Tag Archives: real

#431690 Oxford Study Says Alien Life Would ...

The alternative universe known as science fiction has given our culture a menagerie of alien species. From overstuffed teddy bears like Ewoks and Wookies to terrifying nightmares such as Alien and Predator, our collective imagination of what form alien life from another world may take has been irrevocably imprinted by Hollywood.
It might all be possible, or all these bug-eyed critters might turn out to be just B-movie versions of how real extraterrestrials will appear if and when they finally make the evening news.
One thing for certain is that aliens from another world will be shaped by the same evolutionary forces as here on Earth—natural selection. That’s the conclusion of a team of scientists from the University of Oxford in a study published this month in the International Journal of Astrobiology.
A complex alien that comprises a hierarchy of entities, where each lower level collection of entities has aligned evolutionary interests.Image Credit: Helen S. Cooper/University of Oxford.
The researchers suggest that evolutionary theory—famously put forth by Charles Darwin in his seminal book On the Origin of Species 158 years ago this month—can be used to make some predictions about alien species. In particular, the team argues that extraterrestrials will undergo natural selection, because that is the only process by which organisms can adapt to their environment.
“Adaptation is what defines life,” lead author Samuel Levin tells Singularity Hub.
While it’s likely that NASA or some SpaceX-like private venture will eventually kick over a few space rocks and discover microbial life in the not-too-distant future, the sorts of aliens Levin and his colleagues are interested in describing are more complex. That’s because natural selection is at work.
A quick evolutionary theory 101 refresher: Natural selection is the process by which certain traits are favored over others in a given population. For example, take a group of brown and green beetles. It just so happens that birds prefer foraging on green beetles, allowing more brown beetles to survive and reproduce than the more delectable green ones. Eventually, if these population pressures persist, brown beetles will become the dominant type. Brown wins, green loses.
And just as human beings are the result of millions of years of adaptations—eyes and thumbs, for example—aliens will similarly be constructed from parts that were once free living but through time came together to work as one organism.
“Life has so many intricate parts, so much complexity, for that to happen (randomly),” Levin explains. “It’s too complex and too many things working together in a purposeful way for that to happen by chance, as how certain molecules come about. Instead you need a process for making it, and natural selection is that process.”
Just don’t expect ET to show up as a bipedal humanoid with a large head and almond-shaped eyes, Levin says.
“They can be built from entirely different chemicals and so visually, superficially, unfamiliar,” he explains. “They will have passed through the same evolutionary history as us. To me, that’s way cooler and more exciting than them having two legs.”
Need for Data
Seth Shostak, a lead astronomer at the SETI Institute and host of the organization’s Big Picture Science radio show, wrote that while the argument is interesting, it doesn’t answer the question of ET’s appearance.
Shostak argues that a more productive approach would invoke convergent evolution, where similar environments lead to similar adaptations, at least assuming a range of Earth-like conditions such as liquid oceans and thick atmospheres. For example, an alien species that evolved in a liquid environment would evolve a streamlined body to move through water.
“Happenstance and the specifics of the environment will produce variations on an alien species’ planet as it has on ours, and there’s really no way to predict these,” Shostak concludes. “Alas, an accurate cosmic bestiary cannot be written by the invocation of biological mechanisms alone. We need data. That requires more than simply thinking about alien life. We need to actually discover it.”
Search Is On
The search is on. On one hand, the task seems easy enough: There are at least 100 billion planets in the Milky Way alone, and at least 20 percent of those are likely to be capable of producing a biosphere. Even if the evolution of life is exceedingly rare—take a conservative estimate of .001 percent or 200,000 planets, as proposed by the Oxford paper—you have to like the odds.
Of course, it’s not that easy by a billion light years.
Planet hunters can’t even agree on what signatures of life they should focus on. The idea is that where there’s smoke there’s fire. In the case of an alien world home to biological life, astrobiologists are searching for the presence of “biosignature gases,” vapors that could only be produced by alien life.
As Quanta Magazine reported, scientists do this by measuring a planet’s atmosphere against starlight. Gases in the atmosphere absorb certain frequencies of starlight, offering a clue as to what is brewing around a particular planet.
The presence of oxygen would seem to be a biological no-brainer, but there are instances where a planet can produce a false positive, meaning non-biological processes are responsible for the exoplanet’s oxygen. Scientists like Sara Seager, an astrophysicist at MIT, have argued there are plenty of examples of other types of gases produced by organisms right here on Earth that could also produce the smoking gun, er, planet.

