Tag Archives: real robots

#438762 When Robots Enter the World, Who Is ...

Over the last half decade or so, the commercialization of autonomous robots that can operate outside of structured environments has dramatically increased. But this relatively new transition of robotic technologies from research projects to commercial products comes with its share of challenges, many of which relate to the rapidly increasing visibility that these robots have in society.

Whether it's because of their appearance of agency, or because of their history in popular culture, robots frequently inspire people’s imagination. Sometimes this is a good thing, like when it leads to innovative new use cases. And sometimes this is a bad thing, like when it leads to use cases that could be classified as irresponsible or unethical. Can the people selling robots do anything about the latter? And even if they can, should they?

Roboticists understand that robots, fundamentally, are tools. We build them, we program them, and even the autonomous ones are just following the instructions that we’ve coded into them. However, that same appearance of agency that makes robots so compelling means that it may not be clear to people without much experience with or exposure to real robots that a robot itself isn’t inherently good or bad—rather, as a tool, a robot is a reflection of its designers and users.

This can put robotics companies into a difficult position. When they sell a robot to someone, that person can, hypothetically, use the robot in any way they want. Of course, this is the case with every tool, but it’s the autonomous aspect that makes robots unique. I would argue that autonomy brings with it an implied association between a robot and its maker, or in this case, the company that develops and sells it. I’m not saying that this association is necessarily a reasonable one, but I think that it exists, even if that robot has been sold to someone else who has assumed full control over everything it does.

“All of our buyers, without exception, must agree that Spot will not be used to harm or intimidate people or animals, as a weapon or configured to hold a weapon”
—Robert Playter, Boston Dynamics

Robotics companies are certainly aware of this, because many of them are very careful about who they sell their robots to, and very explicit about what they want their robots to be doing. But once a robot is out in the wild, as it were, how far should that responsibility extend? And realistically, how far can it extend? Should robotics companies be held accountable for what their robots do in the world, or should we accept that once a robot is sold to someone else, responsibility is transferred as well? And what can be done if a robot is being used in an irresponsible or unethical way that could have a negative impact on the robotics community?

For perspective on this, we contacted folks from three different robotics companies, each of which has experience selling distinctive mobile robots to commercial end users. We asked them the same five questions about the responsibility that robotics companies have regarding the robots that they sell, and here’s what they had to say:

Do you have any restrictions on what people can do with your robots? If so, what are they, and if not, why not?

Péter Fankhauser, CEO, ANYbotics:

We closely work together with our customers to make sure that our solution provides the right approach for their problem. Thereby, the target use case is clear from the beginning and we do not work with customers interested in using our robot ANYmal outside the intended target applications. Specifically, we strictly exclude any military or weaponized uses and since the foundation of ANYbotics it is close to our heart to make human work easier, safer, and more enjoyable.

Robert Playter, CEO, Boston Dynamics:

Yes, we have restrictions on what people can do with our robots, which are outlined in our Terms and Conditions of Sale. All of our buyers, without exception, must agree that Spot will not be used to harm or intimidate people or animals, as a weapon or configured to hold a weapon. Spot, just like any product, must be used in compliance with the law.

Ryan Gariepy, CTO, Clearpath Robotics:

We do have strict restrictions and KYC processes which are based primarily on Canadian export control regulations. They depend on the type of equipment sold as well as where it is going. More generally, we also will not sell or support a robot if we know that it will create an uncontrolled safety hazard or if we have reason to believe that the buyer is unqualified to use the product. And, as always, we do not support using our products for the development of fully autonomous weapons systems.

More broadly, if you sell someone a robot, why should they be restricted in what they can do with it?
Péter Fankhauser, ANYbotics: We see the robot less as a simple object but more as an artificial workforce. This implies to us that the usage is closely coupled with the transfer of the robot and both the customer and the provider agree what the robot is expected to do. This approach is supported by what we hear from our customers with an increasing interest to pay for the robots as a service or per use.

Robert Playter, Boston Dynamics: We’re offering a product for sale. We’re going to do the best we can to stop bad actors from using our technology for harm, but we don’t have the control to regulate every use. That said, we believe that our business will be best served if our technology is used for peaceful purposes—to work alongside people as trusted assistants and remove them from harm’s way. We do not want to see our technology used to cause harm or promote violence. Our restrictions are similar to those of other manufacturers or technology companies that take steps to reduce or eliminate the violent or unlawful use of their products.

Ryan Gariepy, Clearpath Robotics: Assuming the organization doing the restricting is a private organization and the robot and its software is sold vs. leased or “managed,” there aren't strong legal reasons to restrict use. That being said, the manufacturer likewise has no obligation to continue supporting that specific robot or customer going forward. However, given that we are only at the very edge of how robots will reshape a great deal of society, it is in the best interest for the manufacturer and user to be honest with each other about their respective goals. Right now, you're not only investing in the initial purchase and relationship, you're investing in the promise of how you can help each other succeed in the future.

