Tag Archives: project
#433506 MIT’s New Robot Taught Itself to Pick ...
Back in 2016, somewhere in a Google-owned warehouse, more than a dozen robotic arms sat for hours quietly grasping objects of various shapes and sizes. For hours on end, they taught themselves how to pick up and hold the items appropriately—mimicking the way a baby gradually learns to use its hands.
Now, scientists from MIT have made a new breakthrough in machine learning: their new system can not only teach itself to see and identify objects, but also understand how best to manipulate them.
This means that, armed with the new machine learning routine referred to as “dense object nets (DON),” the robot would be capable of picking up an object that it’s never seen before, or in an unfamiliar orientation, without resorting to trial and error—exactly as a human would.
The deceptively simple ability to dexterously manipulate objects with our hands is a huge part of why humans are the dominant species on the planet. We take it for granted. Hardware innovations like the Shadow Dexterous Hand have enabled robots to softly grip and manipulate delicate objects for many years, but the software required to control these precision-engineered machines in a range of circumstances has proved harder to develop.
This was not for want of trying. The Amazon Robotics Challenge offers millions of dollars in prizes (and potentially far more in contracts, as their $775m acquisition of Kiva Systems shows) for the best dexterous robot able to pick and package items in their warehouses. The lucrative dream of a fully-automated delivery system is missing this crucial ability.
Meanwhile, the Robocup@home challenge—an offshoot of the popular Robocup tournament for soccer-playing robots—aims to make everyone’s dream of having a robot butler a reality. The competition involves teams drilling their robots through simple household tasks that require social interaction or object manipulation, like helping to carry the shopping, sorting items onto a shelf, or guiding tourists around a museum.
Yet all of these endeavors have proved difficult; the tasks often have to be simplified to enable the robot to complete them at all. New or unexpected elements, such as those encountered in real life, more often than not throw the system entirely. Programming the robot’s every move in explicit detail is not a scalable solution: this can work in the highly-controlled world of the assembly line, but not in everyday life.
Computer vision is improving all the time. Neural networks, including those you train every time you prove that you’re not a robot with CAPTCHA, are getting better at sorting objects into categories, and identifying them based on sparse or incomplete data, such as when they are occluded, or in different lighting.
But many of these systems require enormous amounts of input data, which is impractical, slow to generate, and often needs to be laboriously categorized by humans. There are entirely new jobs that require people to label, categorize, and sift large bodies of data ready for supervised machine learning. This can make machine learning undemocratic. If you’re Google, you can make thousands of unwitting volunteers label your images for you with CAPTCHA. If you’re IBM, you can hire people to manually label that data. If you’re an individual or startup trying something new, however, you will struggle to access the vast troves of labeled data available to the bigger players.
This is why new systems that can potentially train themselves over time or that allow robots to deal with situations they’ve never seen before without mountains of labelled data are a holy grail in artificial intelligence. The work done by MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) is part of a new wave of “self-supervised” machine learning systems—little of the data used was labeled by humans.
The robot first inspects the new object from multiple angles, building up a 3D picture of the object with its own coordinate system. This then allows the robotic arm to identify a particular feature on the object—such as a handle, or the tongue of a shoe—from various different angles, based on its relative distance to other grid points.
This is the real innovation: the new means of representing objects to grasp as mapped-out 3D objects, with grid points and subsections of their own. Rather than using a computer vision algorithm to identify a door handle, and then activating a door handle grasping subroutine, the DON system treats all objects by making these spatial maps before classifying or manipulating them, enabling it to deal with a greater range of objects than in other approaches.
“Many approaches to manipulation can’t identify specific parts of an object across the many orientations that object may encounter,” said PhD student Lucas Manuelli, who wrote a new paper about the system with lead author and fellow student Pete Florence, alongside MIT professor Russ Tedrake. “For example, existing algorithms would be unable to grasp a mug by its handle, especially if the mug could be in multiple orientations, like upright, or on its side.”
Class-specific descriptors, which can be applied to the object features, can allow the robot arm to identify a mug, find the handle, and pick the mug up appropriately. Object-specific descriptors allow the robot arm to select a particular mug from a group of similar items. I’m already dreaming of a robot butler reliably picking my favourite mug when it serves me coffee in the morning.
Google’s robot arm-y was an attempt to develop a general grasping algorithm: one that could identify, categorize, and appropriately grip as many items as possible. This requires a great deal of training time and data, which is why Google parallelized their project by having 14 robot arms feed data into a single neural network brain: even then, the algorithm may fail with highly specific tasks. Specialist grasping algorithms might require less training if they’re limited to specific objects, but then your software is useless for general tasks.