Life as We Know It
Indeed, the existence of Earth-bound extremophiles—organisms that defy conventional wisdom about where life can exist, such as in the vacuum of space—offer another clue as to what kind of aliens we might eventually meet.
Lynn Rothschild, an astrobiologist and synthetic biologist in the Earth Science Division at NASA’s Ames Research Center in Silicon Valley, takes extremophiles as a baseline and then supersizes them through synthetic biology.
For example, say a bacteria is capable of surviving at 120 degrees Celsius. Rothschild’s lab might tweak an organism’s DNA to see if it could metabolize at 150 degrees. The idea, as she explains, is to expand the envelope for life without ever getting into a rocket ship.

While researchers may not always agree on the “where” and “how” and “what” of the search for extraterrestrial life, most do share one belief: Alien life must be out there.
“It would shock me if there weren’t [extraterrestrials],” Levin says. “There are few things that would shock me more than to find out there aren’t any aliens…If I had to bet on it, I would bet on the side of there being lots and lots of aliens out there.”
Image Credit: NASA Continue reading

Posted in Human Robots

#431689 Robotic Materials Will Distribute ...

The classical view of a robot as a mechanical body with a central “brain” that controls its behavior could soon be on its way out. The authors of a recent article in Science Robotics argue that future robots will have intelligence distributed throughout their bodies.
The concept, and the emerging discipline behind it, are variously referred to as “material robotics” or “robotic materials” and are essentially a synthesis of ideas from robotics and materials science. Proponents say advances in both fields are making it possible to create composite materials capable of combining sensing, actuation, computation, and communication and operating independently of a central processing unit.
Much of the inspiration for the field comes from nature, with practitioners pointing to the adaptive camouflage of the cuttlefish’s skin, the ability of bird wings to morph in response to different maneuvers, or the banyan tree’s ability to grow roots above ground to support new branches.
Adaptive camouflage and morphing wings have clear applications in the defense and aerospace sector, but the authors say similar principles could be used to create everything from smart tires able to calculate the traction needed for specific surfaces to grippers that can tailor their force to the kind of object they are grasping.
“Material robotics represents an acknowledgment that materials can absorb some of the challenges of acting and reacting to an uncertain world,” the authors write. “Embedding distributed sensors and actuators directly into the material of the robot’s body engages computational capabilities and offloads the rigid information and computational requirements from the central processing system.”
The idea of making materials more adaptive is not new, and there are already a host of “smart materials” that can respond to stimuli like heat, mechanical stress, or magnetic fields by doing things like producing a voltage or changing shape. These properties can be carefully tuned to create materials capable of a wide variety of functions such as movement, self-repair, or sensing.
The authors say synthesizing these kinds of smart materials, alongside other advanced materials like biocompatible conductors or biodegradable elastomers, is foundational to material robotics. But the approach also involves integration of many different capabilities in the same material, careful mechanical design to make the most of mechanical capabilities, and closing the loop between sensing and control within the materials themselves.
While there are stand-alone applications for such materials in the near term, like smart fabrics or robotic grippers, the long-term promise of the field is to distribute decision-making in future advanced robots. As they are imbued with ever more senses and capabilities, these machines will be required to shuttle huge amounts of control and feedback data to and fro, placing a strain on both their communication and computation abilities.
Materials that can process sensor data at the source and either autonomously react to it or filter the most relevant information to be passed on to the central processing unit could significantly ease this bottleneck. In a press release related to an earlier study, Nikolaus Correll, an assistant professor of computer science at the University of Colorado Boulder who is also an author of the current paper, pointed out this is a tactic used by the human body.
“The human sensory system automatically filters out things like the feeling of clothing rubbing on the skin,” he said. “An artificial skin with possibly thousands of sensors could do the same thing, and only report to a central ‘brain’ if it touches something new.”
There are still considerable challenges to realizing this vision, though, the authors say, noting that so far the young field has only produced proof of concepts. The biggest challenge remains manufacturing robotic materials in a way that combines all these capabilities in a small enough package at an affordable cost.
Luckily, the authors note, the field can draw on convergent advances in both materials science, such as the development of new bulk materials with inherent multifunctionality, and robotics, such as the ever tighter integration of components.
And they predict that doing away with the prevailing dichotomy of “brain versus body” could lay the foundations for the emergence of “robots with brains in their bodies—the foundation of inexpensive and ubiquitous robots that will step into the real world.”
Image Credit: Anatomy Insider / Shutterstock.com Continue reading

