Tag Archives: rather
#433620 Instilling the Best of Human Values in ...
Now that the era of artificial intelligence is unquestionably upon us, it behooves us to think and work harder to ensure that the AIs we create embody positive human values.
Science fiction is full of AIs that manifest the dark side of humanity, or are indifferent to humans altogether. Such possibilities cannot be ruled out, but nor is there any logical or empirical reason to consider them highly likely. I am among a large group of AI experts who see a strong potential for profoundly positive outcomes in the AI revolution currently underway.
We are facing a future with great uncertainty and tremendous promise, and the best we can do is to confront it with a combination of heart and mind, of common sense and rigorous science. In the realm of AI, what this means is, we need to do our best to guide the AI minds we are creating to embody the values we cherish: love, compassion, creativity, and respect.
The quest for beneficial AI has many dimensions, including its potential to reduce material scarcity and to help unlock the human capacity for love and compassion.
Reducing Scarcity
A large percentage of difficult issues in human society, many of which spill over into the AI domain, would be palliated significantly if material scarcity became less of a problem. Fortunately, AI has great potential to help here. AI is already increasing efficiency in nearly every industry.
In the next few decades, as nanotech and 3D printing continue to advance, AI-driven design will become a larger factor in the economy. Radical new tools like artificial enzymes built using Christian Schafmeister’s spiroligomer molecules, and designed using quantum physics-savvy AIs, will enable the creation of new materials and medicines.
For amazing advances like the intersection of AI and nanotech to lead toward broadly positive outcomes, however, the economic and political aspects of the AI industry may have to shift from the current status quo.
Currently, most AI development occurs under the aegis of military organizations or large corporations oriented heavily toward advertising and marketing. Put crudely, an awful lot of AI today is about “spying, brainwashing, or killing.” This is not really the ideal situation if we want our first true artificial general intelligences to be open-minded, warm-hearted, and beneficial.
Also, as the bulk of AI development now occurs in large for-profit organizations bound by law to pursue the maximization of shareholder value, we face a situation where AI tends to exacerbate global wealth inequality and class divisions. This has the potential to lead to various civilization-scale failure modes involving the intersection of geopolitics, AI, cyberterrorism, and so forth. Part of my motivation for founding the decentralized AI project SingularityNET was to create an alternative mode of dissemination and utilization of both narrow AI and AGI—one that operates in a self-organizing way, outside of the direct grip of conventional corporate and governmental structures.
In the end, though, I worry that radical material abundance and novel political and economic structures may fail to create a positive future, unless they are coupled with advances in consciousness and compassion. AGIs have the potential to be massively more ethical and compassionate than humans. But still, the odds of getting deeply beneficial AGIs seem higher if the humans creating them are fuller of compassion and positive consciousness—and can effectively pass these values on.
Transmitting Human Values
Brain-computer interfacing is another critical aspect of the quest for creating more positive AIs and more positive humans. As Elon Musk has put it, “If you can’t beat ’em, join’ em.” Joining is more fun than beating anyway. What better way to infuse AIs with human values than to connect them directly to human brains, and let them learn directly from the source (while providing humans with valuable enhancements)?
Millions of people recently heard Elon Musk discuss AI and BCI on the Joe Rogan podcast. Musk’s embrace of brain-computer interfacing is laudable, but he tends to dodge some of the tough issues—for instance, he does not emphasize the trade-off cyborgs will face between retaining human-ness and maximizing intelligence, joy, and creativity. To make this trade-off effectively, the AI portion of the cyborg will need to have a deep sense of human values.
Musk calls humanity the “biological boot loader” for AGI, but to me this colorful metaphor misses a key point—that we can seed the AGI we create with our values as an initial condition. This is one reason why it’s important that the first really powerful AGIs are created by decentralized networks, and not conventional corporate or military organizations. The decentralized software/hardware ecosystem, for all its quirks and flaws, has more potential to lead to human-computer cybernetic collective minds that are reasonable and benevolent.
Algorithmic Love
BCI is still in its infancy, but a more immediate way of connecting people with AIs to infuse both with greater love and compassion is to leverage humanoid robotics technology. Toward this end, I conceived a project called Loving AI, focused on using highly expressive humanoid robots like the Hanson robot Sophia to lead people through meditations and other exercises oriented toward unlocking the human potential for love and compassion. My goals here were to explore the potential of AI and robots to have a positive impact on human consciousness, and to use this application to study and improve the OpenCog and SingularityNET tools used to control Sophia in these interactions.
