Tag Archives: reaction
#439095 DARPA Prepares for the Subterranean ...
The DARPA Subterranean Challenge Final Event is scheduled to take place at the Louisville Mega Cavern in Louisville, Kentucky, from September 21 to 23. We’ve followed SubT teams as they’ve explored their way through abandoned mines, unfinished nuclear reactors, and a variety of caves, and now everything comes together in one final course where the winner of the Systems Track will take home the $2 million first prize.
It’s a fitting reward for teams that have been solving some of the hardest problems in robotics, but winning isn’t going to be easy, and we’ll talk with SubT Program Manager Tim Chung about what we have to look forward to.
Since we haven’t talked about SubT in a little while (what with the unfortunate covid-related cancellation of the Systems Track Cave Circuit), here’s a quick refresher of where we are: the teams have made it through the Tunnel Circuit, the Urban Circuit, and a virtual version of the Cave Circuit, and some of them have been testing in caves of their own. The Final Event will include all of these environments, and the teams of robots will have 60 minutes to autonomously map the course, locating artifacts to score points. Since I’m not sure where on Earth there’s an underground location that combines tunnels and caves with urban structures, DARPA is going to have to get creative, and the location in which they’ve chosen to do that is Louisville, Kentucky.
The Louisville Mega Cavern is a former limestone mine, most of which is under the Louisville Zoo. It’s not all that deep, mostly less than 30 meters under the surface, but it’s enormous: with 370,000 square meters of rooms and passages, the cavern currently hosts (among other things) a business park, a zipline course, and mountain bike trails, because why not. While DARPA is keeping pretty quiet on the details, I’m guessing that they’ll be taking over a chunk of the cavern and filling it with features representing as many of the environmental challenges as they can.
To learn more about how the SubT Final Event is going to go, we spoke with SubT Program Manager Tim Chung. But first, we talked about Tim’s perspective on the success of the Urban Circuit, and how teams have been managing without an in-person Cave Circuit.
IEEE Spectrum: How did the SubT Urban Circuit go?
Tim Chung: On a couple fronts, Urban Circuit was really exciting. We were in this unfinished nuclear power plant—I’d be surprised if any of the competitors had prior experience in such a facility, or anything like it. I think that was illuminating both from an experiential point of view for the competitors, but also from a technology point of view, too.
One thing that I thought was really interesting was that we, DARPA, didn't need to make the venue more challenging. The real world is really that hard. There are places that were just really heinous for these robots to have to navigate through in order to look in every nook and cranny for artifacts. There were corners and doorways and small corridors and all these kind of things that really forced the teams to have to work hard, and the feedback was, why did DARPA have to make it so hard? But we didn’t, and in fact there were places that for the safety of the robots and personnel, we had to ensure the robots couldn’t go.
It sounds like some teams thought this course was on the more difficult side—do you think you tuned it to just the right amount of DARPA-hard?
Our calibration worked quite well. We were able to tease out and help refine and better understand what technologies are both useful and critical and also those technologies that might not necessarily get you the leap ahead capability. So as an example, the Urban Circuit really emphasized verticality, where you have to be able to sense, understand, and maneuver in three dimensions. Being able to capitalize on their robot technologies to address that verticality really stratified the teams, and showed how critical those capabilities are.
We saw teams that brought a lot of those capabilities do very well, and teams that brought baseline capabilities do what they could on the single floor that they were able to operate on. And so I think we got the Goldilocks solution for Urban Circuit that combined both difficulty and ambition.
Photos: Evan Ackerman/IEEE Spectrum
Two SubT Teams embedded networking equipment in balls that they could throw onto the course.
One of the things that I found interesting was that two teams independently came up with throwable network nodes. What was DARPA’s reaction to this? Is any solution a good solution, or was it more like the teams were trying to game the system?
You mean, do we want teams to game the rules in any way so as to get a competitive advantage? I don't think that's what the teams were doing. I think they were operating not only within the bounds of the rules, which permitted such a thing as throwable sensors where you could stand at the line and see how far you could chuck these things—not only was that acceptable by the rules, but anticipated. Behind the scenes, we tried to do exactly what these teams are doing and think through different approaches, so we explicitly didn't forbid such things in our rules because we thought it's important to have as wide an aperture as possible.
With these comms nodes specifically, I think they’re pretty clever. They were in some cases hacked together with a variety of different sports paraphernalia to see what would provide the best cushioning. You know, a lot of that happens in the field, and what it captured was that sometimes you just need to be up at two in the morning and thinking about things in a slightly different way, and that's when some nuggets of innovation can arise, and we see this all the time with operators in the field as well. They might only have duct tape or Styrofoam or whatever the case may be and that's when they come up with different ways to solve these problems. I think from DARPA’s perspective, and certainly from my perspective, wherever innovation can strike, we want to try to encourage and inspire those opportunities. I thought it was great, and it’s all part of the challenge.
Is there anything you can tell us about what your original plan had been for the Cave Circuit?
