Tag Archives: programming
#435750 Video Friday: Amazon CEO Jeff Bezos ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events):
RSS 2019 – June 22-26, 2019 – Freiburg, Germany
Hamlyn Symposium on Medical Robotics – June 23-26, 2019 – London, U.K.
ETH Robotics Summer School – June 27-1, 2019 – Zurich, Switzerland
MARSS 2019 – July 1-5, 2019 – Helsinki, Finland
ICRES 2019 – July 29-30, 2019 – London, U.K.
Let us know if you have suggestions for next week, and enjoy today’s videos.
Last week at the re:MARS conference, Amazon CEO and aspiring supervillain Jeff Bezos tried out this pair of dexterous robotic hands, which he described as “weirdly natural” to operate. The system combines Shadow Robot’s anthropomorphic robot hands with SynTouch’s biomimetic tactile sensors and HaptX’s haptic feedback gloves.
After playing with the robot, Bezos let out his trademark evil laugh.
[ Shadow Robot ]
The RoboMaster S1 is DJI’s advanced new educational robot that opens the door to limitless learning and entertainment. Develop programming skills, get familiar with AI technology, and enjoy thrilling FPV driving with games and competition. From young learners to tech enthusiasts, get ready to discover endless possibilities with the RoboMaster S1.
[ DJI ]
It’s very impressive to see DLR’s humanoid robot Toro dynamically balancing, even while being handed heavy objects, pushing things, and using multi-contact techniques to kick a fire extinguisher for some reason.
The paper is in RA-L, and you can find it at the link below.
[ RA-L ] via [ DLR ]
Thanks Maximo!
Is it just me, or does the Suzumori Endo Robotics Laboratory’s Super Dragon arm somehow just keep getting longer?
Suzumori Endo Lab, Tokyo Tech developed a 10 m-long articulated manipulator for investigation inside the primary containment vessel of the Fukushima Daiichi Nuclear Power Plants. We employed a coupled tendon-driven mechanism and a gravity compensation mechanism using synthetic fiber ropes to design a lightweight and slender articulated manipulator. This work was published in IEEE Robotics and Automation Letters and Transactions of the JSME.
[ Suzumori Endo Lab ]
From what I can make out thanks to Google Translate, this cute little robot duck (developed by Nissan) helps minimize weeds in rice fields by stirring up the water.
[ Nippon.com ]
Confidence in your robot is when you can just casually throw it off of a balcony 15 meters up.
[ SUTD ]
You had me at “we’re going to completely submerge this apple in chocolate syrup.”
[ Soft Robotics Inc ]
In the mid 2020s, the European Space Agency is planning on sending a robotic sample return mission to the Moon. It’s called Heracles, after the noted snake-strangler of Greek mythology.
[ ESA ]
Rethink Robotics is still around, they’re just much more German than before. And Sawyer is still hard at work stealing jobs from humans.
[ Rethink Robotics ]
The reason to watch this new video of the Ghost Robotics Vision 60 quadruped is for the 3 seconds worth of barrel roll about 40 seconds in.
[ Ghost Robotics ]
This is a relatively low-altitude drop for Squishy Robotics’ tensegrity scout, but it still cool to watch a robot that’s resilient enough to be able to fall and just not worry about it.
[ Squishy Robotics ]
We control here the Apptronik DRACO bipedal robot for unsupported dynamic locomotion. DRACO consists of a 10 DoF lower body with liquid cooled viscoelastic actuators to reduce weight, increase payload, and achieve fast dynamic walking. Control and walking algorithms are designed by UT HCRL Laboratory.
I think all robot videos should be required to start with two “oops” clips followed by a “for real now” clip.
[ Apptronik ]
SAKE’s EZGripper manages to pick up a wrench, and also pick up a raspberry without turning it into instajam.
[ SAKE Robotics ]
And now: the robotic long-tongued piggy, courtesy Sony Toio.