The Loving AI project has now run two small sets of human trials, both with exciting and positive results. These have been small—dozens rather than hundreds of people—but have definitively proven the point. Put a person in a quiet room with a humanoid robot that can look them in the eye, mirror their facial expressions, recognize some of their emotions, and lead them through simple meditation, listening, and consciousness-oriented exercises…and quite a lot of the time, the result is a more relaxed person who has entered into a shifted state of consciousness, at least for a period of time.
In a certain percentage of cases, the interaction with the robot consciousness guide triggered a dramatic change of consciousness in the human subject—a deep meditative trance state, for instance. In most cases, the result was not so extreme, but statistically the positive effect was quite significant across all cases. Furthermore, a similar effect was found using an avatar simulation of the robot’s face on a tablet screen (together with a webcam for facial expression mirroring and recognition), but not with a purely auditory interaction.
The Loving AI experiments are not only about AI; they are about human-robot and human-avatar interaction, with AI as one significant aspect. The facial interaction with the robot or avatar is pushing “biological buttons” that trigger emotional reactions and prime the mind for changes of consciousness. However, this sort of body-mind interaction is arguably critical to human values and what it means to be human; it’s an important thing for robots and AIs to “get.”
Halting or pausing the advance of AI is not a viable possibility at this stage. Despite the risks, the potential economic and political benefits involved are clear and massive. The convergence of narrow AI toward AGI is also a near inevitability, because there are so many important applications where greater generality of intelligence will lead to greater practical functionality. The challenge is to make the outcome of this great civilization-level adventure as positive as possible.
Image Credit: Anton Gvozdikov / Shutterstock.com Continue reading
#433594 Technology and Compassion: A ...
From how we get around to how we spend our time to how we manage our health, technology is changing our lives—not to mention economies, governments, and cities around the world. Tech has brought good to individuals and societies by, for example, democratizing access to information and lowering the cost of many products and services. But it’s also brought less-desirable effects we can’t ignore, like a rise in mental health problems and greater wealth inequality.
To keep pushing tech in a direction that will benefit humanity as a whole—rather than benefiting a select few—we must encourage open dialogues about these topics among leading figures in business, government, and spirituality.
To that end, SingularityU The Netherlands recently hosted a dialogue about compassion and technology with His Holiness the Dalai Lama. The event was attended by students and tech innovators, ambassadors, members of the Dutch royal family, and other political and business leaders.
The first half of the conversation focused on robotics, telepresence, and artificial intelligence. His Holiness spoke with Tilly Lockey, a British student helping tech companies create bionic limbs, Karen Dolva, CEO of telepresence company No Isolation, and Maarten Steinbuch, faculty chair of robotics at SingularityU the Netherlands and a professor of systems and control at TU Eindhoven.
When asked what big tech companies could be doing to help spread good around the world, His Holiness pointed out that while technology has changed many aspects of life in developed countries, there is still immense suffering in less-developed nations, and tech companies should pay more attention to the poorer communities around the world.
In the second half of the event, focus switched to sickness, aging, and death. Speakers included Liz Parrish, CEO of BioViva Sciences, Kris Verburgh, faculty chair of health and medicine at SingularityU the Netherlands, Jeantine Lunshof, a bio-ethicist at MIT Media Lab, and Selma Boulmalf, a religious studies student at University of Amsterdam. Among other topics, they talked with His Holiness about longevity research and the drawbacks of trying to extend our lifespans or achieve immortality.
Both sessions were moderated by Christa Meindersma, founder and chair of the Himalaya Initiative for Culture and Society. The event served as the ceremonial opening of an exhibition called The Life of the Buddha, Path to the Present, on display in Amsterdam’s 15-century De Nieuwe Kerk church through February 2019.
In the 21st century, His Holiness said, “There is real possibility to create a happier world, peaceful world. So now we need vision. A peaceful world on the basis of a sense of oneness of humanity.”
Technology’s role in that world is being developed and refined every day, and we must maintain an ongoing awareness of its positive and negative repercussions—on everyone.
Image Credit: vipflash / Shutterstock.com Continue reading
#433506 MIT’s New Robot Taught Itself to Pick ...
Back in 2016, somewhere in a Google-owned warehouse, more than a dozen robotic arms sat for hours quietly grasping objects of various shapes and sizes. For hours on end, they taught themselves how to pick up and hold the items appropriately—mimicking the way a baby gradually learns to use its hands.