I can say that we’ve had the opportunity to go through a number of these caves scattered all throughout the country, and engage with caving communities—cavers clubs, speleologists that conduct research, and then of course the cave rescue community. The single biggest takeaway
is that every cave, and there are tens of thousands of them in the US alone, every cave has its own personality, and a lot of that personality is quite hidden from humans, because we can’t explore or access all of the cave. This led us to a number of different caves that were intriguing from a DARPA perspective but also inspirational for our Cave Circuit Virtual Competition.
How do you feel like the tuning was for the Virtual Cave Circuit?
The Virtual Competition, as you well know, was exciting in the sense that we could basically combine eight worlds into one competition, whereas the systems track competition really didn’t give us that opportunity. Even if we were able have held the Cave Circuit Systems Competition in person, it would have been at one site, and it would have been challenging to represent the level of diversity that we could with the Virtual Competition. So I think from that perspective, it’s clearly an advantage in terms of calibration—diversity gets you the ability to aggregate results to capture those that excel across all worlds as well as those that do well in one world or some worlds and not the others. I think the calibration was great in the sense that we were able to see the gamut of performance. Those that did well, did quite well, and those that have room to grow showed where those opportunities are for them as well.
We had to find ways to capture that diversity and that representativeness, and I think one of the fun ways we did that was with the different cave world tiles that we were able to combine in a variety of different ways. We also made use of a real world data set that we were able to take from a laser scan. Across the board, we had a really great chance to illustrate why virtual testing and simulation still plays such a dominant role in robotics technology development, and why I think it will continue to play an increasing role for developing these types of autonomy solutions.
Photo: Team CSIRO Data 61
How can systems track teams learn from their testing in whatever cave is local to them and effectively apply that to whatever cave environment is part of the final considering what the diversity of caves is?
I think that hits the nail on the head for what we as technologists are trying to discover—what are the transferable generalizable insights and how does that inform our technology development? As roboticists we want to optimize our systems to perform well at the tasks that they were designed to do, and oftentimes that means specialization because we get increased performance at the expense of being a generalist robot. I think in the case of SubT, we want to have our cake and eat it too—we want robots that perform well and reliably, but we want them to do so not just in one environment, which is how we tend to think about robot performance, but we want them to operate well in many environments, many of which have yet to be faced.
And I think that's kind of the nuance here, that we want robot systems to be generalists for the sake of being able to handle the unknown, namely the real world, but still achieve a high level of performance and perhaps they do that to their combined use of different technologies or advances in autonomy or perception approaches or novel mechanisms or mobility, but somehow they're still able, at least in aggregate, to achieve high performance.
We know these teams eagerly await any type of clue that DARPA can provide like about the SubT environments. From the environment previews for Tunnel, Urban, and even Cave, the teams were pivoting around and thinking a little bit differently. The takeaway, however, was that they didn't go to a clean sheet design—their systems were flexible enough that they could incorporate some of those specialist trends while still maintaining the notion of a generalist framework.
Looking ahead to the SubT Final, what can you tell us about the Louisville Mega Cavern?
As always, I’ll keep you in suspense until we get you there, but I can say that from the beginning of the SubT Challenge we had always envisioned teams of robots that are able to address not only the uncertainty of what's right in front of them, but also the uncertainty of what comes next. So I think the teams will be advantaged by thinking through subdomain awareness, or domain awareness if you want to generalize it, whether that means tuning multi-purpose robots, or deploying different robots, or employing your team of robots differently. Knowing which subdomain you are in is likely to be helpful, because then you can take advantage of those unique lessons learned through all those previous experiences then capitalize on that.
As far as specifics, I think the Mega Cavern offers many of the features important to what it means to be underground, while giving DARPA a pretty blank canvas to realize our vision of the SubT Challenge.
The SubT Final will be different from the earlier circuits in that there’s just one 60-minute run, rather than two. This is going to make things a lot more stressful for teams who have experienced bad robot days—why do it this way?
The preliminary round has two 30-minute runs, and those two runs are very similar to how we have done it during the circuits, of a single run per configuration per course. Teams will have the opportunity to show that their systems can face the obstacles in the final course, and it's the sum of those scores much like we did during the circuits, to help mitigate some of the concerns that you mentioned of having one robot somehow ruin their chances at a prize.
The prize round does give DARPA as well as the community a chance to focus on the top six teams from the preliminary round, and allows us to understand how they came to be at the top of the pack while emphasizing their technological contributions. The prize round will be one and done, but all of these teams we anticipate will be putting their best robot forward and will show the world why they deserve to win the SubT Challenge.
We’ve always thought that when called upon these robots need to operate in really challenging environments, and in the context of real world operations, there is no second chance. I don't think it's actually that much of a departure from our interests and insistence on bringing reliable technologies to the field, and those teams that might have something break here and there, that's all part of the challenge, of being resilient. Many teams struggled with robots that were debilitated on the course, and they still found ways to succeed and overcome that in the field, so maybe the rules emphasize that desire for showing up and working on game day which is consistent, I think, with how we've always envisioned it. This isn’t to say that these systems have to work perfectly, they just have to work in a way such that the team is resilient enough to tackle anything that they face.