“If a robot is being used in a way that is irresponsible due to safety: intervene! If it’s unethical: speak up!”
—Péter Fankhauser, ANYbotics

What can you realistically do to make sure that people who buy your robots use them in the ways that you intend?
Péter Fankhauser, ANYbotics: We maintain a close collaboration with our customers to ensure their success with our solution. So for us, we have refrained from technical solutions to block unintended use.

Robert Playter, Boston Dynamics: We vet our customers to make sure that their desired applications are things that Spot can support, and are in alignment with our Terms and Conditions of Sale. We’ve turned away customers whose applications aren’t a good match with our technology. If customers misuse our technology, we’re clear in our Terms of Sale that their violations may void our warranty and prevent their robots from being updated, serviced, repaired, or replaced. We may also repossess robots that are not purchased, but leased. Finally, we will refuse future sales to customers that violate our Terms of Sale.

Ryan Gariepy, Clearpath Robotics: We typically work with our clients ahead of the purchase to make sure their expectations match reality, in particular on aspects like safety, supervisory requirements, and usability. It's far worse to sell a robot that'll sit on a shelf or worse, cause harm, then to not sell a robot at all, so we prefer to reduce the risk of this situation in advance of receiving an order or shipping a robot.

How do you evaluate the merit of edge cases, for example if someone wants to use your robot in research or art that may push the boundaries of what you personally think is responsible or ethical?
Péter Fankhauser, ANYbotics: It’s about the dialog, understanding, and figuring out alternatives that work for all involved parties and the earlier you can have this dialog the better.

Robert Playter, Boston Dynamics: There’s a clear line between exploring robots in research and art, and using the robot for violent or illegal purposes.

Ryan Gariepy, Clearpath Robotics: We have sold thousands of robots to hundreds of clients, and I do not recall the last situation that was not covered by a combination of export control and a general evaluation of the client's goals and expectations. I'm sure this will change as robots continue to drop in price and increase in flexibility and usability.

“You're not only investing in the initial purchase and relationship, you're investing in the promise of how you can help each other succeed in the future.”
—Ryan Gariepy, Clearpath Robotics

What should roboticists do if we see a robot being used in a way that we feel is unethical or irresponsible?
Péter Fankhauser, ANYbotics: If it’s irresponsible due to safety: intervene! If it’s unethical: speak up!

Robert Playter, Boston Dynamics: We want robots to be beneficial for humanity, which includes the notion of not causing harm. As an industry, we think robots will achieve long-term commercial viability only if people see robots as helpful, beneficial tools without worrying if they’re going to cause harm.

Ryan Gariepy, Clearpath Robotics: On a one off basis, they should speak to a combination of the user, the supplier or suppliers, the media, and, if safety is an immediate concern, regulatory or government agencies. If the situation in question risks becoming commonplace and is not being taken seriously, they should speak up more generally in appropriate forums—conferences, industry groups, standards bodies, and the like.

As more and more robots representing different capabilities become commercially available, these issues are likely to come up more frequently. The three companies we talked to certainly don’t represent every viewpoint, and we did reach out to other companies who declined to comment. But I would think (I would hope?) that everyone in the robotics community can agree that robots should be used in a way that makes people’s lives better. What “better” means in the context of art and research and even robots in the military may not always be easy to define, and inevitably there’ll be disagreement as to what is ethical and responsible, and what isn’t.

We’ll keep on talking about it, though, and do our best to help the robotics community to continue growing and evolving in a positive way. Let us know what you think in the comments. Continue reading

Posted in Human Robots

#437918 Video Friday: These Robots Wish You ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

ICCR 2020 – December 26-29, 2020 – [Online]
HRI 2021 – March 8-11, 2021 – [Online]
RoboSoft 2021 – April 12-16, 2021 – [Online]
Let us know if you have suggestions for next week, and enjoy today's videos.

Look who’s baaaack: Jibo! After being sold (twice?), this pioneering social home robot (it was first announced back in 2014!) now belongs to NTT Disruption, which was described to us as the “disruptive company of NTT Group.” We are all for disruption, so this looks like a great new home for Jibo.

[ NTT Disruption ]

Thanks Ana!

FZI's Christmas Party was a bit of a challenge this year; good thing robots are totally competent to have a part on their own.

[ FZI ]

Thanks Arne!

Do you have a lonely dog that just wants a friend to watch cat videos on YouTube with? The Danish Technological Institute has a gift idea for you.

[ DTI ]

Thanks Samuel!

Once upon a time, not so far away, there was an elf who received a very special gift. Watch this heartwarming story. Happy Holidays from the Robotiq family to yours!

Of course, these elves are not now unemployed, they've instead moved over to toy design full time!

[ Robotiq ]

An elegant Christmas video from the Dynamics System Lab, make sure and watch through the very end for a little extra cheer.

[ Dynamic Systems Lab ]

Thanks Angela!

Usually I complain when robotics companies make holiday videos without any real robots in them, but this is pretty darn cute from Yaskawa this year.

