Tag Archives: quest
#432467 Dungeons and Dragons, Not Chess and Go: ...
Everyone had died—not that you’d know it, from how they were laughing about their poor choices and bad rolls of the dice. As a social anthropologist, I study how people understand artificial intelligence (AI) and our efforts towards attaining it; I’m also a life-long fan of Dungeons and Dragons (D&D), the inventive fantasy roleplaying game. During a recent quest, when I was playing an elf ranger, the trainee paladin (or holy knight) acted according to his noble character, and announced our presence at the mouth of a dragon’s lair. The results were disastrous. But while success in D&D means “beating the bad guy,” the game is also a creative sandbox, where failure can count as collective triumph so long as you tell a great tale.
What does this have to do with AI? In computer science, games are frequently used as a benchmark for an algorithm’s “intelligence.” The late Robert Wilensky, a professor at the University of California, Berkeley and a leading figure in AI, offered one reason why this might be. Computer scientists “looked around at who the smartest people were, and they were themselves, of course,” he told the authors of Compulsive Technology: Computers as Culture (1985). “They were all essentially mathematicians by training, and mathematicians do two things—they prove theorems and play chess. And they said, hey, if it proves a theorem or plays chess, it must be smart.” No surprise that demonstrations of AI’s “smarts” have focused on the artificial player’s prowess.
Yet the games that get chosen—like Go, the main battlefield for Google DeepMind’s algorithms in recent years—tend to be tightly bounded, with set objectives and clear paths to victory or defeat. These experiences have none of the open-ended collaboration of D&D. Which got me thinking: do we need a new test for intelligence, where the goal is not simply about success, but storytelling? What would it mean for an AI to “pass” as human in a game of D&D? Instead of the Turing test, perhaps we need an elf ranger test?
Of course, this is just a playful thought experiment, but it does highlight the flaws in certain models of intelligence. First, it reveals how intelligence has to work across a variety of environments. D&D participants can inhabit many characters in many games, and the individual player can “switch” between roles (the fighter, the thief, the healer). Meanwhile, AI researchers know that it’s super difficult to get a well-trained algorithm to apply its insights in even slightly different domains—something that we humans manage surprisingly well.
Second, D&D reminds us that intelligence is embodied. In computer games, the bodily aspect of the experience might range from pressing buttons on a controller in order to move an icon or avatar (a ping-pong paddle; a spaceship; an anthropomorphic, eternally hungry, yellow sphere), to more recent and immersive experiences involving virtual-reality goggles and haptic gloves. Even without these add-ons, games can still produce biological responses associated with stress and fear (if you’ve ever played Alien: Isolation you’ll understand). In the original D&D, the players encounter the game while sitting around a table together, feeling the story and its impact. Recent research in cognitive science suggests that bodily interactions are crucial to how we grasp more abstract mental concepts. But we give minimal attention to the embodiment of artificial agents, and how that might affect the way they learn and process information.
Finally, intelligence is social. AI algorithms typically learn through multiple rounds of competition, in which successful strategies get reinforced with rewards. True, it appears that humans also evolved to learn through repetition, reward and reinforcement. But there’s an important collaborative dimension to human intelligence. In the 1930s, the psychologist Lev Vygotsky identified the interaction of an expert and a novice as an example of what became called “scaffolded” learning, where the teacher demonstrates and then supports the learner in acquiring a new skill. In unbounded games, this cooperation is channelled through narrative. Games of It among small children can evolve from win/lose into attacks by terrible monsters, before shifting again to more complex narratives that explain why the monsters are attacking, who is the hero, and what they can do and why—narratives that aren’t always logical or even internally compatible. An AI that could engage in social storytelling is doubtless on a surer, more multifunctional footing than one that plays chess; and there’s no guarantee that chess is even a step on the road to attaining intelligence of this sort.
In some ways, this failure to look at roleplaying as a technical hurdle for intelligence is strange. D&D was a key cultural touchstone for technologists in the 1980s and the inspiration for many early text-based computer games, as Katie Hafner and Matthew Lyon point out in Where Wizards Stay up Late: The Origins of the Internet (1996). Even today, AI researchers who play games in their free time often mention D&D specifically. So instead of beating adversaries in games, we might learn more about intelligence if we tried to teach artificial agents to play together as we do: as paladins and elf rangers.