It’s not too late for teams to enter for both the Virtual Track and the Systems Track to compete in the SubT Final, right?
Yes, that's absolutely right. Qualifications are still open, we are eager to welcome new teams to join in along with our existing competitors. I think any dark horse competitors coming into the Finals may be able to bring something that we haven't seen before, and that would be really exciting. I think it'll really make for an incredibly vibrant and illuminating final event.
The final event qualification deadline for the Systems Competition is April 21, and the qualification deadline for the Virtual Competition is June 29. More details here. Continue reading →
#439051 ‘Neutrobots’ smuggle drugs ...
A team of researchers from the Harbin Institute of Technology along with partners at the First Affiliated Hospital of Harbin Medical University, both in China, has developed a tiny robot that can ferry cancer drugs through the blood-brain barrier (BBB) without setting off an immune reaction. In their paper published in the journal Science Robotics, the group describes their robot and tests with mice. Junsun Hwang and Hongsoo Choi, with the Daegu Gyeongbuk Institute of Science and Technology in Korea, have published a Focus piece in the same journal issue on the work done by the team in China. Continue reading →
#437940 How Boston Dynamics Taught Its Robots to ...
A week ago, Boston Dynamics posted a video of Atlas, Spot, and Handle dancing to “Do You Love Me.” It was, according to the video description, a way “to celebrate the start of what we hope will be a happier year.” As of today the video has been viewed nearly 24 million times, and the popularity is no surprise, considering the compelling mix of technical prowess and creativity on display.
Strictly speaking, the stuff going on in the video isn’t groundbreaking, in the sense that we’re not seeing any of the robots demonstrate fundamentally new capabilities, but that shouldn’t take away from how impressive it is—you’re seeing state-of-the-art in humanoid robotics, quadrupedal robotics, and whatever-the-heck-Handle-is robotics.
What is unique about this video from Boston Dynamics is the artistic component. We know that Atlas can do some practical tasks, and we know it can do some gymnastics and some parkour, but dancing is certainly something new. To learn more about what it took to make these dancing robots happen (and it’s much more complicated than it might seem), we spoke with Aaron Saunders, Boston Dynamics’ VP of Engineering.
Saunders started at Boston Dynamics in 2003, meaning that he’s been a fundamental part of a huge number of Boston Dynamics’ robots, even the ones you may have forgotten about. Remember LittleDog, for example? A team of two designed and built that adorable little quadruped, and Saunders was one of them.
While he’s been part of the Atlas project since the beginning (and had a hand in just about everything else that Boston Dynamics works on), Saunders has spent the last few years leading the Atlas team specifically, and he was kind enough to answer our questions about their dancing robots.
IEEE Spectrum: What’s your sense of how the Internet has been reacting to the video?
Aaron Saunders: We have different expectations for the videos that we make; this one was definitely anchored in fun for us. The response on YouTube was record-setting for us: We received hundreds of emails and calls with people expressing their enthusiasm, and also sharing their ideas for what we should do next, what about this song, what about this dance move, so that was really fun. My favorite reaction was one that I got from my 94-year-old grandma, who watched the video on YouTube and then sent a message through the family asking if I’d taught the robot those sweet moves. I think this video connected with a broader audience, because it mixed the old-school music with new technology.
We haven’t seen Atlas move like this before—can you talk about how you made it happen?
We started by working with dancers and a choreographer to create an initial concept for the dance by composing and assembling a routine. One of the challenges, and probably the core challenge for Atlas in particular, was adjusting human dance moves so that they could be performed on the robot. To do that, we used simulation to rapidly iterate through movement concepts while soliciting feedback from the choreographer to reach behaviors that Atlas had the strength and speed to execute. It was very iterative—they would literally dance out what they wanted us to do, and the engineers would look at the screen and go “that would be easy” or “that would be hard” or “that scares me.” And then we’d have a discussion, try different things in simulation, and make adjustments to find a compatible set of moves that we could execute on Atlas.
Throughout the project, the time frame for creating those new dance moves got shorter and shorter as we built tools, and as an example, eventually we were able to use that toolchain to create one of Atlas’ ballet moves in just one day, the day before we filmed, and it worked. So it’s not hand-scripted or hand-coded, it’s about having a pipeline that lets you take a diverse set of motions, that you can describe through a variety of different inputs, and push them through and onto the robot.
Image: Boston Dynamics
Were there some things that were particularly difficult to translate from human dancers to Atlas? Or, things that Atlas could do better than humans?
Some of the spinning turns in the ballet parts took more iterations to get to work, because they were the furthest from leaping and running and some of the other things that we have more experience with, so they challenged both the machine and the software in new ways. We definitely learned not to underestimate how flexible and strong dancers are—when you take elite athletes and you try to do what they do but with a robot, it’s a hard problem. It’s humbling. Fundamentally, I don’t think that Atlas has the range of motion or power that these athletes do, although we continue developing our robots towards that, because we believe that in order to broadly deploy these kinds of robots commercially, and eventually in a home, we think they need to have this level of performance.