[ Toio ]
In this video the ornithopter developed inside the ERC Advanced Grant GRIFFIN project performs its first flight. This projects aims to develop a flapping wing system with manipulation and human interaction capabilities.
A flapping-wing system with manipulation and human interaction capabilities, you say? I would like to subscribe to your newsletter.
[ GRVC ]
KITECH’s robotic hands and arms can manipulate, among other things, five boxes of Elmos. I’m not sure about the conversion of Elmos to Snuffleupaguses, although it turns out that one Snuffleupagus is exactly 1,000 pounds.
[ Ji-Hun Bae ]
The Australian Centre for Field Robotics (ACFR) has been working on agricultural robots for almost a decade, and this video sums up a bunch of the stuff that they’ve been doing, even if it’s more amusing than practical at times.
[ ACFR ]
ROS 2 is great for multi-robot coordination, like when you need your bubble level to stay really, really level.
[ Acutronic Robotics ]
We don’t hear iRobot CEO Colin Angle give a lot of talks, so this recent one (from Amazon’s re:MARS conference) is definitely worth a listen, especially considering how much innovation we’ve seen from iRobot recently.
Colin Angle, founder and CEO of iRobot, has unveil a series of breakthrough innovations in home robots from iRobot. For the first time on stage, he will discuss and demonstrate what it takes to build a truly intelligent system of robots that work together to accomplish more within the home – and enable that home, and the devices within it, to work together as one.
[ iRobot ]
In the latest episode of Robots in Depth, Per speaks with Federico Pecora from the Center for Applied Autonomous Sensor Systems at Örebro University in Sweden.
Federico talks about working on AI and service robotics. In this area he has worked on planning, especially focusing on why a particular goal is the one that the robot should work on. To make robots as useful and user friendly as possible, he works on inferring the goal from the robot’s environment so that the user does not have to tell the robot everything.
Federico has also worked with AI robotics planning in industry to optimize results. Managing the relative importance of tasks is another challenging area there. In this context, he works on automating not only a single robot for its goal, but an entire fleet of robots for their collective goal. We get to hear about how these techniques are being used in warehouse operations, in mines and in agriculture.
[ Robots in Depth ] Continue reading
#435687 Humanoid Robots Teach Coping Skills to ...
Photo: Rob Felt
IEEE Senior Member Ayanna Howard with one of the interactive androids that help children with autism improve their social and emotional engagement.
THE INSTITUTEChildren with autism spectrum disorder can have a difficult time expressing their emotions and can be highly sensitive to sound, sight, and touch. That sometimes restricts their participation in everyday activities, leaving them socially isolated. Occupational therapists can help them cope better, but the time they’re able to spend is limited and the sessions tend to be expensive.
Roboticist Ayanna Howard, an IEEE senior member, has been using interactive androids to guide children with autism on ways to socially and emotionally engage with others—as a supplement to therapy. Howard is chair of the School of Interactive Computing and director of the Human-Automation Systems Lab at Georgia Tech. She helped found Zyrobotics, a Georgia Tech VentureLab startup that is working on AI and robotics technologies to engage children with special needs. Last year Forbes named Howard, Zyrobotics’ chief technology officer, one of the Top 50 U.S. Women in Tech.
In a recent study, Howard and other researchers explored how robots might help children navigate sensory experiences. The experiment involved 18 participants between the ages of 4 and 12; five had autism, and the rest were meeting typical developmental milestones. Two humanoid robots were programmed to express boredom, excitement, nervousness, and 17 other emotional states. As children explored stations set up for hearing, seeing, smelling, tasting, and touching, the robots modeled what the socially acceptable responses should be.
“If a child’s expression is one of happiness or joy, the robot will have a corresponding response of encouragement,” Howard says. “If there are aspects of frustration or sadness, the robot will provide input to try again.” The study suggested that many children with autism exhibit stronger levels of engagement when the robots interact with them at such sensory stations.