This article was originally published at Aeon and has been republished under Creative Commons.
Image Credit:Benny Mazur/Flickr / CC BY 2.0 Continue reading
#431603 What We Can Learn From the Second Life ...
For every new piece of technology that gets developed, you can usually find people saying it will never be useful. The president of the Michigan Savings Bank in 1903, for example, said, “The horse is here to stay but the automobile is only a novelty—a fad.” It’s equally easy to find people raving about whichever new technology is at the peak of the Gartner Hype Cycle, which tracks the buzz around these newest developments and attempts to temper predictions. When technologies emerge, there are all kinds of uncertainties, from the actual capacity of the technology to its use cases in real life to the price tag.
Eventually the dust settles, and some technologies get widely adopted, to the extent that they can become “invisible”; people take them for granted. Others fall by the wayside as gimmicky fads or impractical ideas. Picking which horses to back is the difference between Silicon Valley millions and Betamax pub-quiz-question obscurity. For a while, it seemed that Google had—for once—backed the wrong horse.
Google Glass emerged from Google X, the ubiquitous tech giant’s much-hyped moonshot factory, where highly secretive researchers work on the sci-fi technologies of the future. Self-driving cars and artificial intelligence are the more mundane end for an organization that apparently once looked into jetpacks and teleportation.
The original smart glasses, Google began selling Google Glass in 2013 for $1,500 as prototypes for their acolytes, around 8,000 early adopters. Users could control the glasses with a touchpad, or, activated by tilting the head back, with voice commands. Audio relay—as with several wearable products—is via bone conduction, which transmits sound by vibrating the skull bones of the user. This was going to usher in the age of augmented reality, the next best thing to having a chip implanted directly into your brain.
On the surface, it seemed to be a reasonable proposition. People had dreamed about augmented reality for a long time—an onboard, JARVIS-style computer giving you extra information and instant access to communications without even having to touch a button. After smartphone ubiquity, it looked like a natural step forward.
Instead, there was a backlash. People may be willing to give their data up to corporations, but they’re less pleased with the idea that someone might be filming them in public. The worst aspect of smartphones is trying to talk to people who are distractedly scrolling through their phones. There’s a famous analogy in Revolutionary Road about an old couple’s loveless marriage: the husband tunes out his wife’s conversation by turning his hearing aid down to zero. To many, Google Glass seemed to provide us with a whole new way to ignore each other in favor of our Twitter feeds.
Then there’s the fact that, regardless of whether it’s because we’re not used to them, or if it’s a more permanent feature, people wearing AR tech often look very silly. Put all this together with a lack of early functionality, the high price (do you really feel comfortable wearing a $1,500 computer?), and a killer pun for the users—Glassholes—and the final recipe wasn’t great for Google.
Google Glass was quietly dropped from sale in 2015 with the ominous slogan posted on Google’s website “Thanks for exploring with us.” Reminding the Glass users that they had always been referred to as “explorers”—beta-testing a product, in many ways—it perhaps signaled less enthusiasm for wearables than the original, Google Glass skydive might have suggested.
In reality, Google went back to the drawing board. Not with the technology per se, although it has improved in the intervening years, but with the uses behind the technology.
Under what circumstances would you actually need a Google Glass? When would it genuinely be preferable to a smartphone that can do many of the same things and more? Beyond simply being a fashion item, which Google Glass decidedly was not, even the most tech-evangelical of us need a convincing reason to splash $1,500 on a wearable computer that’s less socially acceptable and less easy to use than the machine you’re probably reading this on right now.
Enter the Google Glass Enterprise Edition.
Piloted in factories during the years that Google Glass was dormant, and now roaring back to life and commercially available, the Google Glass relaunch got under way in earnest in July of 2017. The difference here was the specific audience: workers in factories who need hands-free computing because they need to use their hands at the same time.
In this niche application, wearable computers can become invaluable. A new employee can be trained with pre-programmed material that explains how to perform actions in real time, while instructions can be relayed straight into a worker’s eyeline without them needing to check a phone or switch to email.
