Tag Archives: rather

#436140 Let’s Build Robots That Are as Smart ...

Illustration: Nicholas Little

Let’s face it: Robots are dumb. At best they are idiot savants, capable of doing one thing really well. In general, even those robots require specialized environments in which to do their one thing really well. This is why autonomous cars or robots for home health care are so difficult to build. They’ll need to react to an uncountable number of situations, and they’ll need a generalized understanding of the world in order to navigate them all.

Babies as young as two months already understand that an unsupported object will fall, while five-month-old babies know materials like sand and water will pour from a container rather than plop out as a single chunk. Robots lack these understandings, which hinders them as they try to navigate the world without a prescribed task and movement.

But we could see robots with a generalized understanding of the world (and the processing power required to wield it) thanks to the video-game industry. Researchers are bringing physics engines—the software that provides real-time physical interactions in complex video-game worlds—to robotics. The goal is to develop robots’ understanding in order to learn about the world in the same way babies do.

Giving robots a baby’s sense of physics helps them navigate the real world and can even save on computing power, according to Lochlainn Wilson, the CEO of SE4, a Japanese company building robots that could operate on Mars. SE4 plans to avoid the problems of latency caused by distance from Earth to Mars by building robots that can operate independently for a few hours before receiving more instructions from Earth.

Wilson says that his company uses simple physics engines such as PhysX to help build more-independent robots. He adds that if you can tie a physics engine to a coprocessor on the robot, the real-time basic physics intuitions won’t take compute cycles away from the robot’s primary processor, which will often be focused on a more complicated task.

Wilson’s firm occasionally still turns to a traditional graphics engine, such as Unity or the Unreal Engine, to handle the demands of a robot’s movement. In certain cases, however, such as a robot accounting for friction or understanding force, you really need a robust physics engine, Wilson says, not a graphics engine that simply simulates a virtual environment. For his projects, he often turns to the open-source Bullet Physics engine built by Erwin Coumans, who is now an employee at Google.

Bullet is a popular physics-engine option, but it isn’t the only one out there. Nvidia Corp., for example, has realized that its gaming and physics engines are well-placed to handle the computing demands required by robots. In a lab in Seattle, Nvidia is working with teams from the University of Washington to build kitchen robots, fully articulated robot hands and more, all equipped with Nvidia’s tech.

When I visited the lab, I watched a robot arm move boxes of food from counters to cabinets. That’s fairly straightforward, but that same robot arm could avoid my body if I got in its way, and it could adapt if I moved a box of food or dropped it onto the floor.

The robot could also understand that less pressure is needed to grasp something like a cardboard box of Cheez-It crackers versus something more durable like an aluminum can of tomato soup.

Nvidia’s silicon has already helped advance the fields of artificial intelligence and computer vision by making it possible to process multiple decisions in parallel. It’s possible that the company’s new focus on virtual worlds will help advance the field of robotics and teach robots to think like babies.

This article appears in the November 2019 print issue as “Robots as Smart as Babies.” Continue reading

Posted in Human Robots

#436126 Quantum Computing Gets a Boost From AI ...

Illustration: Greg Mably

Anyone of a certain age who has even a passing interest in computers will remember the remarkable breakthrough that IBM made in 1997 when its Deep Blue chess-playing computer defeated Garry Kasparov, then the world chess champion. Computer scientists passed another such milestone in March 2016, when DeepMind (a subsidiary of Alphabet, Google’s parent company) announced that its AlphaGo program had defeated world-champion player Lee Sedol in the game of Go, a board game that had vexed AI researchers for decades. Recently, DeepMind’s algorithms have also bested human players in the computer games StarCraft IIand Quake Arena III.

Some believe that the cognitive capacities of machines will overtake those of human beings in many spheres within a few decades. Others are more cautious and point out that our inability to understand the source of our own cognitive powers presents a daunting hurdle. How can we make thinking machines if we don’t fully understand our own thought processes?

Citizen science, which enlists masses of people to tackle research problems, holds promise here, in no small part because it can be used effectively to explore the boundary between human and artificial intelligence.