One thing that robots are really good at is doing something over and over again the exact same way. So once we dialed in what we wanted to do, the robots could just do it again and again as we played with different camera angles.
I can understand how you could use human dancers to help you put together a routine with Atlas, but how did that work with Spot, and particularly with Handle?
I think the people we worked with actually had a lot of talent for thinking about motion, and thinking about how to express themselves through motion. And our robots do motion really well—they’re dynamic, they’re exciting, they balance. So I think what we found was that the dancers connected with the way the robots moved, and then shaped that into a story, and it didn’t matter whether there were two legs or four legs. When you don’t necessarily have a template of animal motion or human behavior, you just have to think a little harder about how to go about doing something, and that’s true for more pragmatic commercial behaviors as well.
“We used simulation to rapidly iterate through movement concepts while soliciting feedback from the choreographer to reach behaviors that Atlas had the strength and speed to execute. It was very iterative—they would literally dance out what they wanted us to do, and the engineers would look at the screen and go ‘that would be easy’ or ‘that would be hard’ or ‘that scares me.’”
—Aaron Saunders, Boston Dynamics
How does the experience that you get teaching robots to dance, or to do gymnastics or parkour, inform your approach to robotics for commercial applications?
We think that the skills inherent in dance and parkour, like agility, balance, and perception, are fundamental to a wide variety of robot applications. Maybe more importantly, finding that intersection between building a new robot capability and having fun has been Boston Dynamics’ recipe for robotics—it’s a great way to advance.
One good example is how when you push limits by asking your robots to do these dynamic motions over a period of several days, you learn a lot about the robustness of your hardware. Spot, through its productization, has become incredibly robust, and required almost no maintenance—it could just dance all day long once you taught it to. And the reason it’s so robust today is because of all those lessons we learned from previous things that may have just seemed weird and fun. You’ve got to go into uncharted territory to even know what you don’t know.
Image: Boston Dynamics
It’s often hard to tell from watching videos like these how much time it took to make things work the way you wanted them to, and how representative they are of the actual capabilities of the robots. Can you talk about that?
Let me try to answer in the context of this video, but I think the same is true for all of the videos that we post. We work hard to make something, and once it works, it works. For Atlas, most of the robot control existed from our previous work, like the work that we’ve done on parkour, which sent us down a path of using model predictive controllers that account for dynamics and balance. We used those to run on the robot a set of dance steps that we’d designed offline with the dancers and choreographer. So, a lot of time, months, we spent thinking about the dance and composing the motions and iterating in simulation.
Dancing required a lot of strength and speed, so we even upgraded some of Atlas’ hardware to give it more power. Dance might be the highest power thing we’ve done to date—even though you might think parkour looks way more explosive, the amount of motion and speed that you have in dance is incredible. That also took a lot of time over the course of months; creating the capability in the machine to go along with the capability in the algorithms.
Once we had the final sequence that you see in the video, we only filmed for two days. Much of that time was spent figuring out how to move the camera through a scene with a bunch of robots in it to capture one continuous two-minute shot, and while we ran and filmed the dance routine multiple times, we could repeat it quite reliably. There was no cutting or splicing in that opening two-minute shot.
There were definitely some failures in the hardware that required maintenance, and our robots stumbled and fell down sometimes. These behaviors are not meant to be productized and to be a 100 percent reliable, but they’re definitely repeatable. We try to be honest with showing things that we can do, not a snippet of something that we did once. I think there’s an honesty required in saying that you’ve achieved something, and that’s definitely important for us.
You mentioned that Spot is now robust enough to dance all day. How about Atlas? If you kept on replacing its batteries, could it dance all day, too?
Atlas, as a machine, is still, you know… there are only a handful of them in the world, they’re complicated, and reliability was not a main focus. We would definitely break the robot from time to time. But the robustness of the hardware, in the context of what we were trying to do, was really great. And without that robustness, we wouldn’t have been able to make the video at all. I think Atlas is a little more like a helicopter, where there’s a higher ratio between the time you spend doing maintenance and the time you spend operating. Whereas with Spot, the expectation is that it’s more like a car, where you can run it for a long time before you have to touch it.
When you’re teaching Atlas to do new things, is it using any kind of machine learning? And if not, why not?
As a company, we’ve explored a lot of things, but Atlas is not using a learning controller right now. I expect that a day will come when we will. Atlas’ current dance performance uses a mixture of what we like to call reflexive control, which is a combination of reacting to forces, online and offline trajectory optimization, and model predictive control. We leverage these techniques because they’re a reliable way of unlocking really high performance stuff, and we understand how to wield these tools really well. We haven’t found the end of the road in terms of what we can do with them.
We plan on using learning to extend and build on the foundation of software and hardware that we’ve developed, but I think that we, along with the community, are still trying to figure out where the right places to apply these tools are. I think you’ll see that as part of our natural progression.