Now, scientists from MIT have made a new breakthrough in machine learning: their new system can not only teach itself to see and identify objects, but also understand how best to manipulate them.
This means that, armed with the new machine learning routine referred to as “dense object nets (DON),” the robot would be capable of picking up an object that it’s never seen before, or in an unfamiliar orientation, without resorting to trial and error—exactly as a human would.
The deceptively simple ability to dexterously manipulate objects with our hands is a huge part of why humans are the dominant species on the planet. We take it for granted. Hardware innovations like the Shadow Dexterous Hand have enabled robots to softly grip and manipulate delicate objects for many years, but the software required to control these precision-engineered machines in a range of circumstances has proved harder to develop.
This was not for want of trying. The Amazon Robotics Challenge offers millions of dollars in prizes (and potentially far more in contracts, as their $775m acquisition of Kiva Systems shows) for the best dexterous robot able to pick and package items in their warehouses. The lucrative dream of a fully-automated delivery system is missing this crucial ability.
Meanwhile, the Robocup@home challenge—an offshoot of the popular Robocup tournament for soccer-playing robots—aims to make everyone’s dream of having a robot butler a reality. The competition involves teams drilling their robots through simple household tasks that require social interaction or object manipulation, like helping to carry the shopping, sorting items onto a shelf, or guiding tourists around a museum.
Yet all of these endeavors have proved difficult; the tasks often have to be simplified to enable the robot to complete them at all. New or unexpected elements, such as those encountered in real life, more often than not throw the system entirely. Programming the robot’s every move in explicit detail is not a scalable solution: this can work in the highly-controlled world of the assembly line, but not in everyday life.
Computer vision is improving all the time. Neural networks, including those you train every time you prove that you’re not a robot with CAPTCHA, are getting better at sorting objects into categories, and identifying them based on sparse or incomplete data, such as when they are occluded, or in different lighting.
But many of these systems require enormous amounts of input data, which is impractical, slow to generate, and often needs to be laboriously categorized by humans. There are entirely new jobs that require people to label, categorize, and sift large bodies of data ready for supervised machine learning. This can make machine learning undemocratic. If you’re Google, you can make thousands of unwitting volunteers label your images for you with CAPTCHA. If you’re IBM, you can hire people to manually label that data. If you’re an individual or startup trying something new, however, you will struggle to access the vast troves of labeled data available to the bigger players.
This is why new systems that can potentially train themselves over time or that allow robots to deal with situations they’ve never seen before without mountains of labelled data are a holy grail in artificial intelligence. The work done by MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) is part of a new wave of “self-supervised” machine learning systems—little of the data used was labeled by humans.
The robot first inspects the new object from multiple angles, building up a 3D picture of the object with its own coordinate system. This then allows the robotic arm to identify a particular feature on the object—such as a handle, or the tongue of a shoe—from various different angles, based on its relative distance to other grid points.
This is the real innovation: the new means of representing objects to grasp as mapped-out 3D objects, with grid points and subsections of their own. Rather than using a computer vision algorithm to identify a door handle, and then activating a door handle grasping subroutine, the DON system treats all objects by making these spatial maps before classifying or manipulating them, enabling it to deal with a greater range of objects than in other approaches.
“Many approaches to manipulation can’t identify specific parts of an object across the many orientations that object may encounter,” said PhD student Lucas Manuelli, who wrote a new paper about the system with lead author and fellow student Pete Florence, alongside MIT professor Russ Tedrake. “For example, existing algorithms would be unable to grasp a mug by its handle, especially if the mug could be in multiple orientations, like upright, or on its side.”
Class-specific descriptors, which can be applied to the object features, can allow the robot arm to identify a mug, find the handle, and pick the mug up appropriately. Object-specific descriptors allow the robot arm to select a particular mug from a group of similar items. I’m already dreaming of a robot butler reliably picking my favourite mug when it serves me coffee in the morning.
Google’s robot arm-y was an attempt to develop a general grasping algorithm: one that could identify, categorize, and appropriately grip as many items as possible. This requires a great deal of training time and data, which is why Google parallelized their project by having 14 robot arms feed data into a single neural network brain: even then, the algorithm may fail with highly specific tasks. Specialist grasping algorithms might require less training if they’re limited to specific objects, but then your software is useless for general tasks.
As the roboticists noted, their system, with its ability to identify parts of an object rather than just a single object, is better suited to specific tasks, such as “grasp the racquet by the handle,” than Amazon Robotics Challenge robots, which identify whole objects by segmenting an image.