Some citizen-science projects ask the public to collect data from their surroundings (as eButterfly does for butterflies) or to monitor delicate ecosystems (as Eye on the Reef does for Australia’s Great Barrier Reef). Other projects rely on online platforms on which people help to categorize obscure phenomena in the night sky (Zooniverse) or add to the understanding of the structure of proteins (Foldit). Typically, people can contribute to such projects without any prior knowledge of the subject. Their fundamental cognitive skills, like the ability to quickly recognize patterns, are sufficient.

In order to design and develop video games that can allow citizen scientists to tackle scientific problems in a variety of fields, professor and group leader Jacob Sherson founded ScienceAtHome (SAH), at Aarhus University, in Denmark. The group began by considering topics in quantum physics, but today SAH hosts games covering other areas of physics, math, psychology, cognitive science, and behavioral economics. We at SAH search for innovative solutions to real research challenges while providing insight into how people think, both alone and when working in groups.

It is computationally intractable to completely map out a higher-dimensional landscape: It is called the curse of high dimensionality, and it plagues many optimization problems.

We believe that the design of new AI algorithms would benefit greatly from a better understanding of how people solve problems. This surmise has led us to establish the Center for Hybrid Intelligence within SAH, which tries to combine human and artificial intelligence, taking advantage of the particular strengths of each. The center’s focus is on the gamification of scientific research problems and the development of interfaces that allow people to understand and work together with AI.

Our first game, Quantum Moves, was inspired by our group’s research into quantum computers. Such computers can in principle solve certain problems that would take a classical computer billions of years. Quantum computers could challenge current cryptographic protocols, aid in the design of new materials, and give insight into natural processes that require an exact solution of the equations of quantum mechanics—something normal computers are inherently bad at doing.

One candidate system for building such a computer would capture individual atoms by “freezing” them, as it were, in the interference pattern produced when a laser beam is reflected back on itself. The captured atoms can thus be organized like eggs in a carton, forming a periodic crystal of atoms and light. Using these atoms to perform quantum calculations requires that we use tightly focused laser beams, called optical tweezers, to transport the atoms from site to site in the light crystal. This is a tricky business because individual atoms do not behave like particles; instead, they resemble a wavelike liquid governed by the laws of quantum mechanics.

In Quantum Moves, a player manipulates a touch screen or mouse to move a simulated laser tweezer and pick up a trapped atom, represented by a liquidlike substance in a bowl. Then the player must bring the atom back to the tweezer’s initial position while trying to minimize the sloshing of the liquid. Such sloshing would increase the energy of the atom and ultimately introduce errors into the operations of the quantum computer. Therefore, at the end of a move, the liquid should be at a complete standstill.

To understand how people and computers might approach such a task differently, you need to know something about how computerized optimization algorithms work. The countless ways of moving a glass of water without spilling may be regarded as constituting a “solution landscape.” One solution is represented by a single point in that landscape, and the height of that point represents the quality of the solution—how smoothly and quickly the glass of water was moved. This landscape might resemble a mountain range, where the top of each mountain represents a local optimum and where the challenge is to find the highest peak in the range—the global optimum.

Illustration: Greg Mably

Researchers must compromise between searching the landscape for taller mountains (“exploration”) and climbing to the top of the nearest mountain (“exploitation”). Making such a trade-off may seem easy when exploring an actual physical landscape: Merely hike around a bit to get at least the general lay of the land before surveying in greater detail what seems to be the tallest peak. But because each possible way of changing the solution defines a new dimension, a realistic problem can have thousands of dimensions. It is computationally intractable to completely map out such a higher-dimensional landscape. We call this the curse of high dimensionality, and it plagues many optimization problems.

Although algorithms are wonderfully efficient at crawling to the top of a given mountain, finding good ways of searching through the broader landscape poses quite a challenge, one that is at the forefront of AI research into such control problems. The conventional approach is to come up with clever ways of reducing the search space, either through insights generated by researchers or with machine-learning algorithms trained on large data sets.

At SAH, we attacked certain quantum-optimization problems by turning them into a game. Our goal was not to show that people can beat computers in this arena but rather to understand the process of generating insights into such problems. We addressed two core questions: whether allowing players to explore the infinite space of possibilities will help them find good solutions and whether we can learn something by studying their behavior.

Today, more than 250,000 people have played Quantum Moves, and to our surprise, they did in fact search the space of possible moves differently from the algorithm we had put to the task. Specifically, we found that although players could not solve the optimization problem on their own, they were good at searching the broad landscape. The computer algorithms could then take those rough ideas and refine them.