Image: Boston Dynamics
Much of Atlas’ dynamic motion comes from its lower body at the moment, but parkour makes use of upper body strength and agility as well, and we’ve seen some recent concept images showing Atlas doing vaults and pullups. Can you tell us more?
Humans and animals do amazing things using their legs, but they do even more amazing things when they use their whole bodies. I think parkour provides a fantastic framework that allows us to progress towards whole body mobility. Walking and running was just the start of that journey. We’re progressing through more complex dynamic behaviors like jumping and spinning, that’s what we’ve been working on for the last couple of years. And the next step is to explore how using arms to push and pull on the world could extend that agility.
One of the missions that I’ve given to the Atlas team is to start working on leveraging the arms as much as we leverage the legs to enhance and extend our mobility, and I’m really excited about what we’re going to be working on over the next couple of years, because it’s going to open up a lot more opportunities for us to do exciting stuff with Atlas.
What’s your perspective on hydraulic versus electric actuators for highly dynamic robots?
Across my career at Boston Dynamics, I’ve felt passionately connected to so many different types of technology, but I’ve settled into a place where I really don’t think this is an either-or conversation anymore. I think the selection of actuator technology really depends on the size of the robot that you’re building, what you want that robot to do, where you want it to go, and many other factors. Ultimately, it’s good to have both kinds of actuators in your toolbox, and I love having access to both—and we’ve used both with great success to make really impressive dynamic machines.
I think the only delineation between hydraulic and electric actuators that appears to be distinct for me is probably in scale. It’s really challenging to make tiny hydraulic things because the industry just doesn’t do a lot of that, and the reciprocal is that the industry also doesn’t tend to make massive electrical things. So, you may find that to be a natural division between these two technologies.
Besides what you’re working on at Boston Dynamics, what recent robotics research are you most excited about?
For us as a company, we really love to follow advances in sensing, computer vision, terrain perception, these are all things where the better they get, the more we can do. For me personally, one of the things I like to follow is manipulation research, and in particular manipulation research that advances our understanding of complex, friction-based interactions like sliding and pushing, or moving compliant things like ropes.
We’re seeing a shift from just pinching things, lifting them, moving them, and dropping them, to much more meaningful interactions with the environment. Research in that type of manipulation I think is going to unlock the potential for mobile manipulators, and I think it’s really going to open up the ability for robots to interact with the world in a rich way.
Is there anything else you’d like people to take away from this video?
For me personally, and I think it’s because I spend so much of my time immersed in robotics and have a deep appreciation for what a robot is and what its capabilities and limitations are, one of my strong desires is for more people to spend more time with robots. We see a lot of opinions and ideas from people looking at our videos on YouTube, and it seems to me that if more people had opportunities to think about and learn about and spend time with robots, that new level of understanding could help them imagine new ways in which robots could be useful in our daily lives. I think the possibilities are really exciting, and I just want more people to be able to take that journey. Continue reading →
#437918 Video Friday: These Robots Wish You ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
ICCR 2020 – December 26-29, 2020 – [Online]
HRI 2021 – March 8-11, 2021 – [Online]
RoboSoft 2021 – April 12-16, 2021 – [Online]
Let us know if you have suggestions for next week, and enjoy today's videos.
Look who’s baaaack: Jibo! After being sold (twice?), this pioneering social home robot (it was first announced back in 2014!) now belongs to NTT Disruption, which was described to us as the “disruptive company of NTT Group.” We are all for disruption, so this looks like a great new home for Jibo.
[ NTT Disruption ]
Thanks Ana!
FZI's Christmas Party was a bit of a challenge this year; good thing robots are totally competent to have a part on their own.
[ FZI ]
Thanks Arne!
Do you have a lonely dog that just wants a friend to watch cat videos on YouTube with? The Danish Technological Institute has a gift idea for you.
[ DTI ]
Thanks Samuel!
Once upon a time, not so far away, there was an elf who received a very special gift. Watch this heartwarming story. Happy Holidays from the Robotiq family to yours!
Of course, these elves are not now unemployed, they've instead moved over to toy design full time!
[ Robotiq ]
An elegant Christmas video from the Dynamics System Lab, make sure and watch through the very end for a little extra cheer.
[ Dynamic Systems Lab ]
Thanks Angela!
Usually I complain when robotics companies make holiday videos without any real robots in them, but this is pretty darn cute from Yaskawa this year.
[ Yaskawa ]
Here's our little christmas gift to the fans of strange dynamic behavior. The gyro will follow any given shape as soon as the tip touches its edge and the rotation is fast enough. The friction between tip and shape generates a tangential force, creating a moment such that the gyroscopic reaction pushes the tip towards the shape. The resulting normal force produces a moment that guides the tip along the shape's edge.
[ TUM ]
Happy Holidays from Fanuc!
Okay but why does there have to be an assembly line elf just to put in those little cranks?
[ Fanuc ]
Astrobotic's cute little CubeRover is at NASA busy not getting stuck in places.
