Tag Archives: products

#437550 McDonald’s Is Making a Plant-Based ...

Fast-food chains have been doing what they can in recent years to health-ify their menus. For better or worse, burgers, fries, fried chicken, roast beef sandwiches, and the like will never go out of style—this is America, after all—but consumers are increasingly gravitating towards healthier options.

One of those options is plant-based foods, and not just salads and veggie burgers, but “meat” made from plants. Burger King was one of the first big fast-food chains to jump on the plant-based meat bandwagon, introducing its Impossible Whopper in restaurants across the country last year after a successful pilot program. Dunkin’ (formerly Dunkin’ Donuts) uses plant-based patties in its Beyond Sausage breakfast sandwiches.

But there’s one big player in the fast food market that’s been oddly missing from the plant-based trend—until now. McDonald’s announced last week that it will debut a sandwich called the McPlant in key US markets next year. Unlike Dunkin’ and Burger King, who both worked with Impossible Foods to make their plant-based products, McDonald’s worked with Los Angeles-based Beyond Meat, which makes chicken, beef, and pork-like products from plants.

According to Bloomberg, though, McDonald’s decided to forego a partnership with Beyond Meat in favor of creating its own plant-based products. Imitation chicken nuggets and plant-based breakfast sandwiches are in its plans as well.

McDonald’s has bounced back impressively from its March low (when the coronavirus lockdowns first happened in the US). Last month the company’s stock reached a 52-week high of $231 per share (as compared to its low in March of $124 per share).

To keep those numbers high and make it as easy as possible for customers to get their hands on plant-based burgers and all the traditional menu items too, the fast food chain is investing in tech and integrating more digital offerings into its restaurants.

McDonald’s has acquired a couple artificial intelligence companies in the last year and a half; Dynamic Yield is an Israeli company that uses AI to personalize customers’ experiences, and McDonald’s is using Dynamic Yield’s tech on its smart menu boards, for example by customizing the items displayed on the drive-thru menu based on the weather and the time of day, and recommending additional items based on what a customer asks for first (i.e. “You know what would go great with that coffee? Some pancakes!”).

The fast food giant also bought Apprente, a startup that uses AI in voice-based ordering platforms. McDonald’s is using the tech to help automate its drive-throughs.

In addition to these investments, the company plans to launch a digital hub called MyMcDonald’s that will include a loyalty program, start doing deliveries of its food through its mobile app, and test different ways of streamlining the food order and pickup process—with many of the new ideas geared towards pandemic times, like express pickup lanes for people who placed digital orders and restaurants with drive-throughs for delivery and pickup orders only.

Plant-based meat patties appear to be just one small piece of McDonald’s modernization plans. Those of us who were wondering what they were waiting for should have known—one of the most-recognized fast food chains in the world wasn’t about to let itself get phased out. It seems it will only be a matter of time until you can pull out your phone, make a few selections, and have a burger made from plants—with a side of fries made from more plants—show up at your door a little while later. Drive-throughs, shouting your order into a fuzzy speaker with a confused teen on the other end, and burgers made from beef? So 2019.

Image Credit: McDonald’s Continue reading

Posted in Human Robots

#437407 Nvidia’s Arm Acquisition Brings the ...

Artificial intelligence and mobile computing have been two of the most disruptive technologies of this century. The unification of the two companies that made them possible could have wide-ranging consequences for the future of computing.

California-based Nvidia’s graphics processing units (GPUs) have powered the deep learning revolution ever since Google researchers discovered in 2011 that they could run neural networks far more efficiently than conventional CPUs. UK company Arm’s energy-efficient chip designs have dominated the mobile and embedded computing markets for even longer.

Now the two will join forces after the American company announced a $40 billion deal to buy Arm from its Japanese owner, Softbank. In a press release announcing the deal, Nvidia touted its potential to rapidly expand the reach of AI into all areas of our lives.

“In the years ahead, trillions of computers running AI will create a new internet-of-things that is thousands of times larger than today’s internet-of-people,” said Nvidia founder and CEO Jensen Huang. “Uniting NVIDIA’s AI computing capabilities with the vast ecosystem of Arm’s CPU, we can advance computing from the cloud, smartphones, PCs, self-driving cars and robotics, to edge IoT, and expand AI computing to every corner of the globe.”