Herbert A. Simon said that “solving a problem simply means representing it so as to make the solution transparent.” Apparently, that’s what our games can do with their novel user interfaces.

Perhaps even more interesting was our discovery that players had two distinct ways of solving the problem, each with a clear physical interpretation. One set of players started by placing the tweezer close to the atom while keeping a barrier between the atom trap and the tweezer. In classical physics, a barrier is an impenetrable obstacle, but because the atom liquid is a quantum-mechanical object, it can tunnel through the barrier into the tweezer, after which the player simply moved the tweezer to the target area. Another set of players moved the tweezer directly into the atom trap, picked up the atom liquid, and brought it back. We called these two strategies the “tunneling” and “shoveling” strategies, respectively.

Such clear strategies are extremely valuable because they are very difficult to obtain directly from an optimization algorithm. Involving humans in the optimization loop can thus help us gain insight into the underlying physical phenomena that are at play, knowledge that may then be transferred to other types of problems.

Quantum Moves raised several obvious issues. First, because generating an exceptional solution required further computer-based optimization, players were unable to get immediate feedback to help them improve their scores, and this often left them feeling frustrated. Second, we had tested this approach on only one scientific challenge with a clear classical analogue, that of the sloshing liquid. We wanted to know whether such gamification could be applied more generally, to a variety of scientific challenges that do not offer such immediately applicable visual analogies.

We address these two concerns in Quantum Moves 2. Here, the player first generates a number of candidate solutions by playing the original game. Then the player chooses which solutions to optimize using a built-in algorithm. As the algorithm improves a player’s solution, it modifies the solution path—the movement of the tweezer—to represent the optimized solution. Guided by this feedback, players can then improve their strategy, come up with a new solution, and iteratively feed it back into this process. This gameplay provides high-level heuristics and adds human intuition to the algorithm. The person and the machine work in tandem—a step toward true hybrid intelligence.

In parallel with the development of Quantum Moves 2, we also studied how people collaboratively solve complex problems. To that end, we opened our atomic physics laboratory to the general public—virtually. We let people from around the world dictate the experiments we would run to see if they would find ways to improve the results we were getting. What results? That’s a little tricky to explain, so we need to pause for a moment and provide a little background on the relevant physics.

One of the essential steps in building the quantum computer along the lines described above is to create the coldest state of matter in the universe, known as a Bose-Einstein condensate. Here millions of atoms oscillate in synchrony to form a wavelike substance, one of the largest purely quantum phenomena known. To create this ultracool state of matter, researchers typically use a combination of laser light and magnetic fields. There is no familiar physical analogy between such a strange state of matter and the phenomena of everyday life.

The result we were seeking in our lab was to create as much of this enigmatic substance as was possible given the equipment available. The sequence of steps to accomplish that was unknown. We hoped that gamification could help to solve this problem, even though it had no classical analogy to present to game players.

Images: ScienceAtHome

Fun and Games: The
Quantum Moves game evolved over time, from a relatively crude early version [top] to its current form [second from top] and then a major revision,
Quantum Moves 2 [third from top].
Skill Lab: Science Detective games [bottom] test players’ cognitive skills.

In October 2016, we released a game that, for two weeks, guided how we created Bose-Einstein condensates in our laboratory. By manipulating simple curves in the game interface, players generated experimental sequences for us to use in producing these condensates—and they did so without needing to know anything about the underlying physics. A player would generate such a solution, and a few minutes later we would run the sequence in our laboratory. The number of ultracold atoms in the resulting Bose-Einstein condensate was measured and fed back to the player as a score. Players could then decide either to try to improve their previous solution or to copy and modify other players’ solutions. About 600 people from all over the world participated, submitting 7,577 solutions in total. Many of them yielded bigger condensates than we had previously produced in the lab.

So this exercise succeeded in achieving our primary goal, but it also allowed us to learn something about human behavior. We learned, for example, that players behave differently based on where they sit on the leaderboard. High-performing players make small changes to their successful solutions (exploitation), while poorly performing players are willing to make more dramatic changes (exploration). As a collective, the players nicely balance exploration and exploitation. How they do so provides valuable inspiration to researchers trying to understand human problem solving in social science as well as to those designing new AI algorithms.

