Tag Archives: real

#435804 New AI Systems Are Here to Personalize ...

The narratives about automation and its impact on jobs go from urgent to hopeful and everything in between. Regardless where you land, it’s hard to argue against the idea that technologies like AI and robotics will change our economy and the nature of work in the coming years.

A recent World Economic Forum report noted that some estimates show automation could displace 75 million jobs by 2022, while at the same time creating 133 million new roles. While these estimates predict a net positive for the number of new jobs in the coming decade, displaced workers will need to learn new skills to adapt to the changes. If employees can’t be retrained quickly for jobs in the changing economy, society is likely to face some degree of turmoil.

According to Bryan Talebi, CEO and founder of AI education startup Ahura AI, the same technologies erasing and creating jobs can help workers bridge the gap between the two.

Ahura is developing a product to capture biometric data from adult learners who are using computers to complete online education programs. The goal is to feed this data to an AI system that can modify and adapt their program to optimize for the most effective teaching method.

While the prospect of a computer recording and scrutinizing a learner’s behavioral data will surely generate unease across a society growing more aware and uncomfortable with digital surveillance, some people may look past such discomfort if they experience improved learning outcomes. Users of the system would, in theory, have their own personalized instruction shaped specifically for their unique learning style.

And according to Talebi, their systems are showing some promise.

“Based on our early tests, our technology allows people to learn three to five times faster than traditional education,” Talebi told me.

Currently, Ahura’s system uses the video camera and microphone that come standard on the laptops, tablets, and mobile devices most students are using for their learning programs.

With the computer’s camera Ahura can capture facial movements and micro expressions, measure eye movements, and track fidget score (a measure of how much a student moves while learning). The microphone tracks voice sentiment, and the AI leverages natural language processing to review the learner’s word usage.

From this collection of data Ahura can, according to Talebi, identify the optimal way to deliver content to each individual.

For some users that might mean a video tutorial is the best style of learning, while others may benefit more from some form of experiential or text-based delivery.

“The goal is to alter the format of the content in real time to optimize for attention and retention of the information,” said Talebi. One of Ahura’s main goals is to reduce the frequency with which students switch from their learning program to distractions like social media.

“We can now predict with a 60 percent confidence interval ten seconds before someone switches over to Facebook or Instagram. There’s a lot of work to do to get that up to a 95 percent level, so I don’t want to overstate things, but that’s a promising indication that we can work to cut down on the amount of context-switching by our students,” Talebi said.

Talebi repeatedly mentioned his ambition to leverage the same design principles used by Facebook, Twitter, and others to increase the time users spend on those platforms, but instead use them to design more compelling and even addictive education programs that can compete for attention with social media.

But the notion that Ahura’s system could one day be used to create compelling or addictive education necessarily presses against a set of justified fears surrounding data privacy. Growing anxiety surrounding the potential to misuse user data for social manipulation is widespread.

“Of course there is a real danger, especially because we are collecting so much data about our users which is specifically connected to how they consume content. And because we are looking so closely at the ways people interact with content, it’s incredibly important that this technology never be used for propaganda or to sell things to people,” Talebi tried to assure me.

Unsurprisingly (and worrying), using this AI system to sell products to people is exactly where some investors’ ambitions immediately turn once they learn about the company’s capabilities, according to Talebi. During our discussion Talebi regularly cited the now infamous example of Cambridge Analytica, the political consulting firm hired by the Trump campaign to run a psychographically targeted persuasion campaign on the US population during the most recent presidential election.

“It’s important that we don’t use this technology in those ways. We’re aware that things can go sideways, so we’re hoping to put up guardrails to ensure our system is helping and not harming society,” Talebi said.

Talebi will surely need to take real action on such a claim, but says the company is in the process of identifying a structure for an ethics review board—one that carries significant influence with similar voting authority as the executive team and the regular board.

“Our goal is to build an ethics review board that has teeth, is diverse in both gender and background but also in thought and belief structures. The idea is to have our ethics review panel ensure we’re building things ethically,” he said.

