Tag Archives: professor
#434311 Understanding the Hidden Bias in ...
Facial recognition technology has progressed to point where it now interprets emotions in facial expressions. This type of analysis is increasingly used in daily life. For example, companies can use facial recognition software to help with hiring decisions. Other programs scan the faces in crowds to identify threats to public safety.
Unfortunately, this technology struggles to interpret the emotions of black faces. My new study, published last month, shows that emotional analysis technology assigns more negative emotions to black men’s faces than white men’s faces.
This isn’t the first time that facial recognition programs have been shown to be biased. Google labeled black faces as gorillas. Cameras identified Asian faces as blinking. Facial recognition programs struggled to correctly identify gender for people with darker skin.
My work contributes to a growing call to better understand the hidden bias in artificial intelligence software.
Measuring Bias
To examine the bias in the facial recognition systems that analyze people’s emotions, I used a data set of 400 NBA player photos from the 2016 to 2017 season, because players are similar in their clothing, athleticism, age and gender. Also, since these are professional portraits, the players look at the camera in the picture.
I ran the images through two well-known types of emotional recognition software. Both assigned black players more negative emotional scores on average, no matter how much they smiled.
For example, consider the official NBA pictures of Darren Collison and Gordon Hayward. Both players are smiling, and, according to the facial recognition and analysis program Face++, Darren Collison and Gordon Hayward have similar smile scores—48.7 and 48.1 out of 100, respectively.
Basketball players Darren Collision (left) and Gordon Hayward (right). basketball-reference.com
However, Face++ rates Hayward’s expression as 59.7 percent happy and 0.13 percent angry and Collison’s expression as 39.2 percent happy and 27 percent angry. Collison is viewed as nearly as angry as he is happy and far angrier than Hayward—despite the facial recognition program itself recognizing that both players are smiling.
In contrast, Microsoft’s Face API viewed both men as happy. Still, Collison is viewed as less happy than Hayward, with 98 and 93 percent happiness scores, respectively. Despite his smile, Collison is even scored with a small amount of contempt, whereas Hayward has none.
Across all the NBA pictures, the same pattern emerges. On average, Face++ rates black faces as twice as angry as white faces. Face API scores black faces as three times more contemptuous than white faces. After matching players based on their smiles, both facial analysis programs are still more likely to assign the negative emotions of anger or contempt to black faces.
Stereotyped by AI
My study shows that facial recognition programs exhibit two distinct types of bias.
First, black faces were consistently scored as angrier than white faces for every smile. Face++ showed this type of bias. Second, black faces were always scored as angrier if there was any ambiguity about their facial expression. Face API displayed this type of disparity. Even if black faces are partially smiling, my analysis showed that the systems assumed more negative emotions as compared to their white counterparts with similar expressions. The average emotional scores were much closer across races, but there were still noticeable differences for black and white faces.
This observation aligns with other research, which suggests that black professionals must amplify positive emotions to receive parity in their workplace performance evaluations. Studies show that people perceive black men as more physically threatening than white men, even when they are the same size.
Some researchers argue that facial recognition technology is more objective than humans. But my study suggests that facial recognition reflects the same biases that people have. Black men’s facial expressions are scored with emotions associated with threatening behaviors more often than white men, even when they are smiling. There is good reason to believe that the use of facial recognition could formalize preexisting stereotypes into algorithms, automatically embedding them into everyday life.
Until facial recognition assesses black and white faces similarly, black people may need to exaggerate their positive facial expressions—essentially smile more—to reduce ambiguity and potentially negative interpretations by the technology.
Although innovative, artificial intelligence can perpetrate and exacerbate existing power dynamics, leading to disparate impact across racial/ethnic groups. Some societal accountability is necessary to ensure fairness to all groups because facial recognition, like most artificial intelligence, is often invisible to the people most affected by its decisions.
Lauren Rhue, Assistant Professor of Information Systems and Analytics, Wake Forest University
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Image Credit: Alex_Po / Shutterstock.com Continue reading
#434297 How Can Leaders Ensure Humanity in a ...
