Tag Archives: reading
#437209 A Renaissance of Genomics and Drugs Is ...
The causes of aging are extremely complex and unclear. But with longevity clinical trials increasing, more answers—and questions—are emerging than ever before.
With the dramatic demonetization of genome reading and editing over the past decade, and Big Pharma, startups, and the FDA starting to face aging as a disease, we are starting to turn those answers into practical ways to extend our healthspan.
In this article, I’ll explore how genome sequencing and editing, along with new classes of anti-aging drugs, are augmenting our biology to further extend our healthy lives.
Genome Sequencing and Editing
Your genome is the software that runs your body. A sequence of 3.2 billion letters makes you “you.” These base pairs of A’s, T’s, C’s, and G’s determine your hair color, your height, your personality, your propensity for disease, your lifespan, and so on.
Until recently, it’s been very difficult to rapidly and cheaply “read” these letters—and even more difficult to understand what they mean. Since 2001, the cost to sequence a whole human genome has plummeted exponentially, outpacing Moore’s Law threefold. From an initial cost of $3.7 billion, it dropped to $10 million in 2006, and to $1,500 in 2015.
Today, the cost of genome sequencing has dropped below $600, and according to Illumina, the world’s leading sequencing company, the process will soon cost about $100 and take about an hour to complete.
This represents one of the most powerful and transformative technology revolutions in healthcare. When we understand your genome, we’ll be able to understand how to optimize “you.”
We’ll know the perfect foods, the perfect drugs, the perfect exercise regimen, and the perfect supplements, just for you.
We’ll understand what microbiome types, or gut flora, are ideal for you (more on this in a later article).
We’ll accurately predict how specific sedatives and medicines will impact you.
We’ll learn which diseases and illnesses you’re most likely to develop and, more importantly, how to best prevent them from developing in the first place (rather than trying to cure them after the fact).
CRISPR Gene Editing
In addition to reading the human genome, scientists can now edit a genome using a naturally occurring biological system discovered in 1987 called CRISPR/Cas9.
Short for Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated protein 9, the editing system was adapted from a naturally-occurring defense system found in bacteria.
Here’s how it works. The bacteria capture snippets of DNA from invading viruses (or bacteriophage) and use them to create DNA segments known as CRISPR arrays. The CRISPR arrays allow the bacteria to “remember” the viruses (or closely related ones), and defend against future invasions. If the viruses attack again, the bacteria produce RNA segments from the CRISPR arrays to target the viruses’ DNA. The bacteria then use Cas9 to cut the DNA apart, which disables the virus.
Most importantly, CRISPR is cheap, quick, easy to use, and more accurate than all previous gene editing methods. As a result, CRISPR/Cas9 has swept through labs around the world as the way to edit a genome. A short search in the literature will show an exponential rise in the number of CRISPR-related publications and patents.
2018: Filled With CRISPR Breakthroughs
Early results are impressive. Researchers have used CRISPR to genetically engineer cocaine resistance into mice, reverse the gene defect causing Duchenne muscular dystrophy (DMD) in dogs, and reduce genetic deafness in mice.
Already this year, CRISPR-edited immune cells have been shown to successfully kill cancer cells in human patients. Researchers have discovered ways to activate CRISPR with light and use the gene-editing technology to better understand Alzheimer’s disease progression.
With great power comes great responsibility, and the opportunity for moral and ethical dilemmas. In 2015, Chinese scientists sparked global controversy when they first edited human embryo cells in the lab with the goal of modifying genes that would make the child resistant to smallpox, HIV, and cholera. Three years later, in November 2018, researcher He Jiankui informed the world that the first set of CRISPR-engineered female twins had been delivered.
To accomplish his goal, Jiankui deleted a region of a receptor on the surface of white blood cells known as CCR5, introducing a rare, natural genetic variation that makes it more difficult for HIV to infect its favorite target, white blood cells. Because Jiankui forged ethical review documents and misled doctors in the process, he was sentenced to three years in prison and fined $429,000 last December.