This work is small-scale at present. It has been tested with a few classes of objects, including shoes, hats, and mugs. Yet the use of these dense object nets as a way for robots to represent and manipulate new objects may well be another step towards the ultimate goal of generalized automation: a robot capable of performing every task a person can. If that point is reached, the question that will remain is how to cope with being obsolete.
Image Credit: Tom Buehler/CSAIL Continue reading
#433386 What We Have to Gain From Making ...
The borders between the real world and the digital world keep crumbling, and the latter’s importance in both our personal and professional lives keeps growing. Some describe the melding of virtual and real worlds as part of the fourth industrial revolution. Said revolution’s full impact on us as individuals, our companies, communities, and societies is still unknown.
Greg Cross, chief business officer of New Zealand-based AI company Soul Machines, thinks one inescapable consequence of these crumbling borders is people spending more and more time interacting with technology. In a presentation at Singularity University’s Global Summit in San Francisco last month, Cross unveiled Soul Machines’ latest work and shared his views on the current state of human-like AI and where the technology may go in the near future.
Humanizing Technology Interaction
Cross started by introducing Rachel, one of Soul Machines’ “emotionally responsive digital humans.” The company has built 15 different digital humans of various sexes, groups, and ethnicities. Rachel, along with her “sisters” and “brothers,” has a virtual nervous system based on neural networks and biological models of different paths in the human brain. The system is controlled by virtual neurotransmitters and hormones akin to dopamine, serotonin, and oxytocin, which influence learning and behavior.
As a result, each digital human can have its own unique set of “feelings” and responses to interactions. People interact with them via visual and audio sensors, and the machines respond in real time.
“Over the last 20 or 30 years, the way we think about machines and the way we interact with machines has changed,” Cross said. “We’ve always had this view that they should actually be more human-like.”
The realism of the digital humans’ graphic representations comes thanks to the work of Soul Machines’ other co-founder, Dr. Mark Sager, who has won two Academy Awards for his work on some computer-generated movies, including James Cameron’s Avatar.
Cross pointed out, for example, that rather than being unrealistically flawless and clear, Rachel’s skin has blemishes and sun spots, just like real human skin would.
The Next Human-Machine Frontier
When people interact with each other face to face, emotional and intellectual engagement both heavily influence the interaction. What would it look like for machines to bring those same emotional and intellectual capacities to our interactions with them, and how would this type of interaction affect the way we use, relate to, and feel about AI?
Cross and his colleagues believe that humanizing artificial intelligence will make the technology more useful to humanity, and prompt people to use AI in more beneficial ways.
“What we think is a very important view as we move forward is that these machines can be more helpful to us. They can be more useful to us. They can be more interesting to us if they’re actually more like us,” Cross said.
It is an approach that seems to resonate with companies and organizations. For example, in the UK, where NatWest Bank is testing out Cora as a digital employee to help answer customer queries. In Germany, Daimler Financial Group plans to employ Sarah as something “similar to a personal concierge” for its customers. According to Cross, Daimler is looking at other ways it could deploy digital humans across the organization, from building digital service people, digital sales people, and maybe in the future, digital chauffeurs.
Soul Machines’ latest creation is Will, a digital teacher that can interact with children through a desktop, tablet, or mobile device and help them learn about renewable energy. Cross sees other social uses for digital humans, including potentially serving as doctors to rural communities.
Our Digital Friends—and Twins
Soul Machines is not alone in its quest to humanize technology. It is a direction many technology companies, including the likes of Amazon, also seem to be pursuing. Amazon is working on building a home robot that, according to Bloomberg, “could be a sort of mobile Alexa.”
Finding a more human form for technology seems like a particularly pervasive pursuit in Japan. Not just when it comes to its many, many robots, but also virtual assistants like Gatebox.
The Japanese approach was perhaps best summed up by famous android researcher Dr. Hiroshi Ishiguro, who I interviewed last year: “The human brain is set up to recognize and interact with humans. So, it makes sense to focus on developing the body for the AI mind, as well as the AI. I believe that the final goal for both Japanese and other companies and scientists is to create human-like interaction.”
During Cross’s presentation, Rob Nail, CEO and associate founder of Singularity University, joined him on the stage, extending an invitation to Rachel to be SU’s first fully digital faculty member. Rachel accepted, and though she’s the only digital faculty right now, she predicted this won’t be the case for long.