It’s hard to avoid the prominence of AI in our lives, and there is a plethora of predictions about how it will influence our future. In their new book Solomon’s Code: Humanity in a World of Thinking Machines, co-authors Olaf Groth, Professor of Strategy, Innovation and Economics at HULT International Business School and CEO of advisory network Cambrian.ai, and Mark Nitzberg, Executive Director of UC Berkeley’s Center for Human-Compatible AI, believe that the shift in balance of power between intelligent machines and humans is already here.
I caught up with the authors about how the continued integration between technology and humans, and their call for a “Digital Magna Carta,” a broadly-accepted charter developed by a multi-stakeholder congress that would help guide the development of advanced technologies to harness their power for the benefit of all humanity.
Lisa Kay Solomon: Your new book, Solomon’s Code, explores artificial intelligence and its broader human, ethical, and societal implications that all leaders need to consider. AI is a technology that’s been in development for decades. Why is it so urgent to focus on these topics now?
Olaf Groth and Mark Nitzberg: Popular perception always thinks of AI in terms of game-changing narratives—for instance, Deep Blue beating Gary Kasparov at chess. But it’s the way these AI applications are “getting into our heads” and making decisions for us that really influences our lives. That’s not to say the big, headline-grabbing breakthroughs aren’t important; they are.
But it’s the proliferation of prosaic apps and bots that changes our lives the most, by either empowering or counteracting who we are and what we do. Today, we turn a rapidly growing number of our decisions over to these machines, often without knowing it—and even more often without understanding the second- and third-order effects of both the technologies and our decisions to rely on them.
There is genuine power in what we call a “symbio-intelligent” partnership between human, machine, and natural intelligences. These relationships can optimize not just economic interests, but help improve human well-being, create a more purposeful workplace, and bring more fulfillment to our lives.
However, mitigating the risks while taking advantage of the opportunities will require a serious, multidisciplinary consideration of how AI influences human values, trust, and power relationships. Whether or not we acknowledge their existence in our everyday life, these questions are no longer just thought exercises or fodder for science fiction.
In many ways, these technologies can challenge what it means to be human, and their ramifications already affect us in real and often subtle ways. We need to understand how
LKS: There is a lot of hype and misconceptions about AI. In your book, you provide a useful distinction between the cognitive capability that we often associate with AI processes, and the more human elements of consciousness and conscience. Why are these distinctions so important to understand?
OG & MN: Could machines take over consciousness some day as they become more powerful and complex? It’s hard to say. But there’s little doubt that, as machines become more capable, humans will start to think of them as something conscious—if for no other reason than our natural inclination to anthropomorphize.
Machines are already learning to recognize our emotional states and our physical health. Once they start talking that back to us and adjusting their behavior accordingly, we will be tempted to develop a certain rapport with them, potentially more trusting or more intimate because the machine recognizes us in our various states.
Consciousness is hard to define and may well be an emergent property, rather than something you can easily create or—in turn—deduce to its parts. So, could it happen as we put more and more elements together, from the realms of AI, quantum computing, or brain-computer interfaces? We can’t exclude that possibility.
Either way, we need to make sure we’re charting out a clear path and guardrails for this development through the Three Cs in machines: cognition (where AI is today); consciousness (where AI could go); and conscience (what we need to instill in AI before we get there). The real concern is that we reach machine consciousness—or what humans decide to grant as consciousness—without a conscience. If that happens, we will have created an artificial sociopath.
LKS: We have been seeing major developments in how AI is influencing product development and industry shifts. How is the rise of AI changing power at the global level?
OG & MN: Both in the public and private sectors, the data holder has the power. We’ve already seen the ascendance of about 10 “digital barons” in the US and China who sit on huge troves of data, massive computing power, and the resources and money to attract the world’s top AI talent. With these gaps already open between the haves and the have-nots on the technological and corporate side, we’re becoming increasingly aware that similar inequalities are forming at a societal level as well.