Medical devices have long been a dream application for Google Glass. You can imagine a situation where people receive real-time information during surgery, or are augmented by artificial intelligence that provides additional diagnostic information or questions in response to a patient’s symptoms. The quest to develop a healthcare AI, which can provide recommendations in response to natural language queries, is on. The famously untidy doctor’s handwriting—and the associated death toll—could be avoided if the glasses could take dictation straight into a patient’s medical records. All of this is far more useful than allowing people to check Facebook hands-free while they’re riding the subway.
Google’s “Lens” application indicates another use for Google Glass that hadn’t quite matured when the original was launched: the Lens processes images and provides information about them. You can look at text and have it translated in real time, or look at a building or sign and receive additional information. Image processing, either through neural networks hooked up to a cloud database or some other means, is the frontier that enables driverless cars and similar technology to exist. Hook this up to a voice-activated assistant relaying information to the user, and you have your killer application: real-time annotation of the world around you. It’s this functionality that just wasn’t ready yet when Google launched Glass.
Amazon’s recent announcement that they want to integrate Alexa into a range of smart glasses indicates that the tech giants aren’t ready to give up on wearables yet. Perhaps, in time, people will become used to voice activation and interaction with their machines, at which point smart glasses with bone conduction will genuinely be more convenient than a smartphone.
But in many ways, the real lesson from the initial failure—and promising second life—of Google Glass is a simple question that developers of any smart technology, from the Internet of Things through to wearable computers, must answer. “What can this do that my smartphone can’t?” Find your answer, as the Enterprise Edition did, as Lens might, and you find your product.
Image Credit: Hattanas / Shutterstock.com Continue reading
#431559 Drug Discovery AI to Scour a Universe of ...
On a dark night, away from city lights, the stars of the Milky Way can seem uncountable. Yet from any given location no more than 4,500 are visible to the naked eye. Meanwhile, our galaxy has 100–400 billion stars, and there are even more galaxies in the universe.
The numbers of the night sky are humbling. And they give us a deep perspective…on drugs.
Yes, this includes wow-the-stars-are-freaking-amazing-tonight drugs, but also the kinds of drugs that make us well again when we’re sick. The number of possible organic compounds with “drug-like” properties dwarfs the number of stars in the universe by over 30 orders of magnitude.
Next to this multiverse of possibility, the chemical configurations scientists have made into actual medicines are like the smattering of stars you’d glimpse downtown.
But for good reason.
Exploring all that potential drug-space is as humanly impossible as exploring all of physical space, and even if we could, most of what we’d find wouldn’t fit our purposes. Still, the idea that wonder drugs must surely lurk amid the multitudes is too tantalizing to ignore.
Which is why, Alex Zhavoronkov said at Singularity University’s Exponential Medicine in San Diego last week, we should use artificial intelligence to do more of the legwork and speed discovery. This, he said, could be one of the next big medical applications for AI.
Dogs, Diagnosis, and Drugs
Zhavoronkov is CEO of Insilico Medicine and CSO of the Biogerontology Research Foundation. Insilico is one of a number of AI startups aiming to accelerate drug discovery with AI.
In recent years, Zhavoronkov said, the now-famous machine learning technique, deep learning, has made progress on a number of fronts. Algorithms that can teach themselves to play games—like DeepMind’s AlphaGo Zero or Carnegie Mellon’s poker playing AI—are perhaps the most headline-grabbing of the bunch. But pattern recognition was the thing that kicked deep learning into overdrive early on, when machine learning algorithms went from struggling to tell dogs and cats apart to outperforming their peers and then their makers in quick succession.
[Watch this video for an AI update from Neil Jacobstein, chair of Artificial Intelligence and Robotics at Singularity University.]
In medicine, deep learning algorithms trained on databases of medical images can spot life-threatening disease with equal or greater accuracy than human professionals. There’s even speculation that AI, if we learn to trust it, could be invaluable in diagnosing disease. And, as Zhavoronkov noted, with more applications and a longer track record that trust is coming.