[ Yaskawa ]

Here's our little christmas gift to the fans of strange dynamic behavior. The gyro will follow any given shape as soon as the tip touches its edge and the rotation is fast enough. The friction between tip and shape generates a tangential force, creating a moment such that the gyroscopic reaction pushes the tip towards the shape. The resulting normal force produces a moment that guides the tip along the shape's edge.

[ TUM ]

Happy Holidays from Fanuc!

Okay but why does there have to be an assembly line elf just to put in those little cranks?

[ Fanuc ]

Astrobotic's cute little CubeRover is at NASA busy not getting stuck in places.

[ Astrobotic ]

Team CoSTAR is sharing more of their work on subterranean robotic exploration.

[ CoSTAR ]

Skydio Autonomy Enterprise Foundation (AEF), a new software product that delivers advanced AI-powered capabilities to assist the pilot during tactical situational awareness scenarios and detailed industrial asset inspections. Designed for professionals, it offers an enterprise-caliber flight experience through the new Skydio Enterprise application.

[ Skydio ]

GITAI's S1 autonomous robot will conduct two experiments: IVA (Intra-Vehicular Activity) tasks such as switch and cable operations, and assembly of structures and panels to demonstrate its capability for ISA (In-Space Assembly) tasks. This video was recorded in the Nanoracks Bishop Airlock mock-up facility @GITAI Tokyo office.

[ GITAI ]

It's no Atlas, but this is some impressive dynamic balancing from iCub.

[ IIT ]

The Campaign to Stop Killer Robots and I don't agree on a lot of things, and I don't agree with a lot of the assumptions made in this video, either. But, here you go!

[ CSKR ]

I don't know much about this robot, but I love it.

[ Columbia ]

Most cable-suspended robots have a very well defined workspace, but you can increase that workspace by swinging them around. Wheee!

[ Laval ]

How you know your robot's got some skill: “to evaluate the performance in climbing over the step, we compared the R.L. result to the results of 12 students who attempted to find the best planning. The RL outperformed all the group, in terms of effort and time, both in continuous (joystick) and partition planning.”

[ Zarrouk Lab ]

In the Spring 2021 semester, mechanical engineering students taking MIT class 2.007, Design and Manufacturing I, will be able to participate in the class’ iconic final robot competition from the comfort of their own home. Whether they take the class virtually or semi-virtually, students will be sent a massive kit of tools and materials to build their own unique robot along with a “Home Alone” inspired game board for the final global competition.

[ MIT ]

Well, this thing is still around!

[ Moley Robotics ]

Manuel Ahumada wrote in to share this robotic Baby Yoda that he put together with a little bit of help from Intel's OpenBot software.

[ YouTube ]

Thanks Manuel!

Here's what Zoox has been working on for the past half-decade.

[ Zoox ] Continue reading

Posted in Human Robots

#437882 Video Friday: MIT Mini-Cheetah Robots ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

ICCR 2020 – December 26-29, 2020 – [Online Conference]
HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
Let us know if you have suggestions for next week, and enjoy today's videos.

What a lovely Christmas video from Norlab.

[ Norlab ]

Thanks Francois!

MIT Mini-Cheetahs are looking for a new home. Our new cheetah cubs, born at NAVER LABS, are for the MIT Mini-Cheetah workshop. MIT professor Sangbae Kim and his research team are supporting joint research by distributing Mini-Cheetahs to researchers all around the world.

[ NAVER Labs ]

For several years, NVIDIA’s research teams have been working to leverage GPU technology to accelerate reinforcement learning (RL). As a result of this promising research, NVIDIA is pleased to announce a preview release of Isaac Gym – NVIDIA’s physics simulation environment for reinforcement learning research. RL-based training is now more accessible as tasks that once required thousands of CPU cores can now instead be trained using a single GPU.

[ NVIDIA ]

At SINTEF in Norway, they're working on ways of using robots to keep tabs on giant floating cages of tasty fish:

One of the tricky things about operating robots in an environment like this is localization, so SINTEF is working on a solution that uses beacons:

While that video shows a lot of simulation (because otherwise there are tons of fish in the way), we're told that the autonomous navigation has been successfully demonstrated with an ROV in “a full scale fish farm with up to 200.000 salmon swimming around the robot.”

[ SINTEF ]

Thanks Eleni!

We’ve been getting ready for the snow in the most BG way possible. Wishing all of you a happy and healthy holiday season.

[ Berkshire Grey ]

ANYbotics doesn’t care what time of the year it is, so Happy Easter!

And here's a little bit about why ANYmal C looks the way it does.

[ ANYbotics ]

Robert “Buz” Chmielewski is using two modular prosthetic limbs developed by APL to feed himself dessert. Smart software puts his utensils in roughly the right spot, and then Buz uses his brain signals to cut the food with knife and fork. Once he is done cutting, the software then brings the food near his mouth, where he again uses brain signals to bring the food the last several inches to his mouth so that he can eat it.