Posted in Human Robots

#431682 Oxford Study Says Alien Life Would ...

The alternative universe known as science fiction has given our culture a menagerie of alien species. From overstuffed teddy bears like Ewoks and Wookies to terrifying nightmares such as Alien and Predator, our collective imagination of what form alien life from another world may take has been irrevocably imprinted by Hollywood.
It might all be possible, or all these bug-eyed critters might turn out to be just B-movie versions of how real extraterrestrials will appear if and when they finally make the evening news.
One thing for certain is that aliens from another world will be shaped by the same evolutionary forces as here on Earth—natural selection. That’s the conclusion of a team of scientists from the University of Oxford in a study published this month in the International Journal of Astrobiology.
A complex alien that comprises a hierarchy of entities, where each lower level collection of entities has aligned evolutionary interests.Image Credit: Helen S. Cooper/University of Oxford.
The researchers suggest that evolutionary theory—famously put forth by Charles Darwin in his seminal book On the Origin of Species 158 years ago this month—can be used to make some predictions about alien species. In particular, the team argues that extraterrestrials will undergo natural selection, because that is the only process by which organisms can adapt to their environment.
“Adaptation is what defines life,” lead author Samuel Levin tells Singularity Hub.
While it’s likely that NASA or some SpaceX-like private venture will eventually kick over a few space rocks and discover microbial life in the not-too-distant future, the sorts of aliens Levin and his colleagues are interested in describing are more complex. That’s because natural selection is at work.
A quick evolutionary theory 101 refresher: Natural selection is the process by which certain traits are favored over others in a given population. For example, take a group of brown and green beetles. It just so happens that birds prefer foraging on green beetles, allowing more brown beetles to survive and reproduce than the more delectable green ones. Eventually, if these population pressures persist, brown beetles will become the dominant type. Brown wins, green loses.
And just as human beings are the result of millions of years of adaptations—eyes and thumbs, for example—aliens will similarly be constructed from parts that were once free living but through time came together to work as one organism.
“Life has so many intricate parts, so much complexity, for that to happen (randomly),” Levin explains. “It’s too complex and too many things working together in a purposeful way for that to happen by chance, as how certain molecules come about. Instead you need a process for making it, and natural selection is that process.”
Just don’t expect ET to show up as a bipedal humanoid with a large head and almond-shaped eyes, Levin says.
“They can be built from entirely different chemicals and so visually, superficially, unfamiliar,” he explains. “They will have passed through the same evolutionary history as us. To me, that’s way cooler and more exciting than them having two legs.”
Need for Data
Seth Shostak, a lead astronomer at the SETI Institute and host of the organization’s Big Picture Science radio show, wrote that while the argument is interesting, it doesn’t answer the question of ET’s appearance.
Shostak argues that a more productive approach would invoke convergent evolution, where similar environments lead to similar adaptations, at least assuming a range of Earth-like conditions such as liquid oceans and thick atmospheres. For example, an alien species that evolved in a liquid environment would evolve a streamlined body to move through water.
“Happenstance and the specifics of the environment will produce variations on an alien species’ planet as it has on ours, and there’s really no way to predict these,” Shostak concludes. “Alas, an accurate cosmic bestiary cannot be written by the invocation of biological mechanisms alone. We need data. That requires more than simply thinking about alien life. We need to actually discover it.”
Search is On
The search is on. On one hand, the task seems easy enough: There are at least 100 billion planets in the Milky Way alone, and at least 20 percent of those are likely to be capable of producing a biosphere. Even if the evolution of life is exceedingly rare—take a conservative estimate of .001 percent or 200,000 planets, as proposed by the Oxford paper—you have to like the odds.
Of course, it’s not that easy by a billion light years.
Planet hunters can’t even agree on what signatures of life they should focus on. The idea is that where there’s smoke there’s fire. In the case of an alien world home to biological life, astrobiologists are searching for the presence of “biosignature gases,” vapors that could only be produced by alien life.
As Quanta Magazine reported, scientists do this by measuring a planet’s atmosphere against starlight. Gases in the atmosphere absorb certain frequencies of starlight, offering a clue as to what is brewing around a particular planet.
The presence of oxygen would seem to be a biological no-brainer, but there are instances where a planet can produce a false positive, meaning non-biological processes are responsible for the exoplanet’s oxygen. Scientists like Sara Seager, an astrophysicist at MIT, have argued there are plenty of examples of other types of gases produced by organisms right here on Earth that could also produce the smoking gun, er, planet.