How could mere amateurs outperform experienced experimental physicists? The players certainly weren’t better at physics than the experts—but they could do better because of the way in which the problem was posed. By turning the research challenge into a game, we gave players the chance to explore solutions that had previously required complex programming to study. Indeed, even expert experimentalists improved their solutions dramatically by using this interface.

Insight into why that’s possible can probably be found in the words of the late economics Nobel laureate Herbert A. Simon: “Solving a problem simply means representing it so as to make the solution transparent [PDF].” Apparently, that’s what our games can do with their novel user interfaces. We believe that such interfaces might be a key to using human creativity to solve other complex research problems.

Eventually, we’d like to get a better understanding of why this kind of gamification works as well as it does. A first step would be to collect more data on what the players do while they are playing. But even with massive amounts of data, detecting the subtle patterns underlying human intuition is an overwhelming challenge. To advance, we need a deeper insight into the cognition of the individual players.

As a step forward toward this goal, ScienceAtHome created Skill Lab: Science Detective, a suite of minigames exploring visuospatial reasoning, response inhibition, reaction times, and other basic cognitive skills. Then we compare players’ performance in the games with how well these same people did on established psychological tests of those abilities. The point is to allow players to assess their own cognitive strengths and weaknesses while donating their data for further public research.

In the fall of 2018 we launched a prototype of this large-scale profiling in collaboration with the Danish Broadcasting Corp. Since then more than 20,000 people have participated, and in part because of the publicity granted by the public-service channel, participation has been very evenly distributed across ages and by gender. Such broad appeal is rare in social science, where the test population is typically drawn from a very narrow demographic, such as college students.

Never before has such a large academic experiment in human cognition been conducted. We expect to gain new insights into many things, among them how combinations of cognitive abilities sharpen or decline with age, what characteristics may be used to prescreen for mental illnesses, and how to optimize the building of teams in our work lives.

And so what started as a fun exercise in the weird world of quantum mechanics has now become an exercise in understanding the nuances of what makes us human. While we still seek to understand atoms, we can now aspire to understand people’s minds as well.

This article appears in the November 2019 print issue as “A Man-Machine Mind Meld for Quantum Computing.”

About the Authors
Ottó Elíasson, Carrie Weidner, Janet Rafner, and Shaeema Zaman Ahmed work with the ScienceAtHome project at Aarhus University in Denmark. Continue reading

Posted in Human Robots

#436119 How 3D Printing, Vertical Farming, and ...

Food. What we eat, and how we grow it, will be fundamentally transformed in the next decade.

Already, indoor farming is projected to be a US$40.25 billion industry by 2022, with a compound annual growth rate of 9.65 percent. Meanwhile, the food 3D printing industry is expected to grow at an even higher rate, averaging 50 percent annual growth.

And converging exponential technologies—from materials science to AI-driven digital agriculture—are not slowing down. Today’s breakthroughs will soon allow our planet to boost its food production by nearly 70 percent, using a fraction of the real estate and resources, to feed 9 billion by mid-century.

What you consume, how it was grown, and how it will end up in your stomach will all ride the wave of converging exponentials, revolutionizing the most basic of human needs.

Printing Food
3D printing has already had a profound impact on the manufacturing sector. We are now able to print in hundreds of different materials, making anything from toys to houses to organs. However, we are finally seeing the emergence of 3D printers that can print food itself.

Redefine Meat, an Israeli startup, wants to tackle industrial meat production using 3D printers that can generate meat, no animals required. The printer takes in fat, water, and three different plant protein sources, using these ingredients to print a meat fiber matrix with trapped fat and water, thus mimicking the texture and flavor of real meat.

Slated for release in 2020 at a cost of $100,000, their machines are rapidly demonetizing and will begin by targeting clients in industrial-scale meat production.

Anrich3D aims to take this process a step further, 3D printing meals that are customized to your medical records, heath data from your smart wearables, and patterns detected by your sleep trackers. The company plans to use multiple extruders for multi-material printing, allowing them to dispense each ingredient precisely for nutritionally optimized meals. Currently in an R&D phase at the Nanyang Technological University in Singapore, the company hopes to have its first taste tests in 2020.

These are only a few of the many 3D food printing startups springing into existence. The benefits from such innovations are boundless.

Not only will food 3D printing grant consumers control over the ingredients and mixtures they consume, but it is already beginning to enable new innovations in flavor itself, democratizing far healthier meal options in newly customizable cuisine categories.