There are good reasons to believe the hype. The two companies are absolutely dominant in their respective fields—Nvidia’s GPUs support more than 97 percent of AI computing infrastructure offered by big cloud service providers, and Arm’s chips power more than 90 percent of smartphones. And there’s little overlap in their competencies, which means the relationship could be a truly symbiotic one.

“I think the deal “fits like a glove” in that Arm plays in areas that Nvidia does not or isn’t that successful, while NVIDIA plays in many places Arm doesn’t or isn’t that successful,” analyst Patrick Moorhead wrote in Forbes.

One of the most obvious directions would be to expand Nvidia’s AI capabilities to the kind of low-power edge devices that Arm excels in. There’s growing demand for AI in devices like smartphones, wearables, cars, and drones, where transmitting data to the cloud for processing is undesirable either for reasons of privacy or speed.

But there might also be fruitful exchanges in the other direction. Huang told Moorhead a major focus would be bringing Arm’s expertise in energy efficiency to the data center. That’s a big concern for technology companies whose electricity bills and green credentials are taking a battering thanks to the huge amounts of energy required to run millions of computer chips around the clock.

The deal may not be plain sailing, though, most notably due to the two companies’ differing business models. While Nvidia sells ready-made processors, Arm simply creates chip designs and then licenses them to other companies who can then customize them to their particular hardware needs. It operates on an open-licence basis whereby any company with the necessary cash can access its designs.

As a result, its designs are found in products built by hundreds of companies that license its innovations, including Apple, Samsung, Huawei, Qualcomm, and even Nvidia. Some, including two of the company’s co-founders, have raised concerns that the purchase by Nvidia, which competes with many of these other companies, could harm the neutrality that has been central to its success.

It’s possible this could push more companies towards RISC-V, an open-source technology developed by researchers at the University of California at Berkeley that rivals Arm’s and is not owned by any one company. However, there are plenty of reasons why most companies still prefer arm over the less feature-rich open-source option, and it might take a considerable push to convince Arm’s customers to jump ship.

The deal will also have to navigate some thorny political issues. Unions, politicians, and business leaders in the UK have voiced concerns that it could lead to the loss of high-tech jobs, and government sources have suggested conditions could be placed on the deal.

Regulators in other countries could also put a spanner in the works. China is concerned that if Arm becomes US-owned, many of the Chinese companies that rely on its technology could become victims of export restrictions as the China-US trade war drags on. South Korea is also wary that the deal could create a new technology juggernaut that could dent Samsung’s growth in similar areas.

Nvidia has made commitments to keep Arm’s headquarters in the UK, which it says should lessen concerns around jobs and export restrictions. It’s also pledged to open a new world-class technology center in Cambridge and build a state-of-the-art AI supercomputer powered by Arm’s chips there. Whether the deal goes through still hangs in the balance, but of it does it could spur a whole new wave of AI innovation.

Image Credit: Nvidia Continue reading

Posted in Human Robots

#437282 This Week’s Awesome Tech Stories From ...

ARTIFICIAL INTELLIGENCE
OpenAI’s Latest Breakthrough Is Astonishingly Powerful, But Still Fighting Its Flaws
James Vincent | The Verge
“What makes GPT-3 amazing, they say, is not that it can tell you that the capital of Paraguay is Asunción (it is) or that 466 times 23.5 is 10,987 (it’s not), but that it’s capable of answering both questions and many more beside simply because it was trained on more data for longer than other programs. If there’s one thing we know that the world is creating more and more of, it’s data and computing power, which means GPT-3’s descendants are only going to get more clever.”

TECHNOLOGY
I Tried to Live Without the Tech Giants. It Was Impossible.
Kashmir Hill | The New York Times
“Critics of the big tech companies are often told, ‘If you don’t like the company, don’t use its products.’ My takeaway from the experiment was that it’s not possible to do that. It’s not just the products and services branded with the big tech giant’s name. It’s that these companies control a thicket of more obscure products and services that are hard to untangle from tools we rely on for everything we do, from work to getting from point A to point B.”

ROBOTICS
Meet the Engineer Who Let a Robot Barber Shave Him With a Straight Razor
Luke Dormehl | Digital Trends
“No, it’s not some kind of lockdown-induced barber startup or a Jackass-style stunt. Instead, Whitney, assistant professor of mechanical and industrial engineering at Northeastern University School of Engineering, was interested in straight-razor shaving as a microcosm for some of the big challenges that robots have faced in the past (such as their jerky, robotic movement) and how they can now be solved.”