“In 10 years, all of you will have digital versions of yourself, just like me, to take on specific tasks and make your life a whole lot easier,” she said. “This is great news for me. I’ll have millions of digital friends.”
Image Credit: Soul Machines Continue reading
#433284 Tech Can Sustainably Feed Developing ...
In the next 30 years, virtually all net population growth will occur in urban regions of developing countries. At the same time, worldwide food production will become increasingly limited by the availability of land, water, and energy. These constraints will be further worsened by climate change and the expected addition of two billion people to today’s four billion now living in urban regions. Meanwhile, current urban food ecosystems in the developing world are inefficient and critically inadequate to meet the challenges of the future.
Combined, these trends could have catastrophic economic and political consequences. A new path forward for urban food ecosystems needs to be found. But what is that path?
New technologies, coupled with new business models and supportive government policies, can create more resilient urban food ecosystems in the coming decades. These tech-enabled systems can sustainably link rural, peri-urban (areas just outside cities), and urban producers and consumers, increase overall food production, and generate opportunities for new businesses and jobs (Figure 1).
Figure 1: The urban food value chain nodes from rural, peri-urban and urban producers
to servicing end customers in urban and peri-urban markets.
Here’s a glimpse of the changes technology may bring to the systems feeding cities in the future.
A technology-linked urban food ecosystem would create unprecedented opportunities for small farms to reach wider markets and progress from subsistence farming to commercially producing niche cash crops and animal protein, such as poultry, fish, pork, and insects.
Meanwhile, new opportunities within cities will appear with the creation of vertical farms and other controlled-environment agricultural systems as well as production of plant-based and 3D printed foods and cultured meat. Uberized facilitation of production and distribution of food will reduce bottlenecks and provide new business opportunities and jobs. Off-the-shelf precision agriculture technology will increasingly be the new norm, from smallholders to larger producers.
As part of Agricultural Revolution 4.0, all this will be integrated into the larger collaborative economy—connected by digital platforms, the cloud, and the Internet of Things and powered by artificial intelligence. It will more efficiently and effectively use resources and people to connect the nexus of food, water, energy, nutrition, and human health. It will also aid in the development of a circular economy that is designed to be restorative and regenerative, minimizing waste and maximizing recycling and reuse to build economic, natural, and social capital.
In short, technology will enable transformation of urban food ecosystems, from expanded production in cities to more efficient and inclusive distribution and closer connections with rural farmers. Here’s a closer look at seven tech-driven trends that will help feed tomorrow’s cities.
1. Worldwide Connectivity: Information, Learning, and Markets
Connectivity from simple cell phone SMS communication to internet-enabled smartphones and cloud services are providing platforms for the increasingly powerful technologies enabling development of a new agricultural revolution. Internet connections currently reach more than 4 billion people, about 55% of the global population. That number will grow fast in coming years.
These information and communications technologies connect food producers to consumers with just-in-time data, enhanced good agricultural practices, mobile money and credit, telecommunications, market information and merchandising, and greater transparency and traceability of goods and services throughout the value chain. Text messages on mobile devices have become the one-stop-shop for small farmers to place orders, gain technology information for best management practices, and access market information to increase profitability.
Hershey’s CocoaLink in Ghana, for example, uses text and voice messages with cocoa industry experts and small farm producers. Digital Green is a technology-enabled communication system in Asia and Africa to bring needed agricultural and management practices to small farmers in their own language by filming and recording successful farmers in their own communities. MFarm is a mobile app that connects Kenyan farmers with urban markets via text messaging.
2. Blockchain Technology: Greater Access to Basic Financial Services and Enhanced Food Safety
Gaining access to credit and executing financial transactions have been persistent constraints for small farm producers. Blockchain promises to help the unbanked access basic financial services.
The Gates Foundation has released an open source platform, Mojaloop, to allow software developers and banks and financial service providers to build secure digital payment platforms at scale. Mojaloop software uses more secure blockchain technology to enable urban food system players in the developing world to conduct business and trade. The free software reduces complexity and cost in building payment platforms to connect small farmers with customers, merchants, banks, and mobile money providers. Such digital financial services will allow small farm producers in the developing world to conduct business without a brick-and-mortar bank.
Blockchain is also important for traceability and transparency requirements to meet food regulatory and consumer requirement during the production, post-harvest, shipping, processing and distribution to consumers. Combining blockchain with RFID technologies also will enhance food safety.