As the roboticists noted, their system, with its ability to identify parts of an object rather than just a single object, is better suited to specific tasks, such as “grasp the racquet by the handle,” than Amazon Robotics Challenge robots, which identify whole objects by segmenting an image.
This work is small-scale at present. It has been tested with a few classes of objects, including shoes, hats, and mugs. Yet the use of these dense object nets as a way for robots to represent and manipulate new objects may well be another step towards the ultimate goal of generalized automation: a robot capable of performing every task a person can. If that point is reached, the question that will remain is how to cope with being obsolete.
Image Credit: Tom Buehler/CSAIL Continue reading
#433486 This AI Predicts Obesity ...
A research team at the University of Washington has trained an artificial intelligence system to spot obesity—all the way from space. The system used a convolutional neural network (CNN) to analyze 150,000 satellite images and look for correlations between the physical makeup of a neighborhood and the prevalence of obesity.
The team’s results, presented in JAMA Network Open, showed that features of a given neighborhood could explain close to two-thirds (64.8 percent) of the variance in obesity. Researchers found that analyzing satellite data could help increase understanding of the link between peoples’ environment and obesity prevalence. The next step would be to make corresponding structural changes in the way neighborhoods are built to encourage physical activity and better health.
Training AI to Spot Obesity
Convolutional neural networks (CNNs) are particularly adept at image analysis, object recognition, and identifying special hierarchies in large datasets.
Prior to analyzing 150,000 high-resolution satellite images of Bellevue, Seattle, Tacoma, Los Angeles, Memphis, and San Antonio, the researchers trained the CNN on 1.2 million images from the ImageNet database. The categorizations were correlated with obesity prevalence estimates for the six urban areas from census tracts gathered by the 500 Cities project.
The system was able to identify the presence of certain features that increased likelihood of obesity in a given area. Some of these features included tightly–packed houses, being close to roadways, and living in neighborhoods with a lack of greenery.
Visualization of features identified by the convolutional neural network (CNN) model. The images on the left column are satellite images taken from Google Static Maps API (application programming interface). Images in the middle and right columns are activation maps taken from the second convolutional layer of VGG-CNN-F network after forward pass of the respective satellite images through the network. From Google Static Maps API, DigitalGlobe, US Geological Survey (accessed July 2017). Credit: JAMA Network Open
Your Surroundings Are Key
In their discussion of the findings, the researchers stressed that there are limitations to the conclusions that can be drawn from the AI’s results. For example, socio-economic factors like income likely play a major role for obesity prevalence in a given geographic area.
However, the study concluded that the AI-powered analysis showed the prevalence of specific man-made features in neighborhoods consistently correlating with obesity prevalence and not necessarily correlating with socioeconomic status.
The system’s success rates varied between studied cities, with Memphis being the highest (73.3 percent) and Seattle being the lowest (55.8 percent).
AI Takes To the Sky
Around a third of the US population is categorized as obese. Obesity is linked to a number of health-related issues, and the AI-generated results could potentially help improve city planning and better target campaigns to limit obesity.
The study is one of the latest of a growing list that uses AI to analyze images and extrapolate insights.
A team at Stanford University has used a CNN to predict poverty via satellite imagery, assisting governments and NGOs to better target their efforts. A combination of the public Automatic Identification System for shipping, satellite imagery, and Google’s AI has proven able to identify illegal fishing activity. Researchers have even been able to use AI and Google Street View to predict what party a given city will vote for, based on what cars are parked on the streets.
In each case, the AI systems have been able to look at volumes of data about our world and surroundings that are beyond the capabilities of humans and extrapolate new insights. If one were to moralize about the good and bad sides of AI (new opportunities vs. potential job losses, for example) it could seem that it comes down to what we ask AI systems to look at—and what questions we ask of them.
Image Credit: Ocean Biology Processing Group at NASA’s Goddard Space Flight Center Continue reading
#433301 ‘Happiness Tech’ Is On the Rise. Is ...
We often get so fixated on technological progress that we forget it’s merely one component of the entirety of human progress. Technological advancement does not necessarily correlate with increases in human mental well-being.
While cleaner energy, access to education, and higher employment rates can improve quality of life, they do not guarantee happiness and inner peace. Amid what appears to be an increasing abundance of resources and ongoing human progress, we are experiencing a mental health epidemic, with high anxiety and depression rates. This is especially true in the developed world, where we have access to luxuries our ancestors couldn’t even dream of—all the world’s information contained in a device we hold in the palm of our hands, for example.