Coupled with significant ethical conversations necessary for progress, CRISPR will soon provide us the tools to eliminate diseases, create hardier offspring, produce new environmentally resistant crops, and even wipe out pathogens.
Senolytics, Nutraceuticals, and Pharmaceuticals
Over the arc of your life, the cells in your body divide until they reach what is known as the Hayflick limit, or the number of times a normal human cell population will divide before cell division stops, which is typically about 50 divisions.
What normally follows next is programmed cell death or destruction by the immune system. A very small fraction of cells, however, become senescent cells and evade this fate to linger indefinitely. These lingering cells secrete a potent mix of molecules that triggers chronic inflammation, damages the surrounding tissue structures, and changes the behavior of nearby cells for the worse. Senescent cells appear to be one of the root causes of aging, causing everything from fibrosis and blood vessel calcification to localized inflammatory conditions such as osteoarthritis to diminished lung function.
Fortunately, both the scientific and entrepreneurial communities have begun to work on senolytic therapies, moving the technology for selectively destroying senescent cells out of the laboratory and into a half-dozen startup companies.
Prominent companies in the field include the following:
Unity Biotechnology is developing senolytic medicines to selectively eliminate senescent cells with an initial focus on delivering localized therapy in osteoarthritis, ophthalmology, and pulmonary disease.
Oisin Biotechnologies is pioneering a programmable gene therapy that can destroy cells based on their internal biochemistry.
SIWA Therapeutics is working on an immunotherapy approach to the problem of senescent cells.
In recent years, researchers have identified or designed a handful of senolytic compounds that can curb aging by regulating senescent cells. Two of these drugs that have gained mainstay research traction are rapamycin and metformin.
(1) Rapamycin
Originally extracted from bacteria found on Easter Island, rapamycin acts on the m-TOR (mechanistic target of rapamycin) pathway to selectively block a key protein that facilitates cell division. Currently, rapamycin derivatives are widely used for immunosuppression in organ and bone marrow transplants. Research now suggests that use results in prolonged lifespan and enhanced cognitive and immune function.
PureTech Health subsidiary resTORbio (which went public in 2018) is working on a rapamycin-based drug intended to enhance immunity and reduce infection. Their clinical-stage RTB101 drug works by inhibiting part of the mTOR pathway.
Results of the drug’s recent clinical trial include decreased incidence of infection, improved influenza vaccination response, and a 30.6 percent decrease in respiratory tract infection.
Impressive, to say the least.
(2) Metformin
Metformin is a widely-used generic drug for mitigating liver sugar production in Type 2 diabetes patients. Researchers have found that metformin also reduces oxidative stress and inflammation, which otherwise increase as we age. There is strong evidence that metformin can augment cellular regeneration and dramatically mitigate cellular senescence by reducing both oxidative stress and inflammation.
Over 100 studies registered on ClinicalTrials.gov are currently following up on strong evidence of metformin’s protective effect against cancer.
(3) Nutraceuticals and NAD+
Beyond cellular senescence, certain critical nutrients and proteins tend to decline as a function of age. Nutraceuticals combat aging by supplementing and replenishing these declining nutrient levels.
NAD+ exists in every cell, participating in every process from DNA repair to creating the energy vital for cellular processes. It’s been shown that NAD+ levels decline as we age.
The Elysium Health Basis supplement aims to elevate NAD+ levels in the body to extend one’s lifespan. Elysium’s first clinical study reports that Basis increases NAD+ levels consistently by a sustained 40 percent.
Conclusion
These are just a taste of the tremendous momentum that longevity and aging technology has right now. As artificial intelligence and quantum computing transform how we decode our DNA and how we discover drugs, genetics and pharmaceuticals will become truly personalized.
The next article in this series will demonstrate how artificial intelligence is converging with genetics and pharmaceuticals to transform how we approach longevity, aging, and vitality.
We are edging closer toward a dramatically extended healthspan—where 100 is the new 60. What will you create, where will you explore, and how will you spend your time if you are able to add an additional 40 healthy years to your life?