Vertical Farming
Vertical farming, whereby food is grown in vertical stacks (in skyscrapers and buildings rather than outside in fields), marks a classic case of converging exponential technologies. Over just the past decade, the technology has surged from a handful of early-stage pilots to a full-grown industry.

Today, the average American meal travels 1,500-2,500 miles to get to your plate. As summed up by Worldwatch Institute researcher Brian Halweil, “We are spending far more energy to get food to the table than the energy we get from eating the food.” Additionally, the longer foods are out of the soil, the less nutritious they become, losing on average 45 percent of their nutrition before being consumed.

Yet beyond cutting down on time and transportation losses, vertical farming eliminates a whole host of issues in food production. Relying on hydroponics and aeroponics, vertical farms allows us to grow crops with 90 percent less water than traditional agriculture—which is critical for our increasingly thirsty planet.

Currently, the largest player around is Bay Area-based Plenty Inc. With over $200 million in funding from Softbank, Plenty is taking a smart tech approach to indoor agriculture. Plants grow on 20-foot-high towers, monitored by tens of thousands of cameras and sensors, optimized by big data and machine learning.

This allows the company to pack 40 plants in the space previously occupied by 1. The process also produces yields 350 times greater than outdoor farmland, using less than 1 percent as much water.

And rather than bespoke veggies for the wealthy few, Plenty’s processes allow them to knock 20-35 percent off the costs of traditional grocery stores. To date, Plenty has their home base in South San Francisco, a 100,000 square-foot farm in Kent, Washington, an indoor farm in the United Arab Emirates, and recently started construction on over 300 farms in China.

Another major player is New Jersey-based Aerofarms, which can now grow two million pounds of leafy greens without sunlight or soil.

To do this, Aerofarms leverages AI-controlled LEDs to provide optimized wavelengths of light for each plant. Using aeroponics, the company delivers nutrients by misting them directly onto the plants’ roots—no soil required. Rather, plants are suspended in a growth mesh fabric made from recycled water bottles. And here too, sensors, cameras, and machine learning govern the entire process.

While 50-80 percent of the cost of vertical farming is human labor, autonomous robotics promises to solve that problem. Enter contenders like Iron Ox, a firm that has developed the Angus robot, capable of moving around plant-growing containers.

The writing is on the wall, and traditional agriculture is fast being turned on its head.

Materials Science
In an era where materials science, nanotechnology, and biotechnology are rapidly becoming the same field of study, key advances are enabling us to create healthier, more nutritious, more efficient, and longer-lasting food.

For starters, we are now able to boost the photosynthetic abilities of plants. Using novel techniques to improve a micro-step in the photosynthesis process chain, researchers at UCLA were able to boost tobacco crop yield by 14-20 percent. Meanwhile, the RIPE Project, backed by Bill Gates and run out of the University of Illinois, has matched and improved those numbers.

And to top things off, The University of Essex was even able to improve tobacco yield by 27-47 percent by increasing the levels of protein involved in photo-respiration.

In yet another win for food-related materials science, Santa Barbara-based Apeel Sciences is further tackling the vexing challenge of food waste. Now approaching commercialization, Apeel uses lipids and glycerolipids found in the peels, seeds, and pulps of all fruits and vegetables to create “cutin”—the fatty substance that composes the skin of fruits and prevents them from rapidly spoiling by trapping moisture.

By then spraying fruits with this generated substance, Apeel can preserve foods 60 percent longer using an odorless, tasteless, colorless organic substance.

And stores across the US are already using this method. By leveraging our advancing knowledge of plants and chemistry, materials science is allowing us to produce more food with far longer-lasting freshness and more nutritious value than ever before.

Convergence
With advances in 3D printing, vertical farming, and materials sciences, we can now make food smarter, more productive, and far more resilient.

By the end of the next decade, you should be able to 3D print a fusion cuisine dish from the comfort of your home, using ingredients harvested from vertical farms, with nutritional value optimized by AI and materials science. However, even this picture doesn’t account for all the rapid changes underway in the food industry.

Join me next week for Part 2 of the Future of Food for a discussion on how food production will be transformed, quite literally, from the bottom up.

Join Me
Abundance-Digital Online Community: Stay ahead of technological advancements and turn your passion into action. Abundance Digital is now part of Singularity University. Learn more.

