spectrum“In the new study, the neural net learned what mouth shapes were linked to various sounds. The researchers took audio clips and dubbed them over the original sound files of a video. They next took mouth shapes that matched the new audio clips and grafted and blended them onto the video. Essentially, the researchers synthesized videos where Obama lip-synched words he said up to decades beforehand.”
Stock Media provided by adam121 / Pond5 Continue reading

Posted in Human Robots

#430652 The Jobs AI Will Take Over First

11th July 2017: The robotic revolution is set to cause the biggest transformation in the world’s workforce since the industrial revolution. In fact, research suggests that over 30% of jobs in Britain are under threat from breakthroughs in artificial intelligence (AI) technology.

With pioneering advances in technology many jobs that weren’t considered ripe for automation suddenly are. RS Components have used PWC Data to reveal how many jobs per sector are at risk of being taken by robots by 2030, a mere 13 years away. Did you think you were exempt from the robot revolution?

The top three sectors who are most exposed to the threats of robots are Transport and Storage, Manufacturing and Wholesale and Retail with 56%, 46% and 44% risk of automation respectively. The PWC report states that the differentiating factor between losing jobs to automation probability is education; those with a GCSE-level education or lower face a 46% risk, whilst those with undergraduate degrees or higher face a 12% risk. If a job is repetitive, physical and requires minimum effort to train for, this will have a higher likelihood to become automated by machines.

The manufacturing industry has the 3rd highest likelihood potential at 46.6%, shortly behind Transportation and Storage (56.4%) and Water, Sewage and Waste Management (62.6%). Although the manufacturing sector has the 3rd highest likelihood, it has the second largest number of jobs at risk of being taken by robots; an astonishing 1.22 million jobs are at risk in the near future. Repetitive manual labour and routine tasks can be taught to fixed machines and mimicked easily, saving employers both time and money.

The three sectors least at risk are Education, Health and Social and Agriculture, Forestry and Fishing with 9%, 17% and 19% risk of automation respectively. These operations are non-repetitive and consist of characteristics that cannot be taught and are harder to replicate with AI and robotics.

These are not the only fields where the introduction of AI will have an impact on employment prospects; Administrative and Support Services, Accommodation and Food Services, Finance and Insurance, Construction, Real Estate, Public Administration and Defence, and Arts and Entertainment are not out of the woods either.

The future is not all doom and gloom. Automation is set to boost productivity to enable workers to focus on higher value, more rewarding jobs; leaving repetitive and uncomplicated ones to the robots. An increase in sectors that are less easy to automate is also expected due to lower running costs. Wealth and spending will also be boosted by the initiation of AI seizing work. Also, there are just some things AI cannot learn so these jobs will be safe.

In some sectors half of the jobs could be taken by a fully automated system. Is your job next?

The post The Jobs AI Will Take Over First appeared first on Roboticmagazine. Continue reading

Posted in Human Robots

#430649 Robotherapy for children with autism

New Robotherapy for children with autism could reduce patient supervision by therapists.
05.07.2017
Autism treatments and therapies routinely make headlines. With robot enhanced therapies on the rise, often overlooked though, is the mental stress and physical toll the procedures take on therapists. As autism treatments can be taxing on both patient and therapists, few realize the stress and workload of those working with autistic patients.
It is against this backdrop, that researchers from the Vrije Universiteit Brussel are pioneering a new technology to aid behavioural therapy, and one with a very deliberate aspect: they are using robots to boost the basic social learning skills of children with ASD and while doing so, they hope to make the therapists’ job substantially easier.
A study, just published in PALADYN – Journal of Behavioural Robotics examines the use of social robots as tools in clinical situations by addressing the challenge of increasing robot autonomy.
The growing deployment of robot-assisted therapies in recent decades means children with Autism Spectrum Disorder (ASD) can develop and nurture social behaviour and cognitive skills. Learning skills that hold out in real life is the first and foremost goal of all autism therapies, including the Robot-Assisted Therapy (RAT), with effectiveness always considered a key concern. However, this time round the scientists have set off on the additional mission to take the load off the human therapists by letting parts of the intervention be taken over by the supervised yet autonomous robots.
The researchers developed a complete system of robot-enhanced therapy (RET) for children with ASD. The therapy works by teaching behaviours during repeated sessions of interactive games. Since the individuals with ASD tend to be more responsive to feedback coming from an interaction with technology, robots are often used for this therapy. In this approach, the social robot acts as a mediator and typically remains remote-controlled by a human operator. The technique, called Wizard of Oz, requires the robot to be operated by an additional person and the robot is not recording the performance during the therapy. In order to reduce operator workload, authors introduced a system with a supervised autonomous robot – which is able to understand the psychological disposition of the child and use it to select actions appropriate to the current state of the interaction.
Admittedly, robots with supervised autonomy can substantially benefit behavioural therapy for children with ASD – diminishing the therapist workload on the one hand, and achieving more objective measurements of therapy outcomes on the other. Yet, complex as it is, this therapy requires a multidisciplinary approach, as RET provides mixed effectiveness for primary tasks: the turn-taking, joint attention and imitation task comparing to Standard Human Treatment (SHT).
Results are likely to prompt a further development of the robot assisted therapy with increasing robot’s autonomy. With many outstanding conceptual and technical issues yet to tackle –it is definitely the ethical questions that pose one of the major challenges as far as the potential and maximal degree of robot autonomy is concerned.
The article is fully available in open access to read, download and share on De Gruyter Online.
Research was conducted as a part of DREAM (Development of Robot-Enhanced therapy for children with Autism spectrum disorders) project.
DOI: 10.1515/pjbr-2017-0002
Image credit: P.G. Esteban
About the Journal: PALADYN – Journal of Behavioural Robotics is a fully peer-reviewed, electronic-only journal that publishes original, high-quality research on topics broadly related to neuronally and psychologically inspired robots and other behaving autonomous systems.
About De Gruyter Open: De Gruyter Open is a leading publisher of Open Access academic content. Publishing in all major disciplines, De Gruyter Open is home to more than 500 scholarly journals and over 100 books. The company is part of the De Gruyter Group (www.degruyter.com) and a member of the Association of Learned and Professional Society Publishers (ALPSP). De Gruyter Open’s book and journal programs have been endorsed by the international research community and some of the world’s top scientists, including Nobel laureates. The company’s mission is to make the very best in academic content freely available to scholars and lay readers alike.
The post Robotherapy for children with autism appeared first on Roboticmagazine. Continue reading