Life as We Know It
Indeed, the existence of Earth-bound extremophiles—organisms that defy conventional wisdom about where life can exist, such as in the vacuum of space—offer another clue as to what kind of aliens we might eventually meet.
Lynn Rothschild, an astrobiologist and synthetic biologist in the Earth Science Division at NASA’s Ames Research Center in Silicon Valley, takes extremophiles as a baseline and then supersizes them through synthetic biology.
For example, say a bacteria is capable of surviving at 120 degrees Celsius. Rothschild’s lab might tweak an organism’s DNA to see if it could metabolize at 150 degrees. The idea, as she explains, is to expand the envelope for life without ever getting into a rocket ship.

While researchers may not always agree on the “where” and “how” and “what” of the search for extraterrestrial life, most do share one belief: Alien life must be out there.
“It would shock me if there weren’t [extraterrestrials],” Levin says. “There are few things that would shock me more than to find out there aren’t any aliens…If I had to bet on it, I would bet on the side of there being lots and lots of aliens out there.”
Image Credit: NASA Continue reading

Posted in Human Robots

#431671 The Doctor in the Machine: How AI Is ...

Artificial intelligence has received its fair share of hype recently. However, it’s hype that’s well-founded: IDC predicts worldwide spend on AI and cognitive computing will culminate to a whopping $46 billion (with a “b”) by 2020, and all the tech giants are jumping on board faster than you can say “ROI.” But what is AI, exactly?
According to Hilary Mason, AI today is being misused as a sort of catch-all term to basically describe “any system that uses data to do anything.” But it’s so much more than that. A truly artificially intelligent system is one that learns on its own, one that’s capable of crunching copious amounts of data in order to create associations and intelligently mimic actual human behavior.
It’s what powers the technology anticipating our next online purchase (Amazon), or the virtual assistant that deciphers our voice commands with incredible accuracy (Siri), or even the hipster-friendly recommendation engine that helps you discover new music before your friends do (Pandora). But AI is moving past these consumer-pleasing “nice-to-haves” and getting down to serious business: saving our butts.
Much in the same way robotics entered manufacturing, AI is making its mark in healthcare by automating mundane, repetitive tasks. This is especially true in the case of detecting cancer. By leveraging the power of deep learning, algorithms can now be trained to distinguish between sets of pixels in an image that represents cancer versus sets that don’t—not unlike how Facebook’s image recognition software tags pictures of our friends without us having to type in their names first. This software can then go ahead and scour millions of medical images (MRIs, CT scans, etc.) in a single day to detect anomalies on a scope that humans just aren’t capable of. That’s huge.
As if that wasn’t enough, these algorithms are constantly learning and evolving, getting better at making these associations with each new data set that gets fed to them. Radiology, dermatology, and pathology will experience a giant upheaval as tech giants and startups alike jump in to bring these deep learning algorithms to a hospital near you.
In fact, some already are: the FDA recently gave their seal of approval for an AI-powered medical imaging platform that helps doctors analyze and diagnose heart anomalies. This is the first time the FDA has approved a machine learning application for use in a clinical setting.