Image Credit: Vanessa Bates Ramirez Continue reading

Posted in Human Robots

#436100 Labrador Systems Developing Affordable ...

Developing robots for the home is still a challenge, especially if you want those robots to interact with people and help them do practical, useful things. However, the potential markets for home robots are huge, and one of the most compelling markets is for home robots that can assist humans who need them. Today, Labrador Systems, a startup based in California, is announcing a pre-seed funding round of $2 million (led by SOSV’s hardware accelerator HAX with participation from Amazon’s Alexa Fund and iRobot Ventures, among others) with the goal of expanding development and conducting pilot studies of “a new [assistive robot] platform for supporting home health.”

Labrador was founded two years ago by Mike Dooley and Nikolai Romanov. Both Mike and Nikolai have backgrounds in consumer robotics at Evolution Robotics and iRobot, but as an ’80s gamer, Mike’s bio (or at least the parts of his bio on LinkedIn) caught my attention: From 1995 to 1997, Mike worked at Brøderbund Software, helping to manage play testing for games like Myst and Riven and the Where in the World is Carmen San Diego series. He then spent three years at Lego as the product manager for MindStorms. After doing some marginally less interesting things, Mike was the VP of product development at Evolution Robotics from 2006 to 2012, where he led the team that developed the Mint floor sweeping robot. Evolution was acquired by iRobot in 2012, and Mike ended up as the VP of product development over there until 2017, when he co-founded Labrador.

I was pretty much sold at Where in the World is Carmen San Diego (the original version of which I played from a 5.25” floppy on my dad’s Apple IIe)*, but as you can see from all that other stuff, Mike knows what he’s doing in robotics as well.

And according to Labrador’s press release, what they’re doing is this:

Labrador Systems is an early stage technology company developing a new generation of assistive robots to help people live more independently. The company’s core focus is creating affordable solutions that address practical and physical needs at a fraction of the cost of commercial robots. … Labrador’s technology platform offers an affordable solution to improve the quality of care while promoting independence and successful aging.

Labrador’s personal robot, the company’s first offering, will enter pilot studies in 2020.

That’s about as light on detail as a press release gets, but there’s a bit more on Labrador’s website, including:

Our core focus is creating affordable solutions that address practical and physical needs. (we are not a social robot company)
By affordable, we mean products and technologies that will be available at less than 1/10th the cost of commercial robots.
We achieve those low costs by fusing the latest technologies coming out of augmented reality with robotics to move things in the real world.

The only hardware we’ve actually seen from Labrador at this point is a demo that they put together for Amazon’s re:MARS conference, which took place a few months ago, showing a “demonstration project” called Smart Walker:

This isn’t the home assistance robot that Labrador got its funding for, but rather a demonstration of some of their technology. So of course, the question is, what’s Labrador working on, then? It’s still a secret, but Mike Dooley was able to give us a few more details.

IEEE Spectrum: Your website shows a smart walker concept—how is that related to the assistive robot that you’re working on?

Mike Dooley: The smart walker was a request from a major senior living organization to have our robot (which is really good at navigation) guide residents from place to place within their communities. To test the idea with residents, it turned out to be much quicker to take the navigation system from the robot and put it on an existing rollator walker. So when you see the clips of the technology in the smart walker video on our website, that’s actually the robot’s navigation system localizing in real time and path planning in an environment.

“Assistive robot” can cover a huge range of designs and capabilities—can you give us any more detail about your robot, and what it’ll be able to do?

One of the core features of our robot is to help people move things where they have difficulty moving themselves, particularly in the home setting. That may sound trivial, but to someone who has impaired mobility, it can be a major daily challenge and negatively impact their life and health in a number of ways. Some examples we repeatedly hear are people not staying hydrated or taking their medication on time simply because there is a distance between where they are and the items they need. Once we have those base capabilities, i.e. the ability to navigate around a home and move things within it, then the robot becomes a platform for a wider variety of applications.

What made you decide to develop assistive robots, and why are robots a good solution for seniors who want to live independently?

Supporting independent living has been seen as a massive opportunity in robotics for some time, but also as something off in the future. The turning point for me was watching my mother enter that stage in her life and seeing her transition to using a cane, then a walker, and eventually to a wheelchair. That made the problems very real for me. It also made things much clearer about how we could start addressing specific needs with the tools that are becoming available now.