It is one of many robotics projects Howard has tackled. She has designed robots for researching glaciers, and she is working on assistive robots for the home, as well as an exoskeleton that can help children who have motor disabilities.
Howard spoke about her work during the Ethics in AI: Impacts of (Anti?) Social Robotics panel session held in May at the IEEE Vision, Innovation, and Challenges Summit in San Diego. You can watch the session on IEEE.tv.
The next IEEE Vision, Innovation, and Challenges Summit and Honors Ceremony will be held on 15 May 2020 at the JW Marriott Parq Vancouver hotel, in Vancouver.
In this interview with The Institute, Howard talks about how she got involved with assistive technologies, the need for a more diverse workforce, and ways IEEE has benefited her career.
FOCUS ON ACCESSIBILITY
Howard was inspired to work on technology that can improve accessibility in 2008 while teaching high school students at a summer camp devoted to science, technology, engineering, and math.
“A young lady with a visual impairment attended camp. The robot programming tools being used at the camp weren’t accessible to her,” Howard says. “As an engineer, I want to fix problems when I see them, so we ended up designing tools to enable access to programming tools that could be used in STEM education.
“That was my starting motivation, and this theme of accessibility has expanded to become a main focus of my research. One of the things about this world of accessibility is that when you start interacting with kids and parents, you discover another world out there of assistive technologies and how robotics can be used for good in education as well as therapy.”
DIVERSITY OF THOUGHT
The Institute asked Howard why it’s important to have a more diverse STEM workforce and what could be done to increase the number of women and others from underrepresented groups.
“The makeup of the current engineering workforce isn’t necessarily representative of the world, which is composed of different races, cultures, ages, disabilities, and socio-economic backgrounds,” Howard says. “We’re creating products used by people around the globe, so we have to ensure they’re being designed for a diverse population. As IEEE members, we also need to engage with people who aren’t engineers, and we don’t do that enough.”
Educational institutions are doing a better job of increasing diversity in areas such as gender, she says, adding that more work is needed because the enrollment numbers still aren’t representative of the population and the gains don’t necessarily carry through after graduation.
“There has been an increase in the number of underrepresented minorities and females going into engineering and computer science,” she says, “but data has shown that their numbers are not sustained in the workforce.”
ROLE MODEL
Because there are more underrepresented groups on today’s college campuses that can form a community, the lack of engineering role models—although a concern on campuses—is more extreme for preuniversity students, Howard says.
“Depending on where you go to school, you may not know what an engineer does or even consider engineering as an option,” she says, “so there’s still a big disconnect there.”
Howard has been involved for many years in math- and science-mentoring programs for at-risk high school girls. She tells them to find what they’re passionate about and combine it with math and science to create something. She also advises them not to let anyone tell them that they can’t.
Howard’s father is an engineer. She says he never encouraged or discouraged her to become one, but when she broke something, he would show her how to fix it and talk her through the process. Along the way, he taught her a logical way of thinking she says all engineers have.
“When I would try to explain something, he would quiz me and tell me to ‘think more logically,’” she says.
Howard earned a bachelor’s degree in engineering from Brown University, in Providence, R.I., then she received both a master’s and doctorate degree in electrical engineering from the University of Southern California. Before joining the faculty of Georgia Tech in 2005, she worked at NASA’s Jet Propulsion Laboratory at the California Institute of Technology for more than a decade as a senior robotics researcher and deputy manager in the Office of the Chief Scientist.
ACTIVE VOLUNTEER
Howard’s father was also an IEEE member, but that’s not why she joined the organization. She says she signed up when she was a student because, “that was something that you just did. Plus, my student membership fee was subsidized.”
She kept the membership as a grad student because of the discounted rates members receive on conferences.
Those conferences have had an impact on her career. “They allow you to understand what the state of the art is,” she says. “Back then you received a printed conference proceeding and reading through it was brutal, but by attending it in person, you got a 15-minute snippet about the research.”