Posted in Human Robots

#430630 CORE2 consumer robot controller by ...

Hardware, software and cloud for fast robot prototyping and development
Kraków, Poland, June 27th, 2017 – Robotic development platform creator Husarion has launched its next-generation dedicated robot controller CORE2. Available now at the Crowd Supply crowdfunding platform, CORE2 enables the rapid prototyping and development of consumer and service robots. It’s especially suitable for engineers designing commercial appliances and robotics students or hobbyists. Whether the next robotic idea is a tiny rover that penetrates tunnels, a surveillance drone, or a room-sized 3D printer, the CORE2 can serve as the brains behind it.
Photo Credit: Husarionwww.husarion.com
Husarion’s platform greatly simplifies robot development, making it as easy as creating a website. It provides engineers with embedded hardware, preconfigured software and easy online management. From the simple, proof-of-concept prototypes made with LEGO® Mindstorms to complex designs ready for mass manufacturing, the core technology stays the same throughout the process, shortening the time to market significantly. It’s designed as an innovation for the consumer robotics industry similar to what Arduino or Raspberry PI were to the Maker Movement.

“We are on the verge of a consumer robotics revolution”, says Dominik Nowak, CEO of Husarion. “Big industrial businesses have long been utilizing robots, but until very recently the consumer side hasn’t seen that many of them. This is starting to change now with the democratization of tools, the Maker Movement and technology maturing. We believe Husarion is uniquely positioned for the upcoming boom, offering robot developers a holistic solution and lowering the barrier of entry to the market.”

The hardware part of the platform is the Husarion CORE2 board, a computer that interfaces directly with motors, servos, encoders or sensors. It’s powered by an ARM® CORTEX-M4 CPU, features 42x I/O ports and can support up to 4x DC motors and 6x servomechanisms. Wireless connectivity is provided by a built-in Wi-Fi module.
Photo Credit: Husarion – www.husarion.com
The Husarion CORE2-ROS is an alternative configuration with a Raspberry Pi 3 ARMv8-powered board layered on top, with a preinstalled Robot Operating System (ROS) custom Linux distribution. It allows users to tap into the rich sets of modules and building tools already available for ROS. Real-time capabilities and high computing power enable advanced use cases, such as fully autonomous devices.

Developing software for CORE2-powered robots is easy. Husarion provides Web IDE, allowing engineers to program their connected robots directly from within the browser. There’s also an offline SDK and a convenient extension for Visual Studio Code. The open-source library hFramework based on Real Time Operating System masks the complexity of interface communication behind an elegant, easy-to-use API.

CORE2 also works with Arduino libraries, which can be used with no modifications at all through the compatibility layer of the hFramework API.
Photo Credit: Husarion – www.husarion.com
For online access, programming and control, Husarion provides its dedicated Cloud. By registering the CORE2-powerd robot at https://cloud.husarion.com, developers can update firmware online, build a custom Web control UI and share controls of their device with anyone.

Starting at $89, Husarion CORE2 and CORE2-ROS controllers are now on sale through Crowd Supply.

Husarion also offers complete development kits, extra servo controllers and additional modules for compatibility with LEGO® Mindstorms or Makeblock® mechanics. For more information, please visit: https://www.crowdsupply.com/husarion/core2.

Key points:
A dedicated robot hardware controller, with built-in interfaces for sensors, servos, DC motors and encoders

Programming with free tools: online (via Husarion Cloud Web IDE) or offline (Visual Studio Code extension)
Compatible with ROS, provides C++ 11 open-source programming framework based on RTOS
Husarion Cloud: control, program and share robots, with customizable control UI
Allows faster development and more advanced robotics than general maker boards like Arduino or Raspberry Pi

About Husarion
Husarion was founded in 2013 in Kraków, Poland. In 2015, Husarion successfully financed a Kickstarter campaign for RoboCORE, the company’s first-generation controller. The company delivers a fast prototyping platform for consumer robots. Thanks to Husarion’s hardware modules, efficient programming tools and cloud management, engineers can rapidly develop and iterate on their robot ideas. Husarion simplifies the development of connected, commercial robots ready for mass production and provides kits for academic education.

For more information, visit: https://husarion.com/.
Photo Credit: Husarion – www.husarion.com

Photo Credit: Husarion – www.husarion.com

Media contact:

Piotr Sarotapublic relations consultant
SAROTA PR – public relations agencyphone: +48 12 684 12 68mobile: +48 606 895 326email: piotr(at)sarota.pl
http://www.sarota.pl/
Jakub Misiurapublic relations specialist
phone: +48 12 349 03 52mobile: +48 696 778 568email: jakub.misiura(at)sarota.pl

Photo Credit: Husarion – www.husarion.com
Photo Credit: Husarion – www.husarion.com
Photo Credit: Husarion – www.husarion.com

The post CORE2 consumer robot controller by Husarion appeared first on Roboticmagazine. Continue reading

Posted in Human Robots