Join Me
(1) A360 Executive Mastermind: If you’re an exponentially and abundance-minded entrepreneur who would like coaching directly from me, consider joining my Abundance 360 Mastermind, a highly selective community of 360 CEOs and entrepreneurs who I coach for 3 days every January in Beverly Hills, Ca. Through A360, I provide my members with context and clarity about how converging exponential technologies will transform every industry. I’m committed to running A360 for the course of an ongoing 25-year journey as a “countdown to the Singularity.”
If you’d like to learn more and consider joining our 2021 membership, apply here.
(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs—those who want to get involved and play at a higher level. Click here to learn more.
(Both A360 and Abundance-Digital are part of Singularity University—your participation opens you to a global community.)
This article originally appeared on diamandis.com. Read the original article here.
Image Credit: Arek Socha from Pixabay Continue reading
#436258 For Centuries, People Dreamed of a ...
This is part six of a six-part series on the history of natural language processing.
In February of this year, OpenAI, one of the foremost artificial intelligence labs in the world, announced that a team of researchers had built a powerful new text generator called the Generative Pre-Trained Transformer 2, or GPT-2 for short. The researchers used a reinforcement learning algorithm to train their system on a broad set of natural language processing (NLP) capabilities, including reading comprehension, machine translation, and the ability to generate long strings of coherent text.
But as is often the case with NLP technology, the tool held both great promise and great peril. Researchers and policy makers at the lab were concerned that their system, if widely released, could be exploited by bad actors and misappropriated for “malicious purposes.”
The people of OpenAI, which defines its mission as “discovering and enacting the path to safe artificial general intelligence,” were concerned that GPT-2 could be used to flood the Internet with fake text, thereby degrading an already fragile information ecosystem. For this reason, OpenAI decided that it would not release the full version of GPT-2 to the public or other researchers.
GPT-2 is an example of a technique in NLP called language modeling, whereby the computational system internalizes a statistical blueprint of a text so it’s able to mimic it. Just like the predictive text on your phone—which selects words based on words you’ve used before—GPT-2 can look at a string of text and then predict what the next word is likely to be based on the probabilities inherent in that text.
GPT-2 can be seen as a descendant of the statistical language modeling that the Russian mathematician A. A. Markov developed in the early 20th century (covered in part three of this series).
GPT-2 used cutting-edge machine learning algorithms to do linguistic analysis with over 1.5 million parameters.
What’s different with GPT-2, though, is the scale of the textual data modeled by the system. Whereas Markov analyzed a string of 20,000 letters to create a rudimentary model that could predict the likelihood of the next letter of a text being a consonant or a vowel, GPT-2 used 8 million articles scraped from Reddit to predict what the next word might be within that entire dataset.
And whereas Markov manually trained his model by counting only two parameters—vowels and consonants—GPT-2 used cutting-edge machine learning algorithms to do linguistic analysis with over 1.5 million parameters, burning through huge amounts of computational power in the process.
The results were impressive. In their blog post, OpenAI reported that GPT-2 could generate synthetic text in response to prompts, mimicking whatever style of text it was shown. If you prompt the system with a line of William Blake’s poetry, it can generate a line back in the Romantic poet’s style. If you prompt the system with a cake recipe, you get a newly invented recipe in response.
Perhaps the most compelling feature of GPT-2 is that it can answer questions accurately. For example, when OpenAI researchers asked the system, “Who wrote the book The Origin of Species?”—it responded: “Charles Darwin.” While only able to respond accurately some of the time, the feature does seem to be a limited realization of Gottfried Leibniz’s dream of a language-generating machine that could answer any and all human questions (described in part two of this series).
After observing the power of the new system in practice, OpenAI elected not to release the fully trained model. In the lead up to its release in February, there had been heightened awareness about “deepfakes”—synthetic images and videos, generated via machine learning techniques, in which people do and say things they haven’t really done and said. Researchers at OpenAI worried that GPT-2 could be used to essentially create deepfake text, making it harder for people to trust textual information online.