But how efficient is AI compared to humans, really? Well, aside from the obvious fact that software programs don’t get bored or distracted or have to check Facebook every twenty minutes, AI is exponentially better than us at analyzing data.
Take, for example, IBM’s Watson. Watson analyzed genomic data from both tumor cells and healthy cells and was ultimately able to glean actionable insights in a mere 10 minutes. Compare that to the 160 hours it would have taken a human to analyze that same data. Diagnoses aside, AI is also being leveraged in pharmaceuticals to aid in the very time-consuming grunt work of discovering new drugs, and all the big players are getting involved.
But AI is far from being just a behind-the-scenes player. Gartner recently predicted that by 2025, 50 percent of the population will rely on AI-powered “virtual personal health assistants” for their routine primary care needs. What this means is that consumer-facing voice and chat-operated “assistants” (think Siri or Cortana) would, in effect, serve as a central hub of interaction for all our connected health devices and the algorithms crunching all our real-time biometric data. These assistants would keep us apprised of our current state of well-being, acting as a sort of digital facilitator for our personal health objectives and an always-on health alert system that would notify us when we actually need to see a physician.
Slowly, and thanks to the tsunami of data and advancements in self-learning algorithms, healthcare is transitioning from a reactive model to more of a preventative model—and it’s completely upending the way care is delivered. Whether Elon Musk’s dystopian outlook on AI holds any weight or not is yet to be determined. But one thing’s certain: for the time being, artificial intelligence is saving our lives.
Image Credit: Jolygon / Shutterstock.com Continue reading

Posted in Human Robots

#431653 9 Robot Animals Built From Nature’s ...

Millions of years of evolution have allowed animals to develop some elegant and highly efficient solutions to problems like locomotion, flight, and dexterity. As Boston Dynamics unveils its latest mechanical animals, here’s a rundown of nine recent robots that borrow from nature and why.
SpotMini – Boston Dynamics

Starting with BigDog in 2005, the US company has built a whole stable of four-legged robots in recent years. Their first product was designed to be a robotic packhorse for soldiers that borrowed the quadrupedal locomotion of animals to travel over terrain too rough for conventional vehicles.
The US Army ultimately rejected the robot for being too noisy, according to the Guardian, but since then the company has scaled down its design, first to the Spot, then a first edition of the SpotMini that came out last year.
The latter came with a robotic arm where its head should be and was touted as a domestic helper, but a sleeker second edition without the arm was released earlier this month. There’s little detail on what the new robot is designed for, but the more polished design suggests a more consumer-focused purpose.
OctopusGripper – Festo

Festo has released a long line of animal-inspired machines over the years, from a mechanical kangaroo to robotic butterflies. Its latest creation isn’t a full animal—instead it’s a gripper based on an octopus tentacle that can be attached to the end of a robotic arm.
The pneumatically-powered device is made of soft silicone and features two rows of suction cups on its inner edge. By applying compressed air the tentacle can wrap around a wide variety of differently shaped objects, just like its natural counterpart, and a vacuum can be applied to the larger suction cups to grip the object securely. Because it’s soft, it holds promise for robots required to operate safely in collaboration with humans.
CRAM – University of California, Berkeley