[ Astrobotic ]
Team CoSTAR is sharing more of their work on subterranean robotic exploration.
[ CoSTAR ]
Skydio Autonomy Enterprise Foundation (AEF), a new software product that delivers advanced AI-powered capabilities to assist the pilot during tactical situational awareness scenarios and detailed industrial asset inspections. Designed for professionals, it offers an enterprise-caliber flight experience through the new Skydio Enterprise application.
[ Skydio ]
GITAI's S1 autonomous robot will conduct two experiments: IVA (Intra-Vehicular Activity) tasks such as switch and cable operations, and assembly of structures and panels to demonstrate its capability for ISA (In-Space Assembly) tasks. This video was recorded in the Nanoracks Bishop Airlock mock-up facility @GITAI Tokyo office.
[ GITAI ]
It's no Atlas, but this is some impressive dynamic balancing from iCub.
[ IIT ]
The Campaign to Stop Killer Robots and I don't agree on a lot of things, and I don't agree with a lot of the assumptions made in this video, either. But, here you go!
[ CSKR ]
I don't know much about this robot, but I love it.
[ Columbia ]
Most cable-suspended robots have a very well defined workspace, but you can increase that workspace by swinging them around. Wheee!
[ Laval ]
How you know your robot's got some skill: “to evaluate the performance in climbing over the step, we compared the R.L. result to the results of 12 students who attempted to find the best planning. The RL outperformed all the group, in terms of effort and time, both in continuous (joystick) and partition planning.”
[ Zarrouk Lab ]
In the Spring 2021 semester, mechanical engineering students taking MIT class 2.007, Design and Manufacturing I, will be able to participate in the class’ iconic final robot competition from the comfort of their own home. Whether they take the class virtually or semi-virtually, students will be sent a massive kit of tools and materials to build their own unique robot along with a “Home Alone” inspired game board for the final global competition.
[ MIT ]
Well, this thing is still around!
[ Moley Robotics ]
Manuel Ahumada wrote in to share this robotic Baby Yoda that he put together with a little bit of help from Intel's OpenBot software.
[ YouTube ]
Thanks Manuel!
Here's what Zoox has been working on for the past half-decade.
[ Zoox ] Continue reading →
#437884 Hyundai Buys Boston Dynamics for Nearly ...
This morning just after 3 a.m. ET, Boston Dynamics sent out a media release confirming that Hyundai Motor Group has acquired a controlling interest in the company that values Boston Dynamics at US $1.1 billion:
Under the agreement, Hyundai Motor Group will hold an approximately 80 percent stake in Boston Dynamics and SoftBank, through one of its affiliates, will retain an approximately 20 percent stake in Boston Dynamics after the closing of the transaction.
The release is very long, but does have some interesting bits—we’ll go through them, and talk about what this might mean for both Boston Dynamics and Hyundai.
We’ve asked Boston Dynamics for comment, but they’ve been unusually quiet for the last few days (I wonder why!). So at this point just keep in mind that the only things we know for sure are the ones in the release. If (when?) we hear anything from either Boston Dynamics or Hyundai, we’ll update this post.
The first thing to be clear on is that the acquisition is split between Hyundai Motor Group’s affiliates, including Hyundai Motor, Hyundai Mobis, and Hyundai Glovis. Hyundai Motor makes cars, Hyundai Mobis makes car parts and seems to be doing some autonomous stuff as well, and Hyundai Glovis does logistics. There are many other groups that share the Hyundai name, but they’re separate entities, at least on paper. For example, there’s a Hyundai Robotics, but that’s part of Hyundai Heavy Industries, a different company than Hyundai Motor Group. But for this article, when we say “Hyundai,” we’re talking about Hyundai Motor Group.
What’s in it for Hyundai?
Let’s get into the press release, which is filled with press release-y terms like “synergies” and “working together”—you can view the whole thing here—but still has some parts that convey useful info.
By establishing a leading presence in the field of robotics, the acquisition will mark another major step for Hyundai Motor Group toward its strategic transformation into a Smart Mobility Solution Provider. To propel this transformation, Hyundai Motor Group has invested substantially in development of future technologies, including in fields such as autonomous driving technology, connectivity, eco-friendly vehicles, smart factories, advanced materials, artificial intelligence (AI), and robots.
If Hyundai wants to be a “Smart Mobility Solution Provider” with a focus on vehicles, it really seems like there’s a whole bunch of other ways they could have spent most of a billion dollars that would get them there quicker. Will Boston Dynamics’ expertise help them develop autonomous driving technology? Sure, I guess, but why not just buy an autonomous car startup instead? Boston Dynamics is more about “robots,” which happens to be dead last on the list above.
There was some speculation a couple of weeks ago that Hyundai was going to try and leverage Boston Dynamics to make a real version of this hybrid wheeled/legged concept car, so if that’s what Hyundai means by “Smart Mobility Solution Provider,” then I suppose the Boston Dynamics acquisition makes more sense. Still, I think that’s unlikely, because it’s just a concept car, after all.