[ JHUAPL ]

Introducing VESPER: a new military-grade small drone that is designed, sourced and built in the United States. Vesper offers a 50-minutes flight time, with speeds up to 45 mph (72 kph) and a total flight range of 25 miles (45 km). The magnetic snap-together architecture enables extremely fast transitions: the battery, props and rotor set can each be swapped in <5 seconds.

[ Vantage Robotics ]

In this video, a multi-material robot simulator is used to design a shape-changing robot, which is then transferred to physical hardware. The simulated and real robots can use shape change to switch between rolling gaits and inchworm gaits, to locomote in multiple environments.

[ Yale Faboratory ]

Get a preview of the cave environments that are being used to inspire the Final Event competition course of the DARPA Subterranean Challenge. In the Final Event, teams will deploy their robots to rapidly map, navigate, and search in competition courses that combine elements of man-made tunnel systems, urban underground, and natural cave networks!

The reason to pay attention this particular video is that it gives us some idea of what DARPA means when they say "cave."

[ SubT ]

MQ25 takes another step toward unmanned aerial refueling for the U.S. Navy. The MQ-25 test asset has flown for the first time with an aerial refueling pod containing the hose and basket that will make it an aerial refueler.

[ Boeing ]

We present a unified model-based and data-driven approach for quadrupedal planning and control to achieve dynamic locomotion over uneven terrain. We utilize on-board proprioceptive and exteroceptive feedback to map sensory information and desired base velocity commands into footstep plans using a reinforcement learning (RL) policy trained in simulation over a wide range of procedurally generated terrains.

[ DRS ]

The video shows the results of the German research project RoPHa. Within the project, the partners developed technologies for two application scenarios with the service robot Care-O-bot 4 in order to support people in need of help when eating.

[ RoPHa Project ]

Thanks Jenny!

This looks like it would be fun, if you are a crazy person.

[ Team BlackSheep ]

Robot accuracy is the limiting factor in many industrial applications. Manufacturers often only specify the pose repeatability values of their robotic systems. Fraunhofer IPA has set up a testing environment for automated measuring of accuracy performance criteria of industrial robots. Following the procedures defined in norm ISO 9283 allows generating reliable and repeatable results. They can be the basis for targeted measures increasing the robotic system’s accuracy.

[ Fraunhofer ]

Thanks Jenny!

The IEEE Women in Engineering – Robotics and Automation Society (WIE-RAS) hosted an online panel on best practices for teaching robotics. The diverse panel boasts experts in robotics education from a variety of disciplines, institutions, and areas of expertise.

[ IEEE RAS ]

Northwestern researchers have developed a first-of-its-kind soft, aquatic robot that is powered by light and rotating magnetic fields. These life-like robotic materials could someday be used as "smart" microscopic systems for production of fuels and drugs, environmental cleanup or transformative medical procedures.

[ Northwestern ]

Tech United Eindhoven's soccer robots now have eight wheels instead of four wheels, making them tweleve times better, if my math is right.

[ TU Eindhoven ] Continue reading

Posted in Human Robots

#437721 Video Friday: Child Robot Learning to ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

CLAWAR 2020 – August 24-26, 2020 – [Online Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
CYBATHLON 2020 – November 13-14, 2020 – [Online Event]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

We first met Ibuki, Hiroshi Ishiguro’s latest humanoid robot, a couple of years ago. A recent video shows how Ishiguro and his team are teaching the robot to express its emotional state through gait and body posture while moving.

This paper presents a subjective evaluation of the emotions of a wheeled mobile humanoid robot expressing emotions during movement by replicating human gait-induced upper body motion. For this purpose, we proposed the robot equipped with a vertical oscillation mechanism that generates such motion by focusing on human center-of-mass trajectory. In the experiment, participants watched videos of the robot’s different emotional gait-induced upper body motions, and assess the type of emotion shown, and their confidence level in their answer.

[ Hiroshi Ishiguro Lab ] via [ RobotStart ]

ICYMI: This is a zinc-air battery made partly of Kevlar that can be used to support weight, not just add to it.

Like biological fat reserves store energy in animals, a new rechargeable zinc battery integrates into the structure of a robot to provide much more energy, a team led by the University of Michigan has shown.

The new battery works by passing hydroxide ions between a zinc electrode and the air side through an electrolyte membrane. That membrane is partly a network of aramid nanofibers—the carbon-based fibers found in Kevlar vests—and a new water-based polymer gel. The gel helps shuttle the hydroxide ions between the electrodes. Made with cheap, abundant and largely nontoxic materials, the battery is more environmentally friendly than those currently in use. The gel and aramid nanofibers will not catch fire if the battery is damaged, unlike the flammable electrolyte in lithium ion batteries. The aramid nanofibers could be upcycled from retired body armor.