In terms of why robots can be a good solution, the basic answer is the level of need is so overwhelming that even helping with “basic” tasks can make an appreciable difference in the quality of someone’s daily life. It’s also very much about giving individuals a degree of control back over their environment. That applies to seniors as well as others whose world starts getting more complex to manage as their abilities become more impaired.

What are the particular challenges of developing assistive robots, and how are you addressing them? Why do you think there aren’t more robotics startups in this space?

The setting (operating in homes and personal spaces) and the core purpose of the product (aiding a wide variety of individuals) bring a lot of complexity to any capability you want to build into an assistive robot. Our approach is to put as much structure as we can into the system to make it functional, affordable, understandable and reliable.

I think one of the reasons you don’t see more startups in the space is that a lot of roboticists want to skip ahead and do the fancy stuff, such as taking on human-level capabilities around things like manipulation. Those are very interesting research topics, but we think those are also very far away from being practical solutions you can productize for people to use in their homes.

How do you think assistive robots and human caregivers should work together?

The ideal scenario is allowing caregivers to focus more of their time on the high-touch, personal side of care. The robot can offload the more basic support tasks as well as extend the impact of the caregiver for the long hours of the day they can’t be with someone at their home. We see that applying to both paid care providers as well as the 40 million unpaid family members and friends that provide assistance.

The robot is really there as a tool, both for individuals in need and the people that help them. What’s promising in the research discussions we’ve had so far, is that even when a caregiver is present, giving control back to the individual for simple things can mean a lot in the relationship between them and the caregiver.

What should we look forward to from Labrador in 2020?

Our big goal in 2020 is to start placing the next version of the robot with individuals with different types of needs to let them experience it naturally in their own homes and provide feedback on what they like, what don’t like and how we can make it better. We are currently reaching out to companies in the healthcare and home health fields to participate in those studies and test specific applications related to their services. We plan to share more detail about those studies and the robot itself as we get further into 2020.

If you’re an organization (or individual) who wants to possibly try out Labrador’s prototype, the company encourages you to connect with them through their website. And as we learn more about what Labrador is up to, we’ll have updates for you, presumably in 2020.

[ Labrador Systems ]

* I just lost an hour of my life after finding out that you can play Where in the World is Carmen San Diego in your browser for free. Continue reading

Posted in Human Robots

#435816 This Light-based Nervous System Helps ...

Last night, way past midnight, I stumbled onto my porch blindly grasping for my keys after a hellish day of international travel. Lights were low, I was half-asleep, yet my hand grabbed the keychain, found the lock, and opened the door.

If you’re rolling your eyes—yeah, it’s not exactly an epic feat for a human. Thanks to the intricate wiring between our brain and millions of sensors dotted on—and inside—our skin, we know exactly where our hand is in space and what it’s touching without needing visual confirmation. But this combined sense of the internal and the external is completely lost to robots, which generally rely on computer vision or surface mechanosensors to track their movements and their interaction with the outside world. It’s not always a winning strategy.

What if, instead, we could give robots an artificial nervous system?

This month, a team led by Dr. Rob Shepard at Cornell University did just that, with a seriously clever twist. Rather than mimicking the electric signals in our nervous system, his team turned to light. By embedding optical fibers inside a 3D printed stretchable material, the team engineered an “optical lace” that can detect changes in pressure less than a fraction of a pound, and pinpoint the location to a spot half the width of a tiny needle.

The invention isn’t just an artificial skin. Instead, the delicate fibers can be distributed both inside a robot and on its surface, giving it both a sense of tactile touch and—most importantly—an idea of its own body position in space. Optical lace isn’t a superficial coating of mechanical sensors; it’s an entire platform that may finally endow robots with nerve-like networks throughout the body.

Eventually, engineers hope to use this fleshy, washable material to coat the sharp, cold metal interior of current robots, transforming C-3PO more into the human-like hosts of Westworld. Robots with a “bodily” sense could act as better caretakers for the elderly, said Shepard, because they can assist fragile people without inadvertently bruising or otherwise harming them. The results were published in Science Robotics.

An Unconventional Marriage
The optical lace is especially creative because it marries two contrasting ideas: one biological-inspired, the other wholly alien.