Economic power flows with data, leaving few options for socio-economically underprivileged populations and their corrupt, biased, or sparse digital footprints. By concentrating power and overlooking values, we fracture trust.
We can already see this tension emerging between the two dominant geopolitical models of AI. China and the US have emerged as the most powerful in both technological and economic terms, and both remain eager to drive that influence around the world. The EU countries are more contained on these economic and geopolitical measures, but they’ve leaped ahead on privacy and social concerns.
The problem is, no one has yet combined leadership on all three critical elements of values, trust, and power. The nations and organizations that foster all three of these elements in their AI systems and strategies will lead the future. Some are starting to recognize the need for the combination, but we found just 13 countries that have created significant AI strategies. Countries that wait too long to join them risk subjecting themselves to a new “data colonialism” that could change their economies and societies from the outside.
LKS: Solomon’s Code looks at AI from a variety of perspectives, considering both positive and potentially dangerous effects. You caution against the rising global threat and weaponization of AI and data, suggesting that “biased or dirty data is more threatening than nuclear arms or a pandemic.” For global leaders, entrepreneurs, technologists, policy makers and social change agents reading this, what specific strategies do you recommend to ensure ethical development and application of AI?
OG & MN: We’ve surrendered many of our most critical decisions to the Cult of Data. In most cases, that’s a great thing, as we rely more on scientific evidence to understand our world and our way through it. But we swing too far in other instances, assuming that datasets and algorithms produce a complete story that’s unsullied by human biases or intellectual shortcomings. We might choose to ignore it, but no one is blind to the dangers of nuclear war or pandemic disease. Yet, we willfully blind ourselves to the threat of dirty data, instead believing it to be pristine.
So, what do we do about it? On an individual level, it’s a matter of awareness, knowing who controls your data and how outsourcing of decisions to thinking machines can present opportunities and threats alike.
For business, government, and political leaders, we need to see a much broader expansion of ethics committees with transparent criteria with which to evaluate new products and services. We might consider something akin to clinical trials for pharmaceuticals—a sort of testing scheme that can transparently and independently measure the effects on humans of algorithms, bots, and the like. All of this needs to be multidisciplinary, bringing in expertise from across technology, social systems, ethics, anthropology, psychology, and so on.
Finally, on a global level, we need a new charter of rights—a Digital Magna Carta—that formalizes these protections and guides the development of new AI technologies toward all of humanity’s benefit. We’ve suggested the creation of a multi-stakeholder Cambrian Congress (harkening back to the explosion of life during the Cambrian period) that can not only begin to frame benefits for humanity, but build the global consensus around principles for a basic code-of-conduct, and ideas for evaluation and enforcement mechanisms, so we can get there without any large-scale failures or backlash in society. So, it’s not one or the other—it’s both.
Image Credit: whiteMocca / Shutterstock.com Continue reading
#433852 How Do We Teach Autonomous Cars To Drive ...
Autonomous vehicles can follow the general rules of American roads, recognizing traffic signals and lane markings, noticing crosswalks and other regular features of the streets. But they work only on well-marked roads that are carefully scanned and mapped in advance.
Many paved roads, though, have faded paint, signs obscured behind trees and unusual intersections. In addition, 1.4 million miles of U.S. roads—one-third of the country’s public roadways—are unpaved, with no on-road signals like lane markings or stop-here lines. That doesn’t include miles of private roads, unpaved driveways or off-road trails.
What’s a rule-following autonomous car to do when the rules are unclear or nonexistent? And what are its passengers to do when they discover their vehicle can’t get them where they’re going?
Accounting for the Obscure
Most challenges in developing advanced technologies involve handling infrequent or uncommon situations, or events that require performance beyond a system’s normal capabilities. That’s definitely true for autonomous vehicles. Some on-road examples might be navigating construction zones, encountering a horse and buggy, or seeing graffiti that looks like a stop sign. Off-road, the possibilities include the full variety of the natural world, such as trees down over the road, flooding and large puddles—or even animals blocking the way.