[ University of Michigan ]

In what they say is the first large-scale study of the interactions between sound and robotic action, researchers at CMU’s Robotics Institute found that sounds could help a robot differentiate between objects, such as a metal screwdriver and a metal wrench. Hearing also could help robots determine what type of action caused a sound and help them use sounds to predict the physical properties of new objects.

[ CMU ]

Captured on Aug. 11 during the second rehearsal of the OSIRIS-REx mission’s sample collection event, this series of images shows the SamCam imager’s field of view as the NASA spacecraft approaches asteroid Bennu’s surface. The rehearsal brought the spacecraft through the first three maneuvers of the sampling sequence to a point approximately 131 feet (40 meters) above the surface, after which the spacecraft performed a back-away burn.

These images were captured over a 13.5-minute period. The imaging sequence begins at approximately 420 feet (128 meters) above the surface – before the spacecraft executes the “Checkpoint” maneuver – and runs through to the “Matchpoint” maneuver, with the last image taken approximately 144 feet (44 meters) above the surface of Bennu.

[ NASA ]

The DARPA AlphaDogfight Trials Final Event took place yesterday; the livestream is like 5 hours long, but you can skip ahead to 4:39 ish to see the AI winner take on a human F-16 pilot in simulation.

Some things to keep in mind about the result: The AI had perfect situational knowledge while the human pilot had to use eyeballs, and in particular, the AI did very well at lining up its (virtual) gun with the human during fast passing maneuvers, which is the sort of thing that autonomous systems excel at but is not necessarily reflective of better strategy.

[ DARPA ]

Coming soon from Clearpath Robotics!

[ Clearpath ]

This video introduces Preferred Networks’ Hand type A, a tendon-driven robot gripper with passively switchable underactuated surface.

[ Preferred Networks ]

CYBATHLON 2020 will take place on 13 – 14 November 2020 – at the teams’ home bases. They will set up their infrastructure for the competition and film their races. Instead of starting directly next to each other, the pilots will start individually and under the supervision of CYBATHLON officials. From Zurich, the competitions will be broadcast through a new platform in a unique live programme.

[ Cybathlon ]

In this project, we consider the task of autonomous car racing in the top-selling car racing game Gran Turismo Sport. Gran Turismo Sport is known for its detailed physics simulation of various cars and tracks. Our approach makes use of maximum-entropy deep reinforcement learning and a new reward design to train a sensorimotor policy to complete a given race track as fast as possible. We evaluate our approach in three different time trial settings with different cars and tracks. Our results show that the obtained controllers not only beat the built-in non-player character of Gran Turismo Sport, but also outperform the fastest known times in a dataset of personal best lap times of over 50,000 human drivers.

[ UZH ]

With the help of the software pitasc from Fraunhofer IPA, an assembly task is no longer programmed point by point, but workpiece-related. Thus, pitasc adapts the assembly process itself for new product variants with the help of updated parameters.

[ Fraunhofer ]

In this video, a multi-material robot simulator is used to design a shape-changing robot, which is then transferred to physical hardware. The simulated and real robots can use shape change to switch between rolling gaits and inchworm gaits, to locomote in multiple environments.

[ Yale ]

This work presents a novel loco-manipulation control framework for the execution of complex tasks with kinodynamic constraints using mobile manipulators. As a representative example, we consider the handling and re-positioning of pallet jacks in unstructured environments. While these results reveal with a proof-of- concept the effectiveness of the proposed framework, they also demonstrate the high potential of mobile manipulators for relieving human workers from such repetitive and labor intensive tasks. We believe that this extended functionality can contribute to increasing the usability of mobile manipulators in different application scenarios.

[ Paper ] via [ IIT ]

I don’t know why this dinosaur ice cream serving robot needs to blow smoke out of its nose, but I like it.

[ Connected Robotics ] via [ RobotStart ]

Guardian S remote visual inspection and surveillance robots make laying cable runs in confined or hard to reach spaces easy. With advanced maneuverability and the ability to climb vertical, ferrous surfaces, the robot reaches areas that are not always easily accessible.

[ Sarcos ]

Looks like the company that bought Anki is working on an add-on to let cars charge while they drive.

[ Digital Dream Labs ]

Chris Atkeson gives a brief talk for the CMU Robotics Institute orientation.

[ CMU RI ]

A UofT Robotics Seminar, featuring Russ Tedrake from MIT and TRI on “Feedback Control for Manipulation.”

Control theory has an answer for just about everything, but seems to fall short when it comes to closing a feedback loop using a camera, dealing with the dynamics of contact, and reasoning about robustness over the distribution of tasks one might find in the kitchen. Recent examples from RL and imitation learning demonstrate great promise, but don’t leverage the rigorous tools from systems theory. I’d like to discuss why, and describe some recent results of closing feedback loops from pixels for “category-level” robot manipulation.

[ UofT ] Continue reading

Posted in Human Robots

#437564 How We Won the DARPA SubT Challenge: ...