Howard is an active volunteer with the IEEE Robotics and Automation and the IEEE Systems, Man, and Cybernetics societies, holding many positions and serving on several committees. She is also featured in the IEEE Impact Creators campaign. These members were selected because they inspire others to innovate for a better tomorrow.
“I value IEEE for its community,” she says. “One of the nice things about IEEE is that it’s international.” Continue reading
#435196 Avatar Love? New ‘Black Mirror’ ...
This week, the widely-anticipated fifth season of the dystopian series Black Mirror was released on Netflix. The storylines this season are less focused on far-out scenarios and increasingly aligned with current issues. With only three episodes, this season raises more questions than it answers, often leaving audiences bewildered.
The episode Smithereens explores our society’s crippling addiction to social media platforms and the monopoly they hold over our data. In Rachel, Jack and Ashley Too, we see the disruptive impact of technologies on the music and entertainment industry, and the price of fame for artists in the digital world. Like most Black Mirror episodes, these explore the sometimes disturbing implications of tech advancements on humanity.
But once again, in the midst of all the doom and gloom, the creators of the series leave us with a glimmer of hope. Aligned with Pride month, the episode Striking Vipers explores the impact of virtual reality on love, relationships, and sexual fluidity.
*The review contains a few spoilers.*
Striking Vipers
The first episode of the season, Striking Vipers may be one of the most thought-provoking episodes in Black Mirror history. Reminiscent of previous episodes San Junipero and Hang the DJ, the writers explore the potential for technology to transform human intimacy.
The episode tells the story of two old friends, Danny and Karl, whose friendship is reignited in an unconventional way. Karl unexpectedly appears at Danny’s 38th birthday and reintroduces him to the VR version of a game they used to play years before. In the game Striking Vipers X, each of the players is represented by an avatar of their choice in an uncanny digital reality. Following old tradition, Karl chooses to become the female fighter, Roxanne, and Danny takes on the role of the male fighter, Lance. The state-of-the-art VR headsets appear to use an advanced form of brain-machine interface to allow each player to be fully immersed in the virtual world, emulating all physical sensations.
To their surprise (and confusion), Danny and Karl find themselves transitioning from fist-fighting to kissing. Over the course of many games, they continue to explore a sexual and romantic relationship in the virtual world, leaving them confused and distant in the real world. The virtual and physical realities begin to blur, and so do the identities of the players with their avatars. Danny, who is married (in a heterosexual relationship) and is a father, begins to carry guilt and confusion in the real world. They both wonder if there would be any spark between them in real life.
The brain-machine interface (BMI) depicted in the episode is still science fiction, but that hasn’t stopped innovators from pushing the technology forward. Experts today are designing more intricate BMI systems while programming better algorithms to interpret the neural signals they capture. Scientists have already succeeded in enabling paralyzed patients to type with their minds, and are even allowing people to communicate with one another purely through brainwaves.
The convergence of BMIs with virtual reality and artificial intelligence could make the experience of such immersive digital realities possible. Virtual reality, too, is decreasing exponentially in cost and increasing in quality.
The narrative provides meaningful commentary on another tech area—gaming. It highlights video games not necessarily as addictive distractions, but rather as a platform for connecting with others in a deeper way. This is already very relevant. Video games like Final Fantasy are often a tool for meaningful digital connections for their players.
The Implications of Virtual Reality on Love and Relationships
The narrative of Striking Vipers raises many novel questions about the implications of immersive technologies on relationships: could the virtual world allow us a safe space to explore suppressed desires? Can virtual avatars make it easier for us to show affection to those we care about? Can a sexual or romantic encounter in the digital world be considered infidelity?
Above all, the episode explores the therapeutic possibilities of such technologies. While many fears about virtual reality had been raised in previous seasons of Black Mirror, this episode was focused on its potential. This includes the potential of immersive technology to be a source of liberation, meaningful connections, and self-exploration, as well as a tool for realizing our true identities and desires.