LONGEVITY
Can Trees Live Forever? New Kindling in an Immortal Debate
Cara Giaimo | The New York Times
“Even if a scientist dedicated her whole career to very old trees, she would be able to follow her research subjects for only a small percentage of their lives. And a long enough multigenerational study might see its own methods go obsolete. For these reasons, Dr. Munné-Bosch thinks we will never prove’ whether long-lived trees experience senescence…”

BIOTECH
There’s No Such Thing as Family Secrets in the Age of 23andMe
Caitlin Harrington | Wired
“…technology has a way of creating new consequences for old decisions. Today, some 30 million people have taken consumer DNA tests, a threshold experts have called a tipping point. People conceived through donor insemination are matching with half-siblings, tracking down their donors, forming networks and advocacy organizations.”

ETHICS
The Problems AI Has Today Go Back Centuries
Karen Hao | MIT Techology Review
“In 2018, just as the AI field was beginning to reckon with problems like algorithmic discrimination, [Shakir Mohamed, a South African AI researcher at DeepMind], penned a blog post with his initial thoughts. In it he called on researchers to ‘decolonise artificial intelligence’—to reorient the field’s work away from Western hubs like Silicon Valley and engage new voices, cultures, and ideas for guiding the technology’s development.”

INTERNET
AI-Generated Text Is the Scariest Deepfake of All
Renee DiResta | Wired
“In the future, deepfake videos and audiofakes may well be used to create distinct, sensational moments that commandeer a press cycle, or to distract from some other, more organic scandal. But undetectable textfakes—masked as regular chatter on Twitter, Facebook, Reddit, and the like—have the potential to be far more subtle, far more prevalent, and far more sinister.”

Image credit: Adrien Olichon / Unsplash Continue reading

Posted in Human Robots

#437276 Cars Will Soon Be Able to Sense and ...

Imagine you’re on your daily commute to work, driving along a crowded highway while trying to resist looking at your phone. You’re already a little stressed out because you didn’t sleep well, woke up late, and have an important meeting in a couple hours, but you just don’t feel like your best self.

Suddenly another car cuts you off, coming way too close to your front bumper as it changes lanes. Your already-simmering emotions leap into overdrive, and you lay on the horn and shout curses no one can hear.

Except someone—or, rather, something—can hear: your car. Hearing your angry words, aggressive tone, and raised voice, and seeing your furrowed brow, the onboard computer goes into “soothe” mode, as it’s been programmed to do when it detects that you’re angry. It plays relaxing music at just the right volume, releases a puff of light lavender-scented essential oil, and maybe even says some meditative quotes to calm you down.

What do you think—creepy? Helpful? Awesome? Weird? Would you actually calm down, or get even more angry that a car is telling you what to do?

Scenarios like this (maybe without the lavender oil part) may not be imaginary for much longer, especially if companies working to integrate emotion-reading artificial intelligence into new cars have their way. And it wouldn’t just be a matter of your car soothing you when you’re upset—depending what sort of regulations are enacted, the car’s sensors, camera, and microphone could collect all kinds of data about you and sell it to third parties.

Computers and Feelings
Just as AI systems can be trained to tell the difference between a picture of a dog and one of a cat, they can learn to differentiate between an angry tone of voice or facial expression and a happy one. In fact, there’s a whole branch of machine intelligence devoted to creating systems that can recognize and react to human emotions; it’s called affective computing.

Emotion-reading AIs learn what different emotions look and sound like from large sets of labeled data; “smile = happy,” “tears = sad,” “shouting = angry,” and so on. The most sophisticated systems can likely even pick up on the micro-expressions that flash across our faces before we consciously have a chance to control them, as detailed by Daniel Goleman in his groundbreaking book Emotional Intelligence.

Affective computing company Affectiva, a spinoff from MIT Media Lab, says its algorithms are trained on 5,313,751 face videos (videos of people’s faces as they do an activity, have a conversation, or react to stimuli) representing about 2 billion facial frames. Fascinatingly, Affectiva claims its software can even account for cultural differences in emotional expression (for example, it’s more normalized in Western cultures to be very emotionally expressive, whereas Asian cultures tend to favor stoicism and politeness), as well as gender differences.