“Tesla is already putting cars on the street,” Zhavoronkov said. “Three-year, four-year-old technology is already carrying passengers from point A to point B, at 100 miles an hour, and one mistake and you’re dead. But people are trusting their lives to this technology.”
“So, why don’t we do it in pharma?”
Trial and Error and Try Again
AI wouldn’t drive the car in pharmaceutical research. It’d be an assistant that, when paired with a chemist or two, could fast-track discovery by screening more possibilities for better candidates.
There’s plenty of room to make things more efficient, according to Zhavoronkov.
Drug discovery is arduous and expensive. Chemists sift tens of thousands of candidate compounds for the most promising to synthesize. Of these, a handful will go on to further research, fewer will make it to human clinical trials, and a fraction of those will be approved.
The whole process can take many years and cost hundreds of millions of dollars.
This is a big data problem if ever there was one, and deep learning thrives on big data. Early applications have shown their worth unearthing subtle patterns in huge training databases. Although drug-makers already use software to sift compounds, such software requires explicit rules written by chemists. AI’s allure is its ability to learn and improve on its own.
“There are two strategies for AI-driven innovation in pharma to ensure you get better molecules and much faster approvals,” Zhavoronkov said. “One is looking for the needle in the haystack, and another one is creating a new needle.”
To find the needle in the haystack, algorithms are trained on large databases of molecules. Then they go looking for molecules with attractive properties. But creating a new needle? That’s a possibility enabled by the generative adversarial networks Zhavoronkov specializes in.
Such algorithms pit two neural networks against each other. One generates meaningful output while the other judges whether this output is true or false, Zhavoronkov said. Together, the networks generate new objects like text, images, or in this case, molecular structures.
“We started employing this particular technology to make deep neural networks imagine new molecules, to make it perfect right from the start. So, to come up with really perfect needles,” Zhavoronkov said. “[You] can essentially go to this [generative adversarial network] and ask it to create molecules that inhibit protein X at concentration Y, with the highest viability, specific characteristics, and minimal side effects.”
Zhavoronkov believes AI can find or fabricate more needles from the array of molecular possibilities, freeing human chemists to focus on synthesizing only the most promising. If it works, he hopes we can increase hits, minimize misses, and generally speed the process up.
Proof’s in the Pudding
Insilico isn’t alone on its drug-discovery quest, nor is it a brand new area of interest.
Last year, a Harvard group published a paper on an AI that similarly suggests drug candidates. The software trained on 250,000 drug-like molecules and used its experience to generate new molecules that blended existing drugs and made suggestions based on desired properties.
An MIT Technology Review article on the subject highlighted a few of the challenges such systems may still face. The results returned aren’t always meaningful or easy to synthesize in the lab, and the quality of these results, as always, is only as good as the data dined upon.
Stanford chemistry professor and Andreesen Horowitz partner, Vijay Pande, said that images, speech, and text—three of the areas deep learning’s made quick strides in—have better, cleaner data. Chemical data, on the other hand, is still being optimized for deep learning. Also, while there are public databases, much data still lives behind closed doors at private companies.
To overcome the challenges and prove their worth, Zhavoronkov said, his company is very focused on validating the tech. But this year, skepticism in the pharmaceutical industry seems to be easing into interest and investment.
AI drug discovery startup Exscientia inked a deal with Sanofi for $280 million and GlaxoSmithKline for $42 million. Insilico is also partnering with GlaxoSmithKline, and Numerate is working with Takeda Pharmaceutical. Even Google may jump in. According to an article in Nature outlining the field, the firm’s deep learning project, Google Brain, is growing its biosciences team, and industry watchers wouldn’t be surprised to see them target drug discovery.
With AI and the hardware running it advancing rapidly, the greatest potential may yet be ahead. Perhaps, one day, all 1060 molecules in drug-space will be at our disposal. “You should take all the data you have, build n new models, and search as much of that 1060 as possible” before every decision you make, Brandon Allgood, CTO at Numerate, told Nature.
Today’s projects need to live up to their promises, of course, but Zhavoronkov believes AI will have a big impact in the coming years, and now’s the time to integrate it. “If you are working for a pharma company, and you’re still thinking, ‘Okay, where is the proof?’ Once there is a proof, and once you can see it to believe it—it’s going to be too late,” he said.