Once again, this is aligned with emerging trends in VR. We are seeing the rise of social VR applications and platforms that allow you to hang out with your friends and family as avatars in the virtual space. The technology is allowing for animation movies, such as Coco VR, to become an increasingly social and interactive experience. Considering that meaningful social interaction can alleviate depression and anxiety, such applications could contribute to well-being.
Techno-philosopher and National Geographic host Jason Silva points out that immersive media technologies can be “engines of empathy.” VR allows us to enter virtual spaces that mimic someone else’s state of mind, allowing us to empathize with the way they view the world. Silva said, “Imagine the intimacy that becomes possible when people meet and they say, ‘Hey, do you want to come visit my world? Do you want to see what it’s like to be inside my head?’”
What is most fascinating about Striking Vipers is that it explores how we may redefine love with virtual reality; we are introduced to love between virtual avatars. While this kind of love may seem confusing to audiences, it may be one of the complex implications of virtual reality on human relationships.
In many ways, the title Black Mirror couldn’t be more appropriate, as each episode serves as a mirror to the most disturbing aspects of our psyches as they get amplified through technology. However, what we see in uplifting and thought-provoking plots like Striking Vipers, San Junipero, and Hang The DJ is that technology could also amplify the most positive aspects of our humanity. This includes our powerful capacity to love.
Image Credit: Arsgera / Shutterstock.com Continue reading
#435161 Less Like Us: An Alternate Theory of ...
The question of whether an artificial general intelligence will be developed in the future—and, if so, when it might arrive—is controversial. One (very uncertain) estimate suggests 2070 might be the earliest we could expect to see such technology.
Some futurists point to Moore’s Law and the increasing capacity of machine learning algorithms to suggest that a more general breakthrough is just around the corner. Others suggest that extrapolating exponential improvements in hardware is unwise, and that creating narrow algorithms that can beat humans at specialized tasks brings us no closer to a “general intelligence.”
But evolution has produced minds like the human mind at least once. Surely we could create artificial intelligence simply by copying nature, either by guided evolution of simple algorithms or wholesale emulation of the human brain.
Both of these ideas are far easier to conceive of than they are to achieve. The 302 neurons of the nematode worm’s brain are still an extremely difficult engineering challenge, let alone the 86 billion in a human brain.
Leaving aside these caveats, though, many people are worried about artificial general intelligence. Nick Bostrom’s influential book on superintelligence imagines it will be an agent—an intelligence with a specific goal. Once such an agent reaches a human level of intelligence, it will improve itself—increasingly rapidly as it gets smarter—in pursuit of whatever goal it has, and this “recursive self-improvement” will lead it to become superintelligent.
This “intelligence explosion” could catch humans off guard. If the initial goal is poorly specified or malicious, or if improper safety features are in place, or if the AI decides it would prefer to do something else instead, humans may be unable to control our own creation. Bostrom gives examples of how a seemingly innocuous goal, such as “Make everyone happy,” could be misinterpreted; perhaps the AI decides to drug humanity into a happy stupor, or convert most of the world into computing infrastructure to pursue its goal.
Drexler and Comprehensive AI Services
These are increasingly familiar concerns for an AI that behaves like an agent, seeking to achieve its goal. There are dissenters to this picture of how artificial general intelligence might arise. One notable alternative point of view comes from Eric Drexler, famous for his work on molecular nanotechnology and Engines of Creation, the book that popularized it.
With respect to AI, Drexler believes our view of an artificial intelligence as a single “agent” that acts to maximize a specific goal is too narrow, almost anthropomorphizing AI, or modeling it as a more realistic route towards general intelligence. Instead, he proposes “Comprehensive AI Services” (CAIS) as an alternative route to artificial general intelligence.
What does this mean? Drexler’s argument is that we should look more closely at how machine learning and AI algorithms are actually being developed in the real world. The optimization effort is going into producing algorithms that can provide services and perform tasks like translation, music recommendations, classification, medical diagnoses, and so forth.