In addition to “smart mobility,” which seems like a longer-term goal for Hyundai, the company also mentions other, more immediate benefits from the acquisition:
Advanced robotics offer opportunities for rapid growth with the potential to positively impact society in multiple ways. Boston Dynamics is the established leader in developing agile, mobile robots that have been successfully integrated into various business operations. The deal is also expected to allow Hyundai Motor Group and Boston Dynamics to leverage each other’s respective strengths in manufacturing, logistics, construction and automation.
“Successfully integrated” might be a little optimistic here. They’re talking about Spot, of course, but I think the best you could say at this point is that Spot is in the middle of some promising pilot projects. Whether it’ll be successfully integrated in the sense that it’ll have long-term commercial usefulness and value remains to be seen. I’m optimistic about this as well, but Spot is definitely not there yet.
What does probably hold a lot of value for Hyundai is getting Spot, Pick, and perhaps even Handle into that “manufacturing, logistics, construction” stuff. This is the bread and butter for robots right now, and Boston Dynamics has plenty of valuable technology to offer in those spaces.
Photo: Bob O’Connor
Boston Dynamics is selling Spot for $74,500, shipping included.
Betting on Spot and Pick
With Boston Dynamics founder Marc Raibert’s transition to Chairman of the company, the CEO position is now occupied by Robert Playter, the long-time VP of engineering and more recently COO at Boston Dynamics. Here’s his statement from the release:
“Boston Dynamics’ commercial business has grown rapidly as we’ve brought to market the first robot that can automate repetitive and dangerous tasks in workplaces designed for human-level mobility. We and Hyundai share a view of the transformational power of mobility and look forward to working together to accelerate our plans to enable the world with cutting edge automation, and to continue to solve the world’s hardest robotics challenges for our customers.”
Whether Spot is in fact “the first robot that can automate repetitive and dangerous tasks in workplaces designed for human-level mobility” on the market is perhaps something that could be argued against, although I won’t. Whether or not it was the first robot that can do these kinds of things, it’s definitely not the only robot that do these kinds of things, and going forward, it’s going to be increasingly challenging for Spot to maintain its uniqueness.
For a long time, Boston Dynamics totally owned the quadruped space. Now, they’re one company among many—ANYbotics and Unitree are just two examples of other quadrupeds that are being successfully commercialized. Spot is certainly very capable and easy to use, and we shouldn’t underestimate the effort required to create a robot as complex as Spot that can be commercially used and supported. But it’s not clear how long they’ll maintain that advantage, with much more affordable platforms coming out of Asia, and other companies offering some unique new capabilities.
Photo: Boston Dynamics
Boston Dynamics’ Handle is an all-electric robot featuring a leg-wheel hybrid mobility system, a manipulator arm with a vacuum gripper, and a counterbalancing tail.
Boston Dynamics’ picking system, which stemmed from their 2019 acquisition of Kinema Systems, faces the same kinds of challenges—it’s very good, but it’s not totally unique.
Boston Dynamics produces highly capable mobile robots with advanced mobility, dexterity and intelligence, enabling automation in difficult, dangerous, or unstructured environments. The company launched sales of its first commercial robot, Spot in June of 2020 and has since sold hundreds of robots in a variety of industries, such as power utilities, construction, manufacturing, oil and gas, and mining. Boston Dynamics plans to expand the Spot product line early next year with an enterprise version of the robot with greater levels of autonomy and remote inspection capabilities, and the release of a robotic arm, which will be a breakthrough in mobile manipulation.
Boston Dynamics is also entering the logistics automation market with the industry leading Pick, a computer vision-based depalletizing solution, and will introduce a mobile robot for warehouses in 2021.
Huh. We’ll be trying to figure out what “greater levels of autonomy” means, as well as whether the “mobile robot for warehouses” is Handle, or something more like an autonomous mobile robot (AMR) platform. I’d honestly be surprised if Handle was ready for work outside of Boston Dynamics next year, and it’s hard to imagine how Boston Dynamics could leverage their expertise into the AMR space with something that wouldn’t just seem… Dull, compared to what they usually do. I hope to be surprised, though!
A new deep-pocketed benefactor
Hyundai Motor Group’s decision to acquire Boston Dynamics is based on its growth potential and wide range of capabilities.
“Wide range of capabilities” we get, but that other phrase, “growth potential,” has a heck of a lot wrapped up in it. At the moment, Boston Dynamics is nowhere near profitable, as far as we know. SoftBank acquired Boston Dynamics in 2017 for between one hundred and two hundred million, and over the last three years they’ve poured hundreds of millions more into Boston Dynamics.
Hyundai’s 80 percent stake just means that they’ll need to take over the majority of that support, and perhaps even increase it if Boston Dynamics’ growth is one of their primary goals. Hyundai can’t have a reasonable expectation that Boston Dynamics will be profitable any time soon; they’re selling Spots now, but it’s an open question whether Spot will manage to find a scalable niche in which it’ll be useful in the sort of volume that will make it a sustainable commercial success. And even if it does become a success, it seems unlikely that Spot by itself will make a significant dent in Boston Dynamics’ burn rate anytime soon. Boston Dynamics will have more products of course, but it’s going to take a while, and Hyundai will need to support them in the interim.