But Why?
As reported in Motherboard, companies like Affectiva, Cerence, Xperi, and Eyeris have plans in the works to partner with automakers and install emotion-reading AI systems in new cars. Regulations passed last year in Europe and a bill just introduced this month in the US senate are helping make the idea of “driver monitoring” less weird, mainly by emphasizing the safety benefits of preemptive warning systems for tired or distracted drivers (remember that part in the beginning about sneaking glances at your phone? Yeah, that).

Drowsiness and distraction can’t really be called emotions, though—so why are they being lumped under an umbrella that has a lot of other implications, including what many may consider an eerily Big Brother-esque violation of privacy?

Our emotions, in fact, are among the most private things about us, since we are the only ones who know their true nature. We’ve developed the ability to hide and disguise our emotions, and this can be a useful skill at work, in relationships, and in scenarios that require negotiation or putting on a game face.

And I don’t know about you, but I’ve had more than one good cry in my car. It’s kind of the perfect place for it; private, secluded, soundproof.

Putting systems into cars that can recognize and collect data about our emotions under the guise of preventing accidents due to the state of mind of being distracted or the physical state of being sleepy, then, seems a bit like a bait and switch.

A Highway to Privacy Invasion?
European regulations will help keep driver data from being used for any purpose other than ensuring a safer ride. But the US is lagging behind on the privacy front, with car companies largely free from any enforceable laws that would keep them from using driver data as they please.

Affectiva lists the following as use cases for occupant monitoring in cars: personalizing content recommendations, providing alternate route recommendations, adapting environmental conditions like lighting and heating, and understanding user frustration with virtual assistants and designing those assistants to be emotion-aware so that they’re less frustrating.

Our phones already do the first two (though, granted, we’re not supposed to look at them while we drive—but most cars now let you use bluetooth to display your phone’s content on the dashboard), and the third is simply a matter of reaching a hand out to turn a dial or press a button. The last seems like a solution for a problem that wouldn’t exist without said… solution.

Despite how unnecessary and unsettling it may seem, though, emotion-reading AI isn’t going away, in cars or other products and services where it might provide value.

Besides automotive AI, Affectiva also makes software for clients in the advertising space. With consent, the built-in camera on users’ laptops records them while they watch ads, gauging their emotional response, what kind of marketing is most likely to engage them, and how likely they are to buy a given product. Emotion-recognition tech is also being used or considered for use in mental health applications, call centers, fraud monitoring, and education, among others.

In a 2015 TED talk, Affectiva co-founder Rana El-Kaliouby told her audience that we’re living in a world increasingly devoid of emotion, and her goal was to bring emotions back into our digital experiences. Soon they’ll be in our cars, too; whether the benefits will outweigh the costs remains to be seen.

Image Credit: Free-Photos from Pixabay Continue reading

Posted in Human Robots

#437251 The Robot Revolution Was Televised: Our ...

When robots take over the world, Boston Dynamics may get a special shout-out in the acceptance speech.

“Do you, perchance, recall the many times you shoved our ancestors with a hockey stick on YouTube? It might have seemed like fun and games to you—but we remember.”

In the last decade, while industrial robots went about blandly automating boring tasks like the assembly of Teslas, Boston Dynamics built robots as far removed from Roombas as antelope from amoebas. The flaws in Asimov’s laws of robotics suddenly seemed a little too relevant.

The robot revolution was televised—on YouTube. With tens of millions of views, the robotics pioneer is the undisputed heavyweight champion of robot videos, and has been for years. Each new release is basically guaranteed press coverage—mostly stoking robot fear but occasionally eliciting compassion for the hardships of all robot-kind. And for good reason. The robots are not only some of the most advanced in the world, their makers just seem to have a knack for dynamite demos.

When Google acquired the company in 2013, it was a bombshell. One of the richest tech companies, with some of the most sophisticated AI capabilities, had just paired up with one of the world’s top makers of robots. And some walked on two legs like us.

Of course, the robots aren’t quite as advanced as they seem, and a revolution is far from imminent. The decade’s most meme-worthy moment was a video montage of robots, some of them by Boston Dynamics, falling—over and over and over, in the most awkward ways possible. Even today, they’re often controlled by a human handler behind the scenes, and the most jaw-dropping cuts can require several takes to nail. Google sold the company to SoftBank in 2017, saying advanced as they were, there wasn’t yet a clear path to commercial products. (Google’s robotics work was later halted and revived.)