AI-driven improvements in technology, argues Drexler, will lead to a proliferation of different algorithms: technology and software improvement, which can automate increasingly more complicated tasks. Recursive improvement in this regime is already occurring—take the newer versions of AlphaGo, which can learn to improve themselves by playing against previous versions.
Many Smart Arms, No Smart Brain
Instead of relying on some unforeseen breakthrough, the CAIS model of AI just assumes that specialized, narrow AI will continue to improve at performing each of its tasks, and the range of tasks that machine learning algorithms will be able to perform will become wider. Ultimately, once a sufficient number of tasks have been automated, the services that an AI will provide will be so comprehensive that they will resemble a general intelligence.
One could then imagine a “general” intelligence as simply an algorithm that is extremely good at matching the task you ask it to perform to the specialized service algorithm that can perform that task. Rather than acting like a single brain that strives to achieve a particular goal, the central AI would be more like a search engine, looking through the tasks it can perform to find the closest match and calling upon a series of subroutines to achieve the goal.
For Drexler, this is inherently a safety feature. Rather than Bostrom’s single, impenetrable, conscious and superintelligent brain (which we must try to psychoanalyze in advance without really knowing what it will look like), we have a network of capabilities. If you don’t want your system to perform certain tasks, you can simply cut it off from access to those services. There is no superintelligent consciousness to outwit or “trap”: more like an extremely high-level programming language that can respond to complicated commands by calling upon one of the myriad specialized algorithms that have been developed by different groups.
This skirts the complex problem of consciousness and all of the sticky moral quandaries that arise in making minds that might be like ours. After all, if you could simulate a human mind, you could simulate it experiencing unimaginable pain. Black Mirror-esque dystopias where emulated minds have no rights and are regularly “erased” or forced to labor in dull and repetitive tasks, hove into view.
Drexler argues that, in this world, there is no need to ever build a conscious algorithm. Yet it seems likely that, at some point, humans will attempt to simulate our own brains, if only in the vain attempt to pursue immortality. This model cannot hold forever. Yet its proponents argue that any world in which we could develop general AI would probably also have developed superintelligent capabilities in a huge range of different tasks, such as computer programming, natural language understanding, and so on. In other words, CAIS arrives first.
The Future In Our Hands?
Drexler argues that his model already incorporates many of the ideas from general AI development. In the marketplace, algorithms compete all the time to perform these services: they undergo the same evolutionary pressures that lead to “higher intelligence,” but the behavior that’s considered superior is chosen by humans, and the nature of the “general intelligence” is far more shaped by human decision-making and human programmers. Development in AI services could still be rapid and disruptive.
But in Drexler’s case, the research and development capacity comes from humans and organizations driven by the desire to improve algorithms that are performing individualized and useful tasks, rather than from a conscious AI recursively reprogramming and improving itself.
In other words, this vision does not absolve us of the responsibility of making our AI safe; if anything, it gives us a greater degree of responsibility. As more and more complex “services” are automated, performing what used to be human jobs at superhuman speed, the economic disruption will be severe.
Equally, as machine learning is trusted to carry out more complex decisions, avoiding algorithmic bias becomes crucial. Shaping each of these individual decision-makers—and trying to predict the complex ways they might interact with each other—is no less daunting a task than specifying the goal for a hypothetical, superintelligent, God-like AI. Arguably, the consequences of the “misalignment” of these services algorithms are already multiplying around us.
The CAIS model bridges the gap between real-world AI, machine learning developments, and real-world safety considerations, as well as the speculative world of superintelligent agents and the safety considerations involved with controlling their behavior. We should keep our minds open as to what form AI and machine learning will take, and how it will influence our societies—and we must take care to ensure that the systems we create don’t end up forcing us all to live in a world of unintended consequences.
Image Credit: MF Production/Shutterstock.com Continue reading