Depending on whether Hyundai views Boston Dynamics as a company that does research or a company that makes robots that are useful and profitable, it may be difficult for Boston Dynamics to justify the cost to develop the
next Atlas, when the
current one still seems so far from commercialization
It’s become clear that to sustain itself, Boston Dynamics needs a benefactor with very deep pockets and a long time horizon. Initially, Boston Dynamics’ business model (or whatever you want to call it) was to do bespoke projects for defense-ish folks like DARPA, but from what we understand Boston Dynamics stopped that sort of work after Google acquired them back in 2013. From one perspective, that government funding did exactly what it was supposed to do, which was to fund the development of legged robots through low TRLs (technology readiness levels) to the point where they could start to explore commercialization.
The question now, though, is whether Hyundai is willing to let Boston Dynamics undertake the kinds of low-TRL, high-risk projects that led from BigDog to LS3 to Spot, and from PETMAN to DRC Atlas to the current Atlas. So will Hyundai be cool about the whole thing and be the sort of benefactor that’s willing to give Boston Dynamics the resources that they need to keep doing what they’re doing, without having to answer too many awkward questions about things like practicality and profitability? Hyundai can certainly afford to do this, but so could SoftBank, and Google—the question is whether Hyundai will want to, over the length of time that’s required for the development of the kind of ultra-sophisticated robotics hardware that Boston Dynamics specializes in.
To put it another way: Depending whether Hyundai’s perspective on Boston Dynamics is as a company that does research or a company that makes robots that are useful and profitable, it may be difficult for Boston Dynamics to justify the cost to develop the next Atlas, when the current one still seems so far from commercialization.
Google, SoftBank, now Hyundai
Boston Dynamics possesses multiple key technologies for high-performance robots equipped with perception, navigation, and intelligence.
Hyundai Motor Group’s AI and Human Robot Interaction (HRI) expertise is highly synergistic with Boston Dynamics’s 3D vision, manipulation, and bipedal/quadruped expertise.
As it turns out, Hyundai Motors does have its own robotics lab, called Hyundai Motors Robotics Lab. Their website is not all that great, but here’s a video from last year:
I’m not entirely clear on what Hyundai means when they use the word “synergistic” when they talk about their robotics lab and Boston Dynamics, but it’s a little bit concerning. Usually, when a big company buys a little company that specializes in something that the big company is interested in, the idea is that the little company, to some extent, will be absorbed into the big company to give them some expertise in that area. Historically, however, Boston Dynamics has been highly resistant to this, maintaining its post-acquisition independence and appearing to be very reluctant to do anything besides what it wants to do, at whatever pace it wants to do it, and as by itself as possible.
From what we understand, Boston Dynamics didn’t integrate particularly well with Google’s robotics push in 2013, and we haven’t seen much evidence that SoftBank’s experience was much different. The most direct benefit to SoftBank (or at least the most visible one) was the addition of a fleet of Spot robots to the SoftBank Hawks baseball team cheerleading squad, along with a single (that we know about) choreographed gymnastics routine from an Atlas robot that was only shown on video.
And honestly, if you were a big manufacturing company with a bunch of money and you wanted to build up your own robotics program quickly, you’d probably have much better luck picking up some smaller robotics companies who were a bit less individualistic and would probably be more amenable to integration and would cost way less than a billion dollars-ish. And if integration is ultimately Hyundai’s goal, we’ll be very sad, because it’ll likely signal the end of Boston Dynamics doing the unfettered crazy stuff that we’ve grown to love.
Photo: Bob O’Connor
Possibly the most agile humanoid robot ever built, Atlas can run, climb, jump over obstacles, and even get up after a fall.
Boston Dynamics contemplates its future
The release ends by saying that the transaction is “subject to regulatory approvals and other customary closing conditions” and “is expected to close by June of 2021.” Again, you can read the whole thing here.
My initial reaction is that, despite the “synergies” described by Hyundai, it’s certainly not immediately obvious why the company wants to own 80 percent of Boston Dynamics. I’d also like a better understanding of how they arrived at the $1.1 billion valuation. I’m not saying this because I don’t believe in what Boston Dynamics is doing or in the inherent value of the company, because I absolutely do, albeit perhaps in a slightly less tangible sense. But when you start tossing around numbers like these, a big pile of expectations inevitably comes along with them. I hope that Boston Dynamics is unique enough that the kinds of rules that normally apply to robotics companies (or companies in general) can be set aside, at least somewhat, but I also worry that what made Boston Dynamics great was the explicit funding for the kinds of radical ideas that eventually resulted in robots like Atlas and Spot.
Can Hyundai continue giving Boston Dynamics the support and freedom that they need to keep doing the kinds of things that have made them legendary? I certainly hope so. Continue reading →