Image Credit: Klavdiya Krinichnaya / Shutterstock.com Continue reading
#431165 Intel Jumps Into Brain-Like Computing ...
The brain has long inspired the design of computers and their software. Now Intel has become the latest tech company to decide that mimicking the brain’s hardware could be the next stage in the evolution of computing.
On Monday the company unveiled an experimental “neuromorphic” chip called Loihi. Neuromorphic chips are microprocessors whose architecture is configured to mimic the biological brain’s network of neurons and the connections between them called synapses.
While neural networks—the in vogue approach to artificial intelligence and machine learning—are also inspired by the brain and use layers of virtual neurons, they are still implemented on conventional silicon hardware such as CPUs and GPUs.
The main benefit of mimicking the architecture of the brain on a physical chip, say neuromorphic computing’s proponents, is energy efficiency—the human brain runs on roughly 20 watts. The “neurons” in neuromorphic chips carry out the role of both processor and memory which removes the need to shuttle data back and forth between separate units, which is how traditional chips work. Each neuron also only needs to be powered while it’s firing.
At present, most machine learning is done in data centers due to the massive energy and computing requirements. Creating chips that capture some of nature’s efficiency could allow AI to be run directly on devices like smartphones, cars, and robots.
This is exactly the kind of application Michael Mayberry, managing director of Intel’s research arm, touts in a blog post announcing Loihi. He talks about CCTV cameras that can run image recognition to identify missing persons or traffic lights that can track traffic flow to optimize timing and keep vehicles moving.
There’s still a long way to go before that happens though. According to Wired, so far Intel has only been working with prototypes, and the first full-size version of the chip won’t be built until November.
Once complete, it will feature 130,000 neurons and 130 million synaptic connections split between 128 computing cores. The device will be 1,000 times more energy-efficient than standard approaches, according to Mayberry, but more impressive are claims the chip will be capable of continuous learning.
Intel’s newly launched self-learning neuromorphic chip.
Normally deep learning works by training a neural network on giant datasets to create a model that can then be applied to new data. The Loihi chip will combine training and inference on the same chip, which will allow it to learn on the fly, constantly updating its models and adapting to changing circumstances without having to be deliberately re-trained.
A select group of universities and research institutions will be the first to get their hands on the new chip in the first half of 2018, but Mayberry said it could be years before it’s commercially available. Whether commercialization happens at all may largely depend on whether early adopters can get the hardware to solve any practically useful problems.
So far neuromorphic computing has struggled to gain traction outside the research community. IBM released a neuromorphic chip called TrueNorth in 2014, but the device has yet to showcase any commercially useful applications.
Lee Gomes summarizes the hurdles facing neuromorphic computing excellently in IEEE Spectrum. One is that deep learning can run on very simple, low-precision hardware that can be optimized to use very little power, which suggests complicated new architectures may struggle to find purchase.
It’s also not easy to transfer deep learning approaches developed on conventional chips over to neuromorphic hardware, and even Intel Labs chief scientist Narayan Srinivasa admitted to Forbes Loihi wouldn’t work well with some deep learning models.
Finally, there’s considerable competition in the quest to develop new computer architectures specialized for machine learning. GPU vendors Nvidia and AMD have pivoted to take advantage of this newfound market and companies like Google and Microsoft are developing their own in-house solutions.
Intel, for its part, isn’t putting all its eggs in one basket. Last year it bought two companies building chips for specialized machine learning—Movidius and Nervana—and this was followed up with the $15 billion purchase of self-driving car chip- and camera-maker Mobileye.
And while the jury is still out on neuromorphic computing, it makes sense for a company eager to position itself as the AI chipmaker of the future to have its fingers in as many pies as possible. There are a growing number of voices suggesting that despite its undoubted power, deep learning alone will not allow us to imbue machines with the kind of adaptable, general intelligence humans possess.
What new approaches will get us there are hard to predict, but it’s entirely possible they will only work on hardware that closely mimics the one device we already know is capable of supporting this kind of intelligence—the human brain.
Image Credit: Intel Continue reading