But as you may have realized through your own experience, technology can make us feel worse instead of better. Social media can become a tool for comparison and a source of debilitating status anxiety. Increased access to goods and services, along with the rise of consumerism, can lead people to choose “stuff” over true sources of meaning and get trapped in a hedonistic treadmill of materialism. Tools like artificial intelligence and big data could lead to violation of our privacy and autonomy. The digital world can take us away from the beauty of the present moment.
Understanding Happiness
How we use technology can significantly impact our happiness. In this context, “happiness” refers to a general sense of well-being, gratitude, and inner peace. Even with such a simple definition, it is a state of mind many people will admit they lack.
Eastern philosophies have told us for thousands of years that the problem of human suffering begins with our thoughts and perceptions of the circumstances we are in, as opposed to beginning with the circumstances themselves. As Derren Brown brilliantly points out in Happy: Why More or Less Everything Is Absolutely Fine, “The problem with the modern conception of happiness is that it is seen as some kind of commodity. There is this fantasy that simply by believing in yourself and setting goals you can have anything. But that simply isn’t how life works. The ancients had a much better view of it. They offered an approach of not trying to control things you can’t control, and of lessening your desires and your expectations so you achieve a harmony between what you desire and what you have.”
A core part of feeling more happy is about re-wiring our minds to adjust our expectations, exercise gratitude, escape negative narratives, and live in the present moment.
But can technology help us do that?
Applications for Mental Well-Being
Many doers are asking themselves how they can leverage digital tools to contribute to human happiness.
Meditation and mindfulness are examples of practices we can use to escape the often overwhelming burden of our thoughts and ground our minds into the present. They have become increasingly democratized with the rise of meditation mobile apps, such as Headspace, Gaia, and Calm, that allow millions of people globally to use their phones to learn from experts at a very low cost.
These companies have also partnered with hospitals, airlines, athletic teams, and others that could benefit from increased access to mindfulness and meditation. The popularity of these apps continues to rise as more people recognize their necessity. The combination of mass technology and ancient wisdom is one that can lead to a transformation of the collective consciousness.
Sometimes merely reflecting on the sources of joy in our lives and practicing gratitude can contribute to better well-being. Apps such as Happier encourage users to reflect upon and share pleasant everyday moments in their daily lives. Such exercises are based on the understanding that being happy is a “skill” one can build though practice and through scientifically-proven activities, such as writing down a nice thought and sharing your positivity with the world. Many other tools such as Track Your Happiness and Happstr allow users to track their happiness, which often serves as a valuable source of data to researchers.
There is also a growing body of knowledge that tells us we can achieve happiness by helping others. This “helper’s high” is a result of our brains producing endorphins after having a positive impact on the lives of others. In many shapes and forms, technology has made it easier now more than ever to help other people no matter where they are located. From charitable donations to the rise of social impact organizations, there is an abundance of projects that leverage technology to positively impact individual lives. Platforms like GoVolunteer connect nonprofits with individuals from a variety of skill sets who are looking to gift their abilities to those in need. Kiva allows for fundraising loans that can change lives. These are just a handful of examples of a much wider positive paradigm shift.
The Future of Technology for Well-Being
There is no denying that increasingly powerful and immersive technology can be used to better or worsen the human condition. Today’s leaders will not only have to focus on their ability to use technology to solve a problem or generate greater revenue; they will have to ask themselves if their tech solutions are beneficial or detrimental to human well-being. They will also have to remember that more powerful technology does not always translate to happier users. It is also crucial that future generations be equipped with the values required to use increasingly powerful tools responsibly and ethically.
In the Education 2030 report, the Millennium Project envisions a world wherein portable intelligent devices combined with integrated systems for lifelong learning contribute to better well-being. In this vision, “continuous evaluation of individual learning processes designed to prevent people from growing unstable and/or becoming mentally ill, along with programs aimed at eliminating prejudice and hate, could bring about a more beautiful, loving world.”
There is exciting potential for technology to be leveraged to contribute to human happiness at a massive scale. Yet, technology shouldn’t consume every aspect of our lives, since a life worth living is often about balance. Sometimes, even if just for a few moments, what would make us feel happier is we disconnected from technology to begin with.
Image Credit: 13_Phunkod / Shutterstock.com Continue reading
#433288 The New AI Tech Turning Heads in Video ...