Data privacy appears to be an important issue for Talebi, who occasionally referenced a major competitor in the space based in China. According to a recent article from MIT Tech Review outlining the astonishing growth of AI-powered education platforms in China, data privacy concerns may be less severe there than in the West.

Ahura is currently developing upgrades to an early alpha-stage prototype, but is already capturing data from students from at least one Ivy League school and a variety of other places. Their next step is to roll out a working beta version to over 200,000 users as part of a partnership with an unnamed corporate client who will be measuring the platform’s efficacy against a control group.

Going forward, Ahura hopes to add to its suite of biometric data capture by including things like pupil dilation and facial flushing, heart rate, sleep patterns, or whatever else may give their system an edge in improving learning outcomes.

As information technologies increasingly automate work, it’s likely we’ll also see rapid changes to our labor systems. It’s also looking increasingly likely that those same technologies will be used to improve our ability to give people the right skills when they need them. It may be one way to address the challenges automation is sure to bring.

Image Credit: Gerd Altmann / Pixabay Continue reading

Posted in Human Robots

#435793 Tiny Robots Carry Stem Cells Through a ...

Engineers have built microrobots to perform all sorts of tasks in the body, and can now add to that list another key skill: delivering stem cells. In a paper published today in Science Robotics, researchers describe propelling a magnetically-controlled, stem-cell-carrying bot through a live mouse.

Under a rotating magnetic field, the microrobots moved with rolling and corkscrew-style locomotion. The researchers, led by Hongsoo Choi and his team at the Daegu Gyeongbuk Institute of Science & Technology (DGIST), in South Korea, also demonstrated their bot’s moves in slices of mouse brain, in blood vessels isolated from rat brains, and in a multi-organ-on-a chip.

The invention provides an alternative way to deliver stem cells, which are increasingly important in medicine. Such cells can be coaxed into becoming nearly any kind of cell, making them great candidates for treating neurodegenerative disorders such as Alzheimer’s.

But delivering stem cells typically requires an injection with a needle, which lowers the survival rate of the stem cells, and limits their reach in the body. Microrobots, however, have the potential to deliver stem cells to precise, hard-to-reach areas, with less damage to surrounding tissue, and better survival rates, says Jin-young Kim, a principle investigator at DGIST-ETH Microrobotics Research Center, and an author on the paper.

The virtues of microrobots have inspired several research groups to propose and test different designs in simple conditions, such as microfluidic channels and other static environments. A group out of Hong Kong last year described a burr-shaped bot that carried cells through live, transparent zebrafish.

The new research presents a magnetically-actuated microrobot that successfully carried stem cells through a live mouse. In additional experiments, the cells, which had differentiated into brain cells such as astrocytes, oligodendrocytes, and neurons, transferred to microtissues on the multi-organ-on-a-chip. Taken together, the proof-of-concept experiments demonstrate the potential for microrobots to be used in human stem cell therapy, says Kim.

The team fabricated the robots with 3D laser lithography, and designed them in two shapes: spherical and helical. Using a rotating magnetic field, the scientists navigated the spherical-shaped bots with a rolling motion, and the helical bots with a corkscrew motion. These styles of locomotion proved more efficient than that from a simple pulling force, and were more suitable for use in biological fluids, the scientists reported.

The big challenge in navigating microbots in a live animal (or human body) is being able to see them in real time. Imaging with fMRI doesn’t work, because the magnetic fields interfere with the system. “To precisely control microbots in vivo, it is important to actually see them as they move,” the authors wrote in their paper.

That wasn’t possible during experiments in a live mouse, so the researchers had to check the location of the microrobots before and after the experiments using an optical tomography system called IVIS. They also had to resort to using a pulling force with a permanent magnet to navigate the microrobots inside the mouse, due to the limitations of the IVIS system.

Kim says he and his colleagues are developing imaging systems that will enable them to view in real time the locomotion of their microrobots in live animals. Continue reading

Posted in Human Robots

#435791 To Fly Solo, Racing Drones Have a Need ...

Drone racing’s ultimate vision of quadcopters weaving nimbly through obstacle courses has attracted far less excitement and investment than self-driving cars aimed at reshaping ground transportation. But the U.S. military and defense industry are betting on autonomous drone racing as the next frontier for developing AI so that it can handle high-speed navigation within tight spaces without human intervention.