This is a guest post. The views expressed here are those of the authors and do not necessarily represent positions of IEEE or its organizational units.​

“Do you smell smoke?” It was three days before the qualification deadline for the Virtual Tunnel Circuit of the DARPA Subterranean Challenge Virtual Track, and our team was barrelling through last-minute updates to our robot controllers in a small conference room at the Michigan Tech Research Institute (MTRI) offices in Ann Arbor, Mich. That’s when we noticed the smell. We’d assumed that one of the benefits of entering a virtual disaster competition was that we wouldn’t be exposed to any actual disasters, but equipment in the basement of the building MTRI shares had started to smoke. We evacuated. The fire department showed up. And as soon as we could, the team went back into the building, hunkered down, and tried to make up for the unexpected loss of several critical hours.

Team BARCS joins the SubT Virtual Track
The smoke incident happened more than a year after we first learned of the DARPA Subterranean Challenge. DARPA announced SubT early in 2018, and at that time, we were interested in building internal collaborations on multi-agent autonomy problems, and SubT seemed like the perfect opportunity. Though a few of us had backgrounds in robotics, the majority of our team was new to the field. We knew that submitting a proposal as a largely non-traditional robotics team from an organization not known for research in robotics was a risk. However, the Virtual Track gave us the opportunity to focus on autonomy and multi-agent teaming strategies, areas requiring skill in asynchronous computing and sensor data processing that are strengths of our Institute. The prevalence of open source code, small inexpensive platforms, and customizable sensors has provided the opportunity for experts in fields other than robotics to apply novel approaches to robotics problems. This is precisely what makes the Virtual Track of SubT appealing to us, and since starting SubT, autonomy has developed into a significant research thrust for our Institute. Plus, robots are fun!

After many hours of research, discussion, and collaboration, we submitted our proposal early in 2018. And several months later, we found out that we had won a contract and became a funded team (Team BARCS) in the SubT Virtual Track. Now we needed to actually make our strategy work for the first SubT Tunnel Circuit competition, taking place in August of 2019.

Building a team of virtual robots
A natural approach to robotics competitions like SubT is to start with the question of “what can X-type robot do” and then build a team and strategy around individual capabilities. A particular challenge for the SubT Virtual Track is that we can’t design our own systems; instead, we have to choose from a predefined set of simulated robots and sensors that DARPA provides, based on the real robots used by Systems Track teams. Our approach is to look at what a team of robots can do together, determining experimentally what the best team configuration is for each environment. By the final competition, ideally we will be demonstrating the value of combining platforms across multiple Systems Track teams into a single Virtual Track team. Each of the robot configurations in the competition has an associated cost, and team size is constrained by a total cost. This provides another impetus for limiting dependence on complex sensor packages, though our ranging preference is 3D lidar, which is the most expensive sensor!

Image: Michigan Tech Research Institute

The teams can rely on realistic physics and sensors but they start off with no maps of any kind, so the focus is on developing autonomous exploratory behavior, navigation methods, and object recognition for their simulated robots.

One of the frequent questions we receive about the Virtual Track is if it’s like a video game. While it may look similar on the surface, everything under the hood in a video game is designed to service the game narrative and play experience, not require novel research in AI and autonomy. The purpose of simulations, on the other hand, is to include full physics and sensor models (including noise and errors) to provide a testbed for prototyping and developing solutions to those real-world challenges. We are starting with realistic physics and sensors but no maps of any kind, so the focus is on developing autonomous exploratory behavior, navigation methods, and object recognition for our simulated robots.

Though the simulation is more like real life than a video game, it is not real life. Due to occasional software bugs, there are still non-physical events, like the robots falling through an invisible hole in the world or driving through a rock instead of over it or flipping head over heels when driving over a tiny lip between world tiles. These glitches, while sometimes frustrating, still allow the SubT Virtual platform to be realistic enough to support rapid prototyping of controller modules that will transition straightforwardly onto hardware, closing the loop between simulation and real-world robots.

Full autonomy for DARPA-hard scenarios
The Virtual Track requirement that the robotic agents be fully autonomous, rather than have a human supervisor, is a significant distinction between the Systems and Virtual Tracks of SubT. Our solutions must be hardened against software faults caused by things like missing and bad data since our robots can’t turn to us for help. In order for a team of robots to complete this objective reliably with no human-in-the-loop, all of the internal systems, from perception to navigation to control to actuation to communications, must be able to autonomously identify and manage faults and failures anywhere in the control chain.

The communications limitations in subterranean environments (both real and virtual) mean that we need to keep the amount of information shared between robots low, while making the usability of that information for joint decision-making high. This goal has guided much of our design for autonomous navigation and joint search strategy for our team. For example, instead of sharing the full SLAM map of the environment, our agents only share a simplified graphical representation of the space, along with data about frontiers it has not yet explored, and are able to merge its information with the graphs generated by other agents. The merged graph can then be used for planning and navigation without having full knowledge of the detailed 3D map.