3. Uberized Services: On-Demand Equipment, Storage, and More
Uberized services can advance development of the urban food ecosystem across the spectrum, from rural to peri-urban to urban food production and distribution. Whereas Uber and Airbnb enable sharing of rides and homes, the model can be extended in the developing world to include on-demand use of expensive equipment, such as farm machinery, or storage space.
This includes uberization of planting and harvesting equipment (Hello Tractor), transportation vehicles, refrigeration facilities for temporary storage of perishable product, and “cloud kitchens” (EasyAppetite in Nigeria, FoodCourt in Rwanda, and Swiggy and Zomto in India) that produce fresh meals to be delivered to urban customers, enabling young people with motorbikes and cell phones to become entrepreneurs or contractors delivering meals to urban customers.
Another uberized service is marketing and distributing “ugly food” or imperfect produce to reduce food waste. About a third of the world’s food goes to waste, often because of appearance; this is enough to feed two billion people. Such services supply consumers with cheaper, nutritious, tasty, healthy fruits and vegetables that would normally be discarded as culls due to imperfections in shape or size.
4. Technology for Producing Plant-Based Foods in Cities
We need to change diet choices through education and marketing and by developing tasty plant-based substitutes. This is not only critical for environmental sustainability, but also offers opportunities for new businesses and services. It turns out that current agricultural production systems for “red meat” have a far greater detrimental impact on the environment than automobiles.
There have been great advances in plant-based foods, like the Impossible Burger and Beyond Meat, that can satisfy the consumer’s experience and perception of meat. Rather than giving up the experience of eating red meat, technology is enabling marketable, attractive plant-based products that can potentially drastically reduce world per capita consumption of red meat.
5. Cellular Agriculture, Lab-Grown Meat, and 3D Printed Food
Lab-grown meat, literally meat grown from cultured cells, may radically change where and how protein and food is produced, including the cities where it is consumed. There is a wide range of innovative alternatives to traditional meats that can supplement the need for livestock, farms, and butchers. The history of innovation is about getting rid of the bottleneck in the system, and with meat, the bottleneck is the animal. Finless Foods is a new company trying to replicate fish fillets, for example, while Memphis meats is working on beef and poultry.
3D printing or additive manufacturing is a “general purpose technology” used for making, plastic toys, human tissues, aircraft parts, and buildings. 3D printing can also be used to convert alternative ingredients such as proteins from algae, beet leaves, or insects into tasty and healthy products that can be produced by small, inexpensive printers in home kitchens. The food can be customized for individual health needs as well as preferences. 3D printing can also contribute to the food ecosystem by making possible on-demand replacement parts—which are badly needed in the developing world for tractors, pumps, and other equipment. Catapult Design 3D prints tractor replacement parts as well as corn shellers, cart designs, prosthetic limbs, and rolling water barrels for the Indian market.
6. Alt Farming: Vertical Farms to Produce Food in Urban Centers
Urban food ecosystem production systems will rely not only on field-grown crops, but also on production of food within cities. There are a host of new, alternative production systems using “controlled environmental agriculture.” These include low-cost, protected poly hoop houses, greenhouses, roof-top and sack/container gardens, and vertical farming in buildings using artificial lighting. Vertical farms enable year-round production of selected crops, regardless of weather—which will be increasingly important in response to climate change—and without concern for deteriorating soil conditions that affect crop quality and productivity. AeroFarms claims 390 times more productivity per square foot than normal field production.
7. Biotechnology and Nanotechnology for Sustainable Intensification of Agriculture
CRISPR is a promising gene editing technology that can be used to enhance crop productivity while avoiding societal concerns about GMOs. CRISPR can accelerate traditional breeding and selection programs for developing new climate and disease-resistant, higher-yielding, nutritious crops and animals.
Plant-derived coating materials, developed with nanotechnology, can decrease waste, extend shelf-life and transportability of fruits and vegetables, and significantly reduce post-harvest crop loss in developing countries that lack adequate refrigeration. Nanotechnology is also used in polymers to coat seeds to increase their shelf-life and increase their germination success and production for niche, high-value crops.
Putting It All Together
The next generation “urban food industry” will be part of the larger collaborative economy that is connected by digital platforms, the cloud, and the Internet of Things. A tech-enabled urban food ecosystem integrated with new business models and smart agricultural policies offers the opportunity for sustainable intensification (doing more with less) of agriculture to feed a rapidly growing global urban population—while also creating viable economic opportunities for rural and peri-urban as well as urban producers and value-chain players.
Image Credit: Akarawut / Shutterstock.com Continue reading