At Mississippi State University’s Center for Advanced Vehicular Systems, we have taken up the challenge of training algorithms to respond to circumstances that almost never happen, are difficult to predict and are complex to create. We seek to put autonomous cars in the hardest possible scenario: driving in an area the car has no prior knowledge of, with no reliable infrastructure like road paint and traffic signs, and in an unknown environment where it’s just as likely to see a cactus as a polar bear.
Our work combines virtual technology and the real world. We create advanced simulations of lifelike outdoor scenes, which we use to train artificial intelligence algorithms to take a camera feed and classify what it sees, labeling trees, sky, open paths and potential obstacles. Then we transfer those algorithms to a purpose-built all-wheel-drive test vehicle and send it out on our dedicated off-road test track, where we can see how our algorithms work and collect more data to feed into our simulations.
Starting Virtual
We have developed a simulator that can create a wide range of realistic outdoor scenes for vehicles to navigate through. The system generates a range of landscapes of different climates, like forests and deserts, and can show how plants, shrubs and trees grow over time. It can also simulate weather changes, sunlight and moonlight, and the accurate locations of 9,000 stars.
The system also simulates the readings of sensors commonly used in autonomous vehicles, such as lidar and cameras. Those virtual sensors collect data that feeds into neural networks as valuable training data.
Simulated desert, meadow and forest environments generated by the Mississippi State University Autonomous Vehicle Simulator. Chris Goodin, Mississippi State University, Author provided.
Building a Test Track
Simulations are only as good as their portrayals of the real world. Mississippi State University has purchased 50 acres of land on which we are developing a test track for off-road autonomous vehicles. The property is excellent for off-road testing, with unusually steep grades for our area of Mississippi—up to 60 percent inclines—and a very diverse population of plants.
We have selected certain natural features of this land that we expect will be particularly challenging for self-driving vehicles, and replicated them exactly in our simulator. That allows us to directly compare results from the simulation and real-life attempts to navigate the actual land. Eventually, we’ll create similar real and virtual pairings of other types of landscapes to improve our vehicle’s capabilities.
A road washout, as seen in real life, left, and in simulation. Chris Goodin, Mississippi State University, Author provided.
Collecting More Data
We have also built a test vehicle, called the Halo Project, which has an electric motor and sensors and computers that can navigate various off-road environments. The Halo Project car has additional sensors to collect detailed data about its actual surroundings, which can help us build virtual environments to run new tests in.
The Halo Project car can collect data about driving and navigating in rugged terrain. Beth Newman Wynn, Mississippi State University, Author provided.
Two of its lidar sensors, for example, are mounted at intersecting angles on the front of the car so their beams sweep across the approaching ground. Together, they can provide information on how rough or smooth the surface is, as well as capturing readings from grass and other plants and items on the ground.
Lidar beams intersect, scanning the ground in front of the vehicle. Chris Goodin, Mississippi State University, Author provided
We’ve seen some exciting early results from our research. For example, we have shown promising preliminary results that machine learning algorithms trained on simulated environments can be useful in the real world. As with most autonomous vehicle research, there is still a long way to go, but our hope is that the technologies we’re developing for extreme cases will also help make autonomous vehicles more functional on today’s roads.
Matthew Doude, Associate Director, Center for Advanced Vehicular Systems; Ph.D. Student in Industrial and Systems Engineering, Mississippi State University; Christopher Goodin, Assistant Research Professor, Center for Advanced Vehicular Systems, Mississippi State University, and Daniel Carruth, Assistant Research Professor and Associate Director for Human Factors and Advanced Vehicle System, Center for Advanced Vehicular Systems, Mississippi State University
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Photo provided for The Conversation by Matthew Goudin / CC BY ND Continue reading
#433731 From cyborgs to sex robots, U of M ...
Francis Shen spends a lot of time thinking about transhuman cyborgs, brain-wave lie detectors, sex robots and terrorists hacking into devices implanted in our heads. Continue reading