A new technique using artificial intelligence to manipulate video content gives new meaning to the expression “talking head.”
An international team of researchers showcased the latest advancement in synthesizing facial expressions—including mouth, eyes, eyebrows, and even head position—in video at this month’s 2018 SIGGRAPH, a conference on innovations in computer graphics, animation, virtual reality, and other forms of digital wizardry.
The project is called Deep Video Portraits. It relies on a type of AI called generative adversarial networks (GANs) to modify a “target” actor based on the facial and head movement of a “source” actor. As the name implies, GANs pit two opposing neural networks against one another to create a realistic talking head, right down to the sneer or raised eyebrow.
In this case, the adversaries are actually working together: One neural network generates content, while the other rejects or approves each effort. The back-and-forth interplay between the two eventually produces a realistic result that can easily fool the human eye, including reproducing a static scene behind the head as it bobs back and forth.
The researchers say the technique can be used by the film industry for a variety of purposes, from editing facial expressions of actors for matching dubbed voices to repositioning an actor’s head in post-production. AI can not only produce highly realistic results, but much quicker ones compared to the manual processes used today, according to the researchers. You can read the full paper of their work here.
“Deep Video Portraits shows how such a visual effect could be created with less effort in the future,” said Christian Richardt, from the University of Bath’s motion capture research center CAMERA, in a press release. “With our approach, even the positioning of an actor’s head and their facial expression could be easily edited to change camera angles or subtly change the framing of a scene to tell the story better.”
AI Tech Different Than So-Called “Deepfakes”
The work is far from the first to employ AI to manipulate video and audio. At last year’s SIGGRAPH conference, researchers from the University of Washington showcased their work using algorithms that inserted audio recordings from a person in one instance into a separate video of the same person in a different context.
In this case, they “faked” a video using a speech from former President Barack Obama addressing a mass shooting incident during his presidency. The AI-doctored video injects the audio into an unrelated video of the president while also blending the facial and mouth movements, creating a pretty credible job of lip synching.
A previous paper by many of the same scientists on the Deep Video Portraits project detailed how they were first able to manipulate a video in real time of a talking head (in this case, actor and former California governor Arnold Schwarzenegger). The Face2Face system pulled off this bit of digital trickery using a depth-sensing camera that tracked the facial expressions of an Asian female source actor.
A less sophisticated method of swapping faces using a machine learning software dubbed FakeApp emerged earlier this year. Predictably, the tech—requiring numerous photos of the source actor in order to train the neural network—was used for more juvenile pursuits, such as injecting a person’s face onto a porn star.
The application gave rise to the term “deepfakes,” which is now used somewhat ubiquitously to describe all such instances of AI-manipulated video—much to the chagrin of some of the researchers involved in more legitimate uses.
Fighting AI-Created Video Forgeries
However, the researchers are keenly aware that their work—intended for benign uses such as in the film industry or even to correct gaze and head positions for more natural interactions through video teleconferencing—could be used for nefarious purposes. Fake news is the most obvious concern.
“With ever-improving video editing technology, we must also start being more critical about the video content we consume every day, especially if there is no proof of origin,” said Michael Zollhöfer, a visiting assistant professor at Stanford University and member of the Deep Video Portraits team, in the press release.
Toward that end, the research team is training the same adversarial neural networks to spot video forgeries. They also strongly recommend that developers clearly watermark videos that are edited through AI or otherwise, and denote clearly what part and element of the scene was modified.
To catch less ethical users, the US Department of Defense, through the Defense Advanced Research Projects Agency (DARPA), is supporting a program called Media Forensics. This latest DARPA challenge enlists researchers to develop technologies to automatically assess the integrity of an image or video, as part of an end-to-end media forensics platform.
The DARPA official in charge of the program, Matthew Turek, did tell MIT Technology Review that so far the program has “discovered subtle cues in current GAN-manipulated images and videos that allow us to detect the presence of alterations.” In one reported example, researchers have targeted eyes, which rarely blink in the case of “deepfakes” like those created by FakeApp, because the AI is trained on still pictures. That method would seem to be less effective to spot the sort of forgeries created by Deep Video Portraits, which appears to flawlessly match the entire facial and head movements between the source and target actors.
“We believe that the field of digital forensics should and will receive a lot more attention in the future to develop approaches that can automatically prove the authenticity of a video clip,” Zollhöfer said. “This will lead to ever-better approaches that can spot such modifications even if we humans might not be able to spot them with our own eyes.
Image Credit: Tancha / Shutterstock.com Continue reading