The autonomous drone challenge requires split-second decision-making with six degrees of freedom instead of a car’s mere two degrees of road freedom. One research team developing the AI necessary for controlling autonomous racing drones is the Robotics and Perception Group at the University of Zurich in Switzerland. In late May, the Swiss researchers were among nine teams revealed to be competing in the two-year AlphaPilot open innovation challenge sponsored by U.S. aerospace company Lockheed Martin. The winning team will walk away with up to $2.25 million for beating other autonomous racing drones and a professional human drone pilot in head-to-head competitions.

“I think it is important to first point out that having an autonomous drone to finish a racing track at high speeds or even beating a human pilot does not imply that we can have autonomous drones [capable of] navigating in real-world, complex, unstructured, unknown environments such as disaster zones, collapsed buildings, caves, tunnels or narrow pipes, forests, military scenarios, and so on,” says Davide Scaramuzza, a professor of robotics and perception at the University of Zurich and ETH Zurich. “However, the robust and computationally efficient state estimation algorithms, control, and planning algorithms developed for autonomous drone racing would represent a starting point.”

The nine teams that made the cut—from a pool of 424 AlphaPilot applicants—will compete in four 2019 racing events organized under the Drone Racing League’s Artificial Intelligence Robotic Racing Circuit, says Keith Lynn, program manager for AlphaPilot at Lockheed Martin. To ensure an apples-to-apples comparison of each team’s AI secret sauce, each AlphaPilot team will upload its AI code into identical, specially-built drones that have the NVIDIA Xavier GPU at the core of the onboard computing hardware.

“Lockheed Martin is offering mentorship to the nine AlphaPilot teams to support their AI tech development and innovations,” says Lynn. The company “will be hosting a week-long Developers Summit at MIT in July, dedicated to workshopping and improving AlphaPilot teams’ code,” he added. He notes that each team will retain the intellectual property rights to its AI code.

The AlphaPilot challenge takes inspiration from older autonomous drone racing events hosted by academic researchers, Scaramuzza says. He credits Hyungpil Moon, a professor of robotics and mechanical engineering at Sungkyunkwan University in South Korea, for having organized the annual autonomous drone racing competition at the International Conference on Intelligent Robots and Systems since 2016.

It’s no easy task to create and train AI that can perform high-speed flight through complex environments by relying on visual navigation. One big challenge comes from how drones can accelerate sharply, take sharp turns, fly sideways, do zig-zag patterns and even perform back flips. That means camera images can suddenly appear tilted or even upside down during drone flight. Motion blur may occur when a drone flies very close to structures at high speeds and camera pixels collect light from multiple directions. Both cameras and visual software can also struggle to compensate for sudden changes between light and dark parts of an environment.

To lend AI a helping hand, Scaramuzza’s group recently published a drone racing dataset that includes realistic training data taken from a drone flown by a professional pilot in both indoor and outdoor spaces. The data, which includes complicated aerial maneuvers such as back flips, flight sequences that cover hundreds of meters, and flight speeds of up to 83 kilometers per hour, was presented at the 2019 IEEE International Conference on Robotics and Automation.

The drone racing dataset also includes data captured by the group’s special bioinspired event cameras that can detect changes in motion on a per-pixel basis within microseconds. By comparison, ordinary cameras need milliseconds (each millisecond being 1,000 microseconds) to compare motion changes in each image frame. The event cameras have already proven capable of helping drones nimbly dodge soccer balls thrown at them by the Swiss lab’s researchers.

The Swiss group’s work on the racing drone dataset received funding in part from the U.S. Defense Advanced Research Projects Agency (DARPA), which acts as the U.S. military’s special R&D arm for more futuristic projects. Specifically, the funding came from DARPA’s Fast Lightweight Autonomy program that envisions small autonomous drones capable of flying at high speeds through cluttered environments without GPS guidance or communication with human pilots.