Cockroaches are renowned for their hardiness and ability to disappear down cracks that seem far too small for them. Researchers at UC Berkeley decided these capabilities could be useful for search and rescue missions and so set about experimenting on the insects to find out their secrets.
They found the bugs can squeeze into gaps a fifth of their normal standing height by splaying their legs out to the side without significantly slowing themselves down. So they built a palm-sized robot with a jointed plastic shell that could do the same to squeeze into crevices half its normal height.
Snake Robot – Carnegie Mellon University

Search and rescue missions are a common theme for animal-inspired robots, but the snake robot built by CMU researchers is one of the first to be tested in a real disaster.
A team of roboticists from the university helped Mexican Red Cross workers search collapsed buildings for survivors after the 7.1-magnitude earthquake that struck Mexico City in September. The snake design provides a small diameter and the ability to move in almost any direction, which makes the robot ideal for accessing tight spaces, though the team was unable to locate any survivors.
The snake currently features a camera on the front, but researchers told IEEE Spectrum that the experience helped them realize they should also add a microphone to listen for people trapped under the rubble.
Bio-Hybrid Stingray – Harvard University

Taking more than just inspiration from the animal kingdom, a group from Harvard built a robotic stingray out of silicone and rat heart muscle cells.
The robot uses the same synchronized undulations along the edge of its fins to propel itself as a ray does. But while a ray has two sets of muscles to pull the fins up and down, the new device has only one that pulls them down, with a springy gold skeleton that pulls them back up again. The cells are also genetically modified to be activated by flashes of light.
The project’s leader eventually hopes to engineer a human heart, and both his stingray and an earlier jellyfish bio-robot are primarily aimed at better understanding how that organ works.
Bat Bot – Caltech

Most recent advances in drone technology have come from quadcopters, but Caltech engineers think rigid devices with rapidly spinning propellers are probably not ideal for use in close quarters with humans.
That’s why they turned to soft-winged bats for inspiration. That’s no easy feat, though, considering bats use more than 40 joints with each flap of their wings, so the team had to optimize down to nine joints to avoid it becoming too bulky. The simplified bat can’t ascend yet, but its onboard computer and sensors let it autonomously carry out glides, turns, and dives.
Salto – UC Berkeley

While even the most advanced robots tend to plod around, tree-dwelling animals have the ability to spring from branch to branch to clear obstacles and climb quickly. This could prove invaluable for search and rescue robots by allowing them to quickly traverse disordered rubble.
UC Berkeley engineers turned to the Senegal bush baby for inspiration after determining it scored highest in “vertical jumping agility”—a combination of how high and how frequently an animal can jump. They recreated its ability to get into a super-low crouch that stores energy in its tendons to create a robot that could carry out parkour-style double jumps off walls to quickly gain height.
Pleurobot – École Polytechnique Fédérale de Lausanne

Normally robots are masters of air, land, or sea, but the robotic salamander built by researchers at EPFL can both walk and swim.
Its designers used X-ray videos to carefully study how the amphibians move before using this to build a true-to-life robotic version using 3D printed bones, motorized joints, and a synthetic nervous system made up of electronic circuitry.
The robot’s low center of mass and segmented legs make it great at navigating rough terrain without losing balance, and the ability to swim gives added versatility. They also hope it will help paleontologists gain a better understanding of the movements of the first tetrapods to transition from water to land, which salamanders are the best living analog of.
Eelume – Eelume

A snakelike body isn’t only useful on land—eels are living proof it’s an efficient way to travel underwater, too. Norwegian robotics company Eelume has borrowed these principles to build a robot capable of sub-sea inspection, maintenance, and repair.
The modular design allows operators to put together their own favored configuration of joints and payloads such as sensors and tools. And while an early version of the robot used the same method of locomotion as an eel, the latest version undergoing sea trials has added a variety of thrusters for greater speeds and more maneuverability.
Image Credit: Boston Dynamics / YouTube Continue reading

Posted in Human Robots