Responses to this decision varied. On one hand, OpenAI’s caution prompted an overblown reaction in the media, with articles about the “dangerous” technology feeding into the Frankenstein narrative that often surrounds developments in AI.
Others took issue with OpenAI’s self-promotion, with some even suggesting that OpenAI purposefully exaggerated GPT-2s power in order to create hype—while contravening a norm in the AI research community, where labs routinely share data, code, and pre-trained models. As machine learning researcher Zachary Lipton tweeted, “Perhaps what's *most remarkable* about the @OpenAI controversy is how *unremarkable* the technology is. Despite their outsize attention & budget, the research itself is perfectly ordinary—right in the main branch of deep learning NLP research.”
OpenAI stood by its decision to release only a limited version of GPT-2, but has since released larger models for other researchers and the public to experiment with. As yet, there has been no reported case of a widely distributed fake news article generated by the system. But there have been a number of interesting spin-off projects, including GPT-2 poetry and a webpage where you can prompt the system with questions yourself.
Mimicking humans on Reddit, the bots have long conversations about a variety of topics, including conspiracy theories and
Star Wars movies.
There’s even a Reddit group populated entirely with text produced by GPT-2-powered bots. Mimicking humans on Reddit, the bots have long conversations about a variety of topics, including conspiracy theories and Star Wars movies.
This bot-powered conversation may signify the new condition of life online, where language is increasingly created by a combination of human and non-human agents, and where maintaining the distinction between human and non-human, despite our best efforts, is increasingly difficult.
The idea of using rules, mechanisms, and algorithms to generate language has inspired people in many different cultures throughout history. But it’s in the online world that this powerful form of wordcraft may really find its natural milieu—in an environment where the identity of speakers becomes more ambiguous, and perhaps, less relevant. It remains to be seen what the consequences will be for language, communication, and our sense of human identity, which is so bound up with our ability to speak in natural language.
This is the sixth installment of a six-part series on the history of natural language processing. Last week’s post explained how an innocent Microsoft chatbot turned instantly racist on Twitter.
You can also check out our prior series on the untold history of AI. Continue reading
#435687 Humanoid Robots Teach Coping Skills to ...
Photo: Rob Felt
IEEE Senior Member Ayanna Howard with one of the interactive androids that help children with autism improve their social and emotional engagement.
THE INSTITUTEChildren with autism spectrum disorder can have a difficult time expressing their emotions and can be highly sensitive to sound, sight, and touch. That sometimes restricts their participation in everyday activities, leaving them socially isolated. Occupational therapists can help them cope better, but the time they’re able to spend is limited and the sessions tend to be expensive.
Roboticist Ayanna Howard, an IEEE senior member, has been using interactive androids to guide children with autism on ways to socially and emotionally engage with others—as a supplement to therapy. Howard is chair of the School of Interactive Computing and director of the Human-Automation Systems Lab at Georgia Tech. She helped found Zyrobotics, a Georgia Tech VentureLab startup that is working on AI and robotics technologies to engage children with special needs. Last year Forbes named Howard, Zyrobotics’ chief technology officer, one of the Top 50 U.S. Women in Tech.
In a recent study, Howard and other researchers explored how robots might help children navigate sensory experiences. The experiment involved 18 participants between the ages of 4 and 12; five had autism, and the rest were meeting typical developmental milestones. Two humanoid robots were programmed to express boredom, excitement, nervousness, and 17 other emotional states. As children explored stations set up for hearing, seeing, smelling, tasting, and touching, the robots modeled what the socially acceptable responses should be.
“If a child’s expression is one of happiness or joy, the robot will have a corresponding response of encouragement,” Howard says. “If there are aspects of frustration or sadness, the robot will provide input to try again.” The study suggested that many children with autism exhibit stronger levels of engagement when the robots interact with them at such sensory stations.
It is one of many robotics projects Howard has tackled. She has designed robots for researching glaciers, and she is working on assistive robots for the home, as well as an exoskeleton that can help children who have motor disabilities.