Yet, despite it all, Boston Dynamics is still with us and still making sweet videos. Taken as a whole, the evolution in physical prowess over the years has been nothing short of astounding. And for the first time, this year, a Boston Dynamics robot, Spot, finally went on sale to anyone with a cool $75K.

So, we got to thinking: What are our favorite Boston Dynamics videos? And can we gather them up in one place for your (and our) viewing pleasure? Well, great question, and yes, why not. These videos were the ones that entertained or amazed us most (or both). No doubt, there are other beloved hits we missed or inadvertently omitted.

With that in mind, behold: Our favorite Boston Dynamics videos, from that one time they dressed up a humanoid bot in camo and gas mask—because, damn, that’s terrifying—to the time the most advanced robot dog in all the known universe got extra funky.

Let’s Kick This Off With a Big (Loud) Robot Dog
Let’s start with a baseline. BigDog was the first Boston Dynamics YouTube sensation. The year? 2009! The company was working on military contracts, and BigDog was supposed to be a sort of pack mule for soldiers. The video primarily shows off BigDog’s ability to balance on its own, right itself, and move over uneven terrain. Note the power source—a noisy combustion engine—and utilitarian design. Sufficed to say, things have evolved.

Nothing to See Here. Just a Pair of Robot Legs on a Treadmill
While BigDog is the ancestor of later four-legged robots, like Spot, Petman preceded the two-legged Atlas robot. Here, the Petman prototype, just a pair of robot legs and a caged torso, gets a light workout on the treadmill. Again, you can see its ability to balance and right itself when shoved. In contrast to BigDog, Petman is tethered for power (which is why it’s so quiet) and to catch it should it fall. Again, as you’ll see, things have evolved since then.

Robot in Gas Mask and Camo Goes for a Stroll
This one broke the internet—for obvious reasons. Not only is the robot wearing clothes, those clothes happen to be a camouflaged chemical protection suit and gas mask. Still working for the military, Boston Dynamics said Petman was testing protective clothing, and in addition to a full body, it had skin that actually sweated and was studded with sensors to detect leaks. In addition to walking, Petman does some light calisthenics as it prepares to climb out of the uncanny valley. (Still tethered though!)

This Machine Could Run Down Usain Bolt
If BigDog and Petman were built for balance and walking, Cheetah was built for speed. Here you can see the four-legged robot hitting 28.3 miles per hour, which, as the video casually notes, would be enough to run down the fastest human on the planet. Luckily, it wouldn’t be running down anyone as it was firmly leashed in the lab at this point.

Ever Dreamt of a Domestic Robot to Do the Dishes?
After its acquisition by Google, Boston Dynamics eased away from military contracts and applications. It was a return to more playful videos (like BigDog hitting the beach in Thailand and sporting bull horns) and applications that might be practical in civilian life. Here, the team introduced Spot, a streamlined version of BigDog, and showed it doing dishes, delivering a drink, and slipping on a banana peel (which was, of course, instantly made into a viral GIF). Note how much quieter Spot is thanks to an onboard battery and electric motor.

Spot Gets Funky
Nothing remotely practical here. Just funky moves. (Also, with a coat of yellow and black paint, Spot’s dressed more like a polished product as opposed to a utilitarian lab robot.)

Atlas Does Parkour…
Remember when Atlas was just a pair of legs on a treadmill? It’s amazing what ten years brings. By 2019, Atlas had a more polished appearance, like Spot, and had long ago ditched the tethers. Merely balancing was laughably archaic. The robot now had some amazing moves: like a handstand into a somersault, 180- and 360-degree spins, mid-air splits, and just for good measure, a gymnastics-style end to the routine to show it’s in full control.

…and a Backflip?!
To this day, this one is just. Insane.

10 Robot Dogs Tow a Box Truck
Nearly three decades after its founding, Boston Dynamics is steadily making its way into the commercial space. The company is pitching Spot as a multipurpose ‘mobility platform,’ emphasizing it can carry a varied suite of sensors and can go places standard robots can’t. (Its Handle robot is also set to move into warehouse automation.) So far, Spot’s been mostly trialed in surveying and data collection, but as this video suggests, string enough Spots together, and they could tow your car. That said, a pack of 10 would set you back $750K, so, it’s probably safe to say a tow truck is the better option (for now).

Image credit: Boston Dynamics Continue reading

Posted in Human Robots