Such speedy drones could serve as military scouts checking out dangerous buildings or alleys. They could also someday help search-and-rescue teams find people trapped in semi-collapsed buildings or lost in the woods. Being able to fly at high speed without crashing into things also makes a drone more efficient at all sorts of tasks by making the most of limited battery life, Scaramuzza says. After all, most drone battery life gets used up by the need to hover in flight and doesn’t get drained much by flying faster.

Even if AI manages to conquer the drone racing obstacle courses, that would be the end of the beginning of the technology’s development. What would still be required? Scaramuzza specifically singled out the need to handle low-visibility conditions involving smoke, dust, fog, rain, snow, fire, hail, as some of the biggest challenges for vision-based algorithms and AI in complex real-life environments.

“I think we should develop and release datasets containing smoke, dust, fog, rain, fire, etc. if we want to allow using autonomous robots to complement human rescuers in saving people lives after an earthquake or natural disaster in the future,” Scaramuzza says. Continue reading

Posted in Human Robots

#435779 This Robot Ostrich Can Ride Around on ...

Proponents of legged robots say that they make sense because legs are often required to go where humans go. Proponents of wheeled robots say, “Yeah, that’s great but watch how fast and efficient my robot is, compared to yours.” Some robots try and take advantage of wheels and legs with hybrid designs like whegs or wheeled feet, but a simpler and more versatile solution is to do what humans do, and just take advantage of wheels when you need them.

We’ve seen a few experiments with this. The University of Michigan managed to convince Cassie to ride a Segway, with mostly positive (but occasionally quite negative) results. A Segway, and hoverboard-like systems, can provide wheeled mobility for legged robots over flat terrain, but they can’t handle things like stairs, which is kind of the whole point of having a robot with legs anyway.

Image: UC Berkeley

From left, a Segway, a hovercraft, and hovershoes, with complexity in terms of user control increasing from left to right.

At UC Berkeley’s Hybrid Robotics Lab, led by Koushil Sreenath, researchers have taken things a step further. They are teaching their Cassie bipedal robot (called Cassie Cal) to wheel around on a pair of hovershoes. Hovershoes are like hoverboards that have been chopped in half, resulting in a pair of motorized single-wheel skates. You balance on the skates, and control them by leaning forwards and backwards and left and right, which causes each skate to accelerate or decelerate in an attempt to keep itself upright. It’s not easy to get these things to work, even for a human, but by adding a sensor package to Cassie the UC Berkeley researchers have managed to get it to zip around campus fully autonomously.

Remember, Cassie is operating autonomously here—it’s performing vSLAM (with an Intel RealSense) and doing all of its own computation onboard in real time. Watching it jolt across that cracked sidewalk is particularly impressive, especially considering that it only has pitch control over its ankles and can’t roll its feet to maintain maximum contact with the hovershoes. But you can see the advantage that this particular platform offers to a robot like Cassie, including the ability to handle stairs. Stairs in one direction, anyway.

It’s a testament to the robustness of UC Berkeley’s controller that they were willing to let the robot operate untethered and outside, and it sounds like they’re thinking long-term about how legged robots on wheels would be real-world useful:

Our feedback control and autonomous system allow for swift movement through urban environments to aid in everything from food delivery to security and surveillance to search and rescue missions. This work can also help with transportation in large factories and warehouses.

For more details, we spoke with the UC Berkeley students (Shuxiao Chen, Jonathan Rogers, and Bike Zhang) via email.

IEEE Spectrum: How representative of Cassie’s real-world performance is what we see in the video? What happens when things go wrong?

Cassie’s real-world performance is similar to what we see in the video. Cassie can ride the hovershoes successfully all around the campus. Our current controller allows Cassie to robustly ride the hovershoes and rejects various perturbations. At present, one of the failure modes is when the hovershoe rolls to the side—this happens when it goes sideways down a step or encounters a large obstacle on one side of it, causing it to roll over. Under these circumstances, Cassie doesn’t have sufficient control authority (due to the thin narrow feet) to get the hovershoe back on its wheel.

The Hybrid Robotics Lab has been working on robots that walk over challenging terrain—how do wheeled platforms like hovershoes fit in with that?