Howard spoke about her work during the Ethics in AI: Impacts of (Anti?) Social Robotics panel session held in May at the IEEE Vision, Innovation, and Challenges Summit in San Diego. You can watch the session on IEEE.tv.
The next IEEE Vision, Innovation, and Challenges Summit and Honors Ceremony will be held on 15 May 2020 at the JW Marriott Parq Vancouver hotel, in Vancouver.
In this interview with The Institute, Howard talks about how she got involved with assistive technologies, the need for a more diverse workforce, and ways IEEE has benefited her career.
FOCUS ON ACCESSIBILITY
Howard was inspired to work on technology that can improve accessibility in 2008 while teaching high school students at a summer camp devoted to science, technology, engineering, and math.
“A young lady with a visual impairment attended camp. The robot programming tools being used at the camp weren’t accessible to her,” Howard says. “As an engineer, I want to fix problems when I see them, so we ended up designing tools to enable access to programming tools that could be used in STEM education.
“That was my starting motivation, and this theme of accessibility has expanded to become a main focus of my research. One of the things about this world of accessibility is that when you start interacting with kids and parents, you discover another world out there of assistive technologies and how robotics can be used for good in education as well as therapy.”
DIVERSITY OF THOUGHT
The Institute asked Howard why it’s important to have a more diverse STEM workforce and what could be done to increase the number of women and others from underrepresented groups.
“The makeup of the current engineering workforce isn’t necessarily representative of the world, which is composed of different races, cultures, ages, disabilities, and socio-economic backgrounds,” Howard says. “We’re creating products used by people around the globe, so we have to ensure they’re being designed for a diverse population. As IEEE members, we also need to engage with people who aren’t engineers, and we don’t do that enough.”
Educational institutions are doing a better job of increasing diversity in areas such as gender, she says, adding that more work is needed because the enrollment numbers still aren’t representative of the population and the gains don’t necessarily carry through after graduation.
“There has been an increase in the number of underrepresented minorities and females going into engineering and computer science,” she says, “but data has shown that their numbers are not sustained in the workforce.”
ROLE MODEL
Because there are more underrepresented groups on today’s college campuses that can form a community, the lack of engineering role models—although a concern on campuses—is more extreme for preuniversity students, Howard says.
“Depending on where you go to school, you may not know what an engineer does or even consider engineering as an option,” she says, “so there’s still a big disconnect there.”
Howard has been involved for many years in math- and science-mentoring programs for at-risk high school girls. She tells them to find what they’re passionate about and combine it with math and science to create something. She also advises them not to let anyone tell them that they can’t.
Howard’s father is an engineer. She says he never encouraged or discouraged her to become one, but when she broke something, he would show her how to fix it and talk her through the process. Along the way, he taught her a logical way of thinking she says all engineers have.
“When I would try to explain something, he would quiz me and tell me to ‘think more logically,’” she says.
Howard earned a bachelor’s degree in engineering from Brown University, in Providence, R.I., then she received both a master’s and doctorate degree in electrical engineering from the University of Southern California. Before joining the faculty of Georgia Tech in 2005, she worked at NASA’s Jet Propulsion Laboratory at the California Institute of Technology for more than a decade as a senior robotics researcher and deputy manager in the Office of the Chief Scientist.
ACTIVE VOLUNTEER
Howard’s father was also an IEEE member, but that’s not why she joined the organization. She says she signed up when she was a student because, “that was something that you just did. Plus, my student membership fee was subsidized.”
She kept the membership as a grad student because of the discounted rates members receive on conferences.
Those conferences have had an impact on her career. “They allow you to understand what the state of the art is,” she says. “Back then you received a printed conference proceeding and reading through it was brutal, but by attending it in person, you got a 15-minute snippet about the research.”
Howard is an active volunteer with the IEEE Robotics and Automation and the IEEE Systems, Man, and Cybernetics societies, holding many positions and serving on several committees. She is also featured in the IEEE Impact Creators campaign. These members were selected because they inspire others to innovate for a better tomorrow.
“I value IEEE for its community,” she says. “One of the nice things about IEEE is that it’s international.” Continue reading