The Virtual Track requires that the robotic agents be fully autonomous. With no human-in-the-loop, all of the internal systems, from perception to navigation to control to actuation to communications, must be able to identify and manage faults and failures anywhere in the control chain.

Since the objective of the SubT program is to advance the state-of-the-art in rapid autonomous exploration and mapping of subterranean environments by robots, our first software design choices focused on the mapping task. The SubT virtual environments are sufficiently rich as to provide interesting problems in building so-called costmaps that accurately separate obstructions that are traversable (like ramps) from legitimately impassible obstructions. An extra complication we discovered in the first course, which took place in mining tunnels, was that the angle of the lowest beam of the lidar was parallel to the down ramps in the tunnel environment, so they could not “see” the ground (or sometimes even obstructions on the ramp) until they got close enough to the lip of the ramp to receive lidar reflections off the bottom of the ramp. In this case, we had to not only change the costmap to convince the robot that there was safe ground to reach over the lip of the ramp, but also had to change the path planner to get the robot to proceed with caution onto the top of the ramp in case there were previously unseen obstructions on the ramp.

In addition to navigation in the costmaps, the robot must be able to generate its own goals to navigate to. This is what produces exploratory behavior when there is no map to start with. SLAM is used to generate a detailed map of the environment explored by a single robot—the space it has probed with its sensors. From the sensor data, we are able to extract information about the interior space of the environment while looking for holes in the data, to determine things like whether the current tunnel continues or ends, or how many tunnels meet at an intersection. Once we have some understanding of the interior space, we can place navigation goals in that space. These goals naturally update as the robot traverses the tunnel, allowing the entire space to be explored.

Sending our robots into the virtual unknown
The solutions for the Virtual Track competitions are tested by DARPA in multiple sequestered runs across many environments for each Circuit in the month prior to the Systems Track competition. We must wait until the joint award ceremony at the conclusion of the Systems Track to find out the results, and we are completely in the dark about placings before the awards are announced. It’s nerve-wracking! The challenges of the worlds used in the Circuit events are also hand-designed, so features of the worlds we use for development could be combined in ways we have not anticipated—it’s always interesting to see what features were prioritized after the event. We test everything in our controllers well enough to feel confident that we at least are submitting something reasonably stable and broadly capable, and once the solution is in, we can’t really do anything other than “let go” and get back to work on the next phase of development. Maybe it’s somewhat like sending your kid to college: “we did our best to prepare you for this world, little bots. Go do good.”

Image: Michigan Tech Research Institute

The first SubT competition was the Tunnel Circuit, featuring a labyrinthine environment that simulated human-engineered tunnels, including hazards such as vertical shafts and rubble.

The first competition was the Tunnel Circuit, in October 2019. This environment models human-engineered tunnels. Two substantial challenges in this environment were vertical shafts and rubble. Our team accrued 21 points over 15 competition runs in five separate tunnel environments for a second place finish, behind Team Coordinated Robotics.

The next phase of the SubT virtual competition was the Urban Circuit. Much of the difference between our Tunnel and Urban Circuit results came down to thorough testing to identify failure modes and implementations of checks and data filtering for fault tolerance. For example, in the SLAM nodes run by a single robot, the coordinates of the most recent sensor data are changed multiple times during processing and integration into the current global 3D map of the “visited” environment stored by that robot. If there is lag in IMU or clock data, the observation may be temporarily registered at a default location that is very far from the actual position. Since most of our decision processes for exploration are downstream from SLAM, this can cause faulty or impossible goals to be generated, and the robots then spend inordinate amounts of time trying to drive through walls. We updated our method to add a check to see if the new map position has jumped a far distance from the prior map position, and if so, we threw that data out.

Image: Michigan Tech Research Institute

In open spaces like the rooms in the Urban circuit, we adjusted our approach to exploration through graph generation to allow the robots to accurately identify viable routes while helping to prevent forays off platform edges.

Our approach to exploration through graph generation based on identification of interior spaces allowed us to thoroughly explore the centers of rooms, although we did have to make some changes from the Tunnel circuit to achieve that. In the Tunnel circuit, we used a simplified graph of the environment based on landmarks like intersections. The advantage of this approach is that it is straightforward for two robots to compare how the graphs of the space they explored individually overlap. In open spaces like the rooms in the Urban circuit, we chose to instead use a more complex, less directly comparable graph structure based on the individual robot’s trajectory. This allowed the robots to accurately identify viable routes between features like subway station platforms and subway tracks, as well as to build up the navigation space for room interiors, while helping to prevent forays off the platform edges. Frontier information is also integrated into the graph, providing a uniform data structure for both goal selection and route planning.

The results are in!
The award ceremony for the Urban Circuit was held concurrently with the Systems Track competition awards this past February in Washington State. We sent a team representative to participate in the Technical Interchange Meeting and present the approach for our team, and the rest of us followed along from our office space on the DARPAtv live stream. While we were confident in our solution, we had also been tracking the online leaderboard and knew our competitors were going to be submitting strong solutions. Since the competition environments are hand-designed, there are always novel challenges that could be presented in these environments as well. We knew we would put up a good fight, but it was very exciting to see BARCS appear in first place!

