Tag Archives: pretty

#437693 Video Friday: Drone Helps Explore ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
CYBATHLON 2020 – November 13-14, 2020 – [Online Event]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Clearpath Robotics and Boston Dynamics were obviously destined to partner up with Spot, because Spot 100 percent stole its color scheme from Clearpath, which has a monopoly on yellow and black robots. But seriously, the news here is that thanks to Clearpath, Spot now works seamlessly with ROS.

[ Clearpath Robotics ]

A new video created by Swisscom Ventures highlights a research expedition sponsored by Moncler to explore the deepest ice caves in the world using Flyability’s Elios drone. […] The expedition was sponsored by apparel company Moncler and took place over two weeks in 2018 on the Greenland ice sheet, the second largest body of ice in the world after Antarctica. Research focused on an area about 80 kilometers east of Kangerlussuaq, where scientists wanted to study the movement of water deep underground to better understand the effects of climate change on the melting ice.

[ Flyability ]

Shane Wighton of the “Stuff Made Here” YouTube channel, whose terrifying haircut machine we featured a few months ago, has improved on his robotic basketball hoop. It’s actually more than an improvement: It’s a complete redesign that nearly drove Wighton insane. But the result is pretty cool. It’s fun to watch him building a highly complicated system while always seeking simple and elegant designs for its components.

[ Stuff Made Here ]

SpaceX rockets are really just giant, explosion-powered drones that go into space sometimes. So let's watch more videos of them! This one is sped up, and puts a flight into just a couple of minutes.

[ SpaceX ]

Neato Robotics makes some solid autonomous vacuums, and these incremental upgrades feature improved battery life and better air filters.

[ Neato Robotics ]

A full-scale engineering model of NASA's Perseverance Mars rover now resides in a garage facing the Mars Yard at NASA's Jet Propulsion Laboratory in Southern California.

This vehicle system test bed rover (VSTB) is also known as OPTIMISM, which stands for Operational Perseverance Twin for Integration of Mechanisms and Instruments Sent to Mars. OPTIMISM was built in a warehouselike assembly room near the Mars Yard – an area that simulates the Red Planet's rocky surface. The rover helps the mission test hardware and software before it’s transmitted to the real rover on Mars. OPTIMISM will share the space with the Curiosity rover's twin MAGGIE.

[ JPL ]

Heavy asset industries like shipping, oil and gas, and manufacturing are grounded in repetitive tasks like locating items on large industrial sites — a tedious task that can take as long 45 minutes to find critical items like a forklift in an area that spans the size of multiple football fields. Not only is this work boring, it’s dangerous and inefficient. Robots like Spot, however, love this sort of work.

Spot can provide real-time updates on the location of assets and complete other mundane tasks. In this case, Spot is using software from Cognite to roam the vast shipyard to locate and manage more than 100,000 assets stored across the facility. What used to take humans hours can be managed on an ongoing basis by Spot — leaving employees to focus on more strategic tasks.

[ Cognite ]

The KNEXT Barista system helps high volume premium coffee providers who want to offer artisan coffee specialities in consistent quality.

[ Kuka ]

In this paper, we study this idea of generality in the locomotion domain. We develop a learning framework that can learn sophisticated locomotion behavior for a wide spectrum of legged robots, such as bipeds, tripeds, quadrupeds and hexapods, including wheeled variants. Our learning framework relies on a data-efficient, off-policy multi-task RL algorithm and a small set of reward functions that are semantically identical across robots.

[ DeepMind ]

Thanks Dave!

Even though it seems like the real risk of COVID is catching it from another person, robotics companies are doing what they can with UVC disinfecting systems.

[ BlueBotics ]

Aeditive develop robotic 3D printing solutions for the production of concrete components. At the heart of their production plant are two large robots that cooperate to manufacture the component. The automation technology they build on is a robotic shotcrete process. During this process, they apply concrete layer by layer and thus manufacture complete components. This means that their customers no longer dependent on formwork, which is expensive and time-consuming to create. Instead, their customers can manufacture components directly on a steel pallet without these moulds.

[ Aeditive ]

Something BIG is coming next month from Robotiq!

My guess: an elephant.

[ Robotiq ]

TurtleBot3 is a great little home robot, as long as you have a TurtleBot3-sized home.

[ Robotis ]

How do you calculate the coordinated movements of two robot arms so they can accurately guide a highly flexible tool? ETH researchers have integrated all aspects of the optimisation calculations into an algorithm. The hot-​wire cutter will be used, among other things, to develop building blocks for a mortar-​free structure.

[ ETH Zurich ]

And now, this.

[ RobotStart ] Continue reading

Posted in Human Robots

#437689 GITAI Sending Autonomous Robot to Space ...

We’ve been keeping a close watch on GITAI since early last year—what caught our interest initially is the history of the company, which includes a bunch of folks who started in the JSK Lab at the University of Tokyo, won the DARPA Robotics Challenge Trials as SCHAFT, got swallowed by Google, narrowly avoided being swallowed by SoftBank, and are now designing robots that can work in space.