The overarching idea for optical lace is based on the animal kingdom. Through sight, hearing, smell, taste, touch, and other senses, we’re able to interpret the outside world—something scientists call exteroception. Thanks to our nervous system, we perform these computations subconsciously, allowing us to constantly “perceive” what’s going on around us.

Our other perception is purely internal. Proprioception (sorry, it’s not called “inception” though it should be) is how we know where our body parts are in space without having to look at them, which lets us perform complex tasks when blind. Although less intuitive than exteroception, proprioception also relies on stretching and other deformations within the muscles and tendons and receptors under the skin, which generate electrical currents that shoot up into the brain for further interpretation.

In other words, in theory it’s possible to recreate both perceptions with a single information-carrying system.

Here’s where the alien factor comes in. Rather than using electrical properties, the team turned to light as their data carrier. They had good reason. “Compared with electricity, light carries information faster and with higher data densities,” the team explained. Light can also transmit in multiple directions simultaneously, and is less susceptible to electromagnetic interference. Although optical nervous systems don’t exist in the biological world, the team decided to improve on Mother Nature and give it a shot.

Optical Lace
The construction starts with engineering a “sheath” for the optical nerve fibers. The team first used an elastic polyurethane—a synthetic material used in foam cushioning, for example—to make a lattice structure filled with large pores, somewhat like a lattice pie crust. Thanks to rapid, high-resolution 3D printing, the scaffold can have different stiffness from top to bottom. To increase sensitivity to the outside world, the team made the top of the lattice soft and pliable, to better transfer force to mechanical sensors. In contrast, the “deeper” regions held their structure better, and kept their structure under pressure.

Now the fun part. The team next threaded stretchable “light guides” into the scaffold. These fibers transmit photons, and are illuminated with a blue LED light. One, the input light guide, ran horizontally across the soft top part of the scaffold. Others ran perpendicular to the input in a “U” shape, going from more surface regions to deeper ones. These are the output guides. The architecture loosely resembles the wiring in our skin and flesh.

Normally, the output guides are separated from the input by a small air gap. When pressed down, the input light fiber distorts slightly, and if the pressure is high enough, it contacts one of the output guides. This causes light from the input fiber to “leak” to the output one, so that it lights up—the stronger the pressure, the brighter the output.

“When the structure deforms, you have contact between the input line and the output lines, and the light jumps into these output loops in the structure, so you can tell where the contact is happening,” said study author Patricia Xu. “The intensity of this determines the intensity of the deformation itself.”

Double Perception
As a proof-of-concept for proprioception, the team made a cylindrical lace with one input and 12 output channels. They varied the stiffness of the scaffold along the cylinder, and by pressing down at different points, were able to calculate how much each part stretched and deformed—a prominent precursor to knowing where different regions of the structure are moving in space. It’s a very rudimentary sort of proprioception, but one that will become more sophisticated with increasing numbers of strategically-placed mechanosensors.

The test for exteroception was a whole lot stranger. Here, the team engineered another optical lace with 15 output channels and turned it into a squishy piano. When pressed down, an Arduino microcontroller translated light output signals into sound based on the position of each touch. The stronger the pressure, the louder the volume. While not a musical masterpiece, the demo proved their point: the optical lace faithfully reported the strength and location of each touch.

A More Efficient Robot
Although remarkably novel, the optical lace isn’t yet ready for prime time. One problem is scalability: because of light loss, the material is limited to a certain size. However, rather than coating an entire robot, it may help to add optical lace to body parts where perception is critical—for example, fingertips and hands.

The team sees plenty of potential to keep developing the artificial flesh. Depending on particular needs, both the light guides and scaffold can be modified for sensitivity, spatial resolution, and accuracy. Multiple optical fibers that measure for different aspects—pressure, pain, temperature—can potentially be embedded in the same region, giving robots a multitude of senses.

In this way, we hope to reduce the number of electronics and combine signals from multiple sensors without losing information, the authors said. By taking inspiration from biological networks, it may even be possible to use various inputs through an optical lace to control how the robot behaves, closing the loop from sensation to action.

Image Credit: Cornell Organic Robotics Lab. A flexible, porous lattice structure is threaded with stretchable optical fibers containing more than a dozen mechanosensors and attached to an LED light. When the lattice structure is pressed, the sensors pinpoint changes in the photon flow. Continue reading

Posted in Human Robots