Surprisingly, this research is related to our prior work on walking on discrete terrain. While locomotion using legs is efficient when traveling over rough and discrete terrain, wheeled locomotion is more efficient when traveling over flat continuous terrain. Enabling legged robots to ride on various micro-mobility platforms will offer multimodal locomotion capabilities, improving the efficiency of locomotion over various terrains.

Our current research furthers the locomotion ability for bipedal robots over continuous terrains by using a wheeled platform. In the long run, we would like to develop multi-modal locomotion strategies based on our current and prior work to allow legged robots to robustly and efficiently locomote in our daily life.

Photo: UC Berkeley

In their experiments, the UC Berkeley researchers say Cassie proved quite capable of riding the hovershoes over rough and uneven terrain, including going down stairs.

How long did it take to train Cassie to use the hovershoes? Are there any hovershoe skills that Cassie is better at than an average human?

We spent about eight months to develop our whole system, including a controller, a path planner, and a vision system. This involved developing mathematical models of Cassie and the hovershoes, setting up a dynamical simulation, figuring out how to interface and communicate with various sensors and Cassie, and doing several experiments to slowly improve performance. In contrast, a human with a good sense of balance needs a few hours to learn to use the hovershoes. A human who has never used skates or skis will probably need a longer time.

A human can easily turn in place on the hovershoes, while Cassie cannot do this motion currently due to our algorithm requiring a non-zero forward speed in order to turn. However, Cassie is much better at riding the hovershoes over rough and uneven terrain including riding the hovershoes down some stairs!

What would it take to make Cassie faster or more agile on the hovershoes?

While Cassie can currently move at a decent pace on the hovershoes and navigate obstacles, Cassie’s ability to avoid obstacles at rapid speeds is constrained by the sensing, the controller, and the onboard computation. To enable Cassie to dynamically weave around obstacles at high speeds exhibiting agile motions, we need to make progress on different fronts.

We need planners that take into account the entire dynamics of the Cassie-Hovershoe system and rapidly generate dynamically-feasible trajectories; we need controllers that tightly coordinate all the degrees-of-freedom of Cassie to dynamically move while balancing on the hovershoes; we need sensors that are robust to motion-blur artifacts caused due to fast turns; and we need onboard computation that can execute our algorithms at real-time speeds.

What are you working on next?

We are working on enabling more aggressive movements for Cassie on the hovershoes by fully exploiting Cassie’s dynamics. We are working on approaches that enable us to easily go beyond hovershoes to other challenging micro-mobility platforms. We are working on enabling Cassie to step onto and off from wheeled platforms such as hovershoes. We would like to create a future of multi-modal locomotion strategies for legged robots to enable them to efficiently help people in our daily life.

“Feedback Control for Autonomous Riding of Hovershoes by a Cassie Bipedal Robot,” by Shuxiao Chen, Jonathan Rogers, Bike Zhang, and Koushil Sreenath from the Hybrid Robotics Lab at UC Berkeley, has been submitted to IEEE Robotics and Automation Letters with option to be presented at the 2019 IEEE RAS International Conference on Humanoid Robots. Continue reading

Posted in Human Robots

#435773 Video Friday: Roller-Skating Quadruped ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
RoboBusiness 2019 – October 1-3, 2019 – Santa Clara, CA, USA
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today's videos.

We got a sneak peek of a new version of ANYmal equipped with actuated wheels for feet at the DARPA SubT Challenge, where it did surprisingly well at quickly and (mostly) robustly navigating some very tricky terrain. And when you're not expecting it to travel through a muddy, rocky, and dark tunnel, it looks even more capable:

[ Paper ]

Thanks Marko!

In Langley’s makerspace lab, researchers are developing a series of soft robot actuators to investigate the viability of soft robotics in space exploration and assembly. By design, the actuator has chambers, or air bladders, that expand and compress based on the amount of air in them.

[ NASA ]

I’m not normally a fan of the AdultSize RoboCup soccer competition, but NimbRo had a very impressive season.

I don’t know how it managed to not fall over at 45 seconds, but damn.

[ NimbRo ]

This is more AI than robotics, but that’s okay, because it’s totally cool.