Any time we implement a new module in our control system, there is a lot of parameter tuning that has to happen to produce reliably good autonomous behavior. In the Urban Circuit, we did not sufficiently test some parameter values in our exploration modules. The effect of this was that the robots only chose to go down small hallways after they explored everything else in their environment, which meant very often they ran out of time and missed a lot of small rooms. This may be the biggest source of lost points for us in the Urban Circuit. One of our major plans going forward from the Urban Circuit is to integrate more sophisticated node selection methods, which can help our robots more intelligently prioritize which frontier nodes to visit. By going through all three Circuit challenges, we will learn how to appropriately add weights to the frontiers based on features of the individual environments. For the Final Challenge, when all three Circuit environments will be combined into large systems, we plan to implement adaptive controllers that will identify their environments and use the appropriate optimized parameters for that environment. In this way, we expect our agents to be able to (for example) prioritize hallways and other small spaces in Urban environments, and perhaps prioritize large openings over small in the Cave environments, if the small openings end up being treacherous overall.

Next for our team: Cave Circuit
Coming up next for Team BARCS is the Virtual Cave Circuit. We are in the middle of testing our hypothesis that our controller will transition from UGVs to UAVs and developing strategies for refining our solution to handle Cave Circuit environmental hazards. The UAVs have a shorter battery life than the UGVs, so executing a joint exploration strategy will also be a high priority for this event, as will completing our work on graph sharing and merging, which will give our robot teams more sophisticated options for navigation and teamwork. We’re reaching a threshold in development where we can start increasing the “smarts” of the robots, which we anticipate will be critical for the final competition, where all of the challenges of SubT will be combined to push the limits of innovation. The Cave Circuit will also have new environmental challenges to tackle: dynamic features such as rock falls have been added, which will block previously accessible passages in the cave environment. We think our controllers are well-poised to handle this new challenge, and we’re eager to find out if that’s the case.

As of now, the biggest worries for us are time and team composition. The Cave Circuit deadline has been postponed to October 15 due to COVID-19 delays, with the award ceremony in mid-November, but there have also been several very compelling additions to the testbed that we would like to experiment with before submission, including droppable networking ‘breadcrumbs’ and new simulated platforms. There are design trade-offs when balancing general versus specialist approaches to the controllers for these robots—since we are adding UAVs to our team for the first time, there are new decisions that will have to be made. For example, the UAVs can ascend into vertical spaces, but only have a battery life of 20 minutes. The UGVs by contrast have 90 minute battery life. One of our strategies is to do an early return to base with one or more agents to buy down risk on making any artifact reports at all for the run, hedging against our other robots not making it back in time, a lesson learned from the Tunnel Circuit. Should a UAV take on this role, or is it better to have them explore deeper into the environment and instead report their artifacts to a UGV or network node, which comes with its own risks? Testing and experimentation to determine the best options takes time, which is always a worry when preparing for a competition! We also anticipate new competitors and stiffer competition all around.

Image: Michigan Tech Research Institute

Team BARCS has now a year to prepare for the final DARPA SubT Challenge event, expected to take place in late 2021.

Going forward from the Cave Circuit, we will have a year to prepare for the final DARPA SubT Challenge event, expected to take place in late 2021. What we are most excited about is increasing the level of intelligence of the agents in their teamwork and joint exploration of the environment. Since we will have (hopefully) built up robust approaches to handling each of the specific types of environments in the Tunnel, Urban, and Cave circuits, we will be aiming to push the limits on collaboration and efficiency among the agents in our team. We view this as a central research contribution of the Virtual Track to the Subterranean Challenge because intelligent, adaptive, multi-robot collaboration is an upcoming stage of development for integration of robots into our lives.

The Subterranean Challenge Virtual Track gives us a bridge for transitioning our more abstract research ideas and algorithms relevant to this degree of autonomy and collaboration onto physical systems, and exploring the tangible outcomes of implementing our work in the real world. And the next time there’s an incident in the basement of our building, the robots (and humans) of Team BARCS will be ready to respond.

Richard Chase, Ph.D., P.E., is a research scientist at Michigan Tech Research Institute (MTRI) and has 20 years of experience developing robotics and cyber physical systems in areas from remote sensing to autonomous vehicles. At MTRI, he works on a variety of topics such as swarm autonomy, human-swarm teaming, and autonomous vehicles. His research interests are the intersection of design, robotics, and embedded systems.

Sarah Kitchen is a Ph.D. mathematician working as a research scientist and an AI/Robotics focus area leader at MTRI. Her research interests include intelligent autonomous agents and multi-agent collaborative teams, as well as applications of autonomous robots to sensing systems.

This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR001118C0124 and is released under Distribution Statement (Approved for Public Release, Distribution Unlimited). Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of DARPA. Continue reading

Posted in Human Robots