I’m wondering whether the hiders ever tried another possibly effective strategy: trapping the seekers in a locked shelter right at the start.

[ OpenAI ]

We haven’t heard much from Piaggio Fast Forward in a while, but evidently they’ve still got a Gita robot going on, designed to be your personal autonomous caddy for absolutely anything that can fit into something the size of a portable cooler.

Available this fall, I guess?

[ Gita ]

This passively triggered robotic hand is startlingly fast, and seems almost predatory when it grabs stuff, especially once they fit it onto a drone.

[ New Dexterity ]

Thanks Fan!

Autonomous vehicles seem like a recent thing, but CMU has been working on them since the mid 1980s.

CMU was also working on drones back before drones were even really a thing:

[ CMU NavLab ] and [ CMU ]

Welcome to the most complicated and expensive robotic ice cream deployment system ever created.

[ Niska ]

Some impressive dexterity from a robot hand equipped with magnetic gears.

[ Ishikawa Senoo Lab ]

The Buddy Arduino social robot kit is now live on Kickstarter, and you can pledge for one of these little dudes for 49 bucks.

[ Kickstarter ]

Thanks Jenny!

Mobile manipulation robots have high potential to support rescue forces in disaster-response missions. Despite the difficulties imposed by real-world scenarios, robots are promising to perform mission tasks from a safe distance. In the CENTAURO project, we developed a disaster-response system which consists of the highly flexible Centauro robot and suitable control interfaces including an immersive telepresence suit and support-operator controls on different levels of autonomy.

[ CENTAURO ]

Thanks Sven!

Determined robots are the cutest robots.

[ Paper ]

The goal of the Dronument project is to create an aerial platform enabling interior and exterior documentation of heritage sites.

It’s got a base station that helps with localization, but still, flying that close to a chandelier in a UNESCO world heritage site makes me nervous.

[ Dronument ]

Thanks Fan!

Avast ye! No hornswaggling, lick-spittlering, or run-rigging over here – Only serious tech for devs. All hands hoay to check out Misty's capabilities and to build your own skills with plenty of heave ho! ARRRRRRRRGH…

International Talk Like a Pirate Day was yesterday, but I'm sure nobody will look at you funny if you keep at it today too.

[ Misty Robotics ]

This video presents an unobtrusive bimanual teleoperation setup with very low weight, consisting of two Vive visual motion trackers and two Myo surface electromyography bracelets. The video demonstrates complex, dexterous teleoperated bimanual daily-living tasks performed by the torque-controlled humanoid robot TORO.

[ DLR RMC ]

Lex Fridman interviews iRobot’s Colin Angle on the Artificial Intelligence Podcast.

Colin Angle is the CEO and co-founder of iRobot, a robotics company that for 29 years has been creating robots that operate successfully in the real world, not as a demo or on a scale of dozens, but on a scale of thousands and millions. As of this year, iRobot has sold more than 25 million robots to consumers, including the Roomba vacuum cleaning robot, the Braava floor mopping robot, and soon the Terra lawn mowing robot. 25 million robots successfully operating autonomously in people's homes to me is an incredible accomplishment of science, engineering, logistics, and all kinds of entrepreneurial innovation.

[ AI Podcast ]

This week’s CMU RI Seminar comes from CMU’s own Sarah Bergbreiter, on Microsystems-Inspired Robotics.

The ability to manufacture micro-scale sensors and actuators has inspired the robotics community for over 30 years. There have been huge success stories; MEMS inertial sensors have enabled an entire market of low-cost, small UAVs. However, the promise of ant-scale robots has largely failed. Ants can move high speeds on surfaces from picnic tables to front lawns, but the few legged microrobots that have walked have done so at slow speeds (< 1 body length/sec) on smooth silicon wafers. In addition, the vision of large numbers of microfabricated sensors interacting directly with the environment has suffered in part due to the brittle materials used in micro-fabrication. This talk will present our progress in the design of sensors, mechanisms, and actuators that utilize new microfabrication processes to incorporate materials with widely varying moduli and functionality to achieve more robustness, dynamic range, and complexity in smaller packages.

[ CMU RI ] Continue reading

Posted in Human Robots