The GITAI YouTube channel has kept us more to less up to date on their progress so far, and GITAI has recently announced the next step in this effort: The deployment of one of their robots on board the International Space Station in 2021.

Photo: GITAI

GITAI’s S1 is a task-specific 8-degrees-of-freedom arm with an integrated sensing and computing system and 1-meter reach.

GITAI has been working on a variety of robots for space operations, the most sophisticated of which is a humanoid torso called G1, which is controlled through an immersive telepresence system. What will be launching into space next year is a more task-specific system called the S1, which is an 8-degrees-of-freedom arm with an integrated sensing and computing system that can be wall-mounted and has a 1-meter reach.

The S1 will be living on board a commercially funded, pressurized airlock-extension module called Bishop, developed by NanoRacks. Mounted on the inside of the Bishop module, the S1 will have access to a task board and a small assembly area, where it will demonstrate common crew intra-vehicular activity, or IVA—tasks like flipping switches, turning knobs, and managing cables. It’ll also do some in-space assembly, or ISA, attaching panels to create a solar array.

Here’s a demonstration of some task board activities, conducted on Earth in a mockup of Bishop:

GITAI says that “all operations conducted by the S1 GITAI robotic arm will be autonomous, followed by some teleoperations from Nanoracks’ in-house mission control.” This is interesting, because from what we’ve seen until now, GITAI has had a heavy emphasis on telepresence, with a human in the loop to get stuff done. As GITAI’s founder and CEO Sho Nakanose commented to us a year ago, “Telepresence robots have far better performance and can be made practical much quicker than autonomous robots, so first we are working on making telepresence robots practical.”

So what’s changed? “GITAI has been concentrating on teleoperations to demonstrate the dexterity of our robot, but now it’s time to show our capabilities to do the same this time with autonomy,” Nakanose told us last week. “In an environment with minimum communication latency, it would be preferable to operate a robot more with teleoperations to enhance the capability of the robot, since with the current technology level of AI, what a robot can do autonomously is very limited. However, in an environment where the latency becomes noticeable, it would become more efficient to have a mixture of autonomy and teleoperations depending on the application. Eventually, in an ideal world, a robot will operate almost fully autonomously with minimum human cognizance.”

“In an environment where the latency becomes noticeable, it would become more efficient to have a mixture of autonomy and teleoperations depending on the application. Eventually, in an ideal world, a robot will operate almost fully autonomously with minimum human cognizance.”
—Sho Nakanose, GITAI founder and CEO

Nakanose says that this mission will help GITAI to “acquire the skills, know-how, and experience necessary to prepare a robot to be ISS compatible, prov[ing] the maturity of our technology in the microgravity environment.” Success would mean conducting both IVA and ISA experiments as planned (autonomous and teleop for IVA, fully autonomous for ISA), which would be pretty awesome, but we’re told that GITAI has already received a research and development order for space robots from a private space company, and Nakanose expects that “by the mid-2020s, we will be able to show GITAI's robots working in space on an actual mission.”

NanoRacks is schedule to launch the Bishop module on SpaceX CRS-21 in November. The S1 will be launched separately in 2021, and a NASA astronaut will install the robot and then leave it alone to let it start demonstrating how work in space can be made both safer and cheaper once the humans have gotten out of the way. Continue reading

Posted in Human Robots

#437683 iRobot Remembers That Robots Are ...

iRobot has released several new robots over the last few years, including the i7 and s9 vacuums. Both of these models are very fancy and very capable, packed with innovative and useful features that we’ve been impressed by. They’re both also quite expensive—with dirt docks included, you’re looking at US $800 for the i7+, and a whopping $1,100 for the s9+. You can knock a couple hundred bucks off of those prices if you don’t want the docks, but still, these vacuums are absolutely luxury items.

If you just want something that’ll do some vacuuming so that you don’t have to, iRobot has recently announced a new Roomba option. The Roomba i3 is iRobot’s new low to midrange vacuum, starting at $400. It’s not nearly as smart as the i7 or the s9, but it can navigate (sort of) and make maps (sort of) and do some basic smart home integration. If that sounds like all you need, the i3 could be the robot vacuum for you.

iRobot calls the i3 “stylish,” and it does look pretty neat with that fabric top. Underneath, you get dual rubber primary brushes plus a side brush. There’s limited compatibility with the iRobot Home app and IFTTT, along with Alexa and Google Home. The i3 is also compatible with iRobot’s Clean Base, but that’ll cost you an extra $200, and iRobot refers to this bundle as the i3+.

The reason that the i3 only offers limited compatibility with iRobot’s app is that the i3 is missing the top-mounted camera that you’ll find in more expensive models. Instead, it relies on a downward-looking optical sensor to help it navigate, and it builds up a map as it’s cleaning by keeping track of when it bumps into obstacles and paying attention to internal sensors like a gyro and wheel odometers. The i3 can localize directly on its charging station or Clean Base (which have beacons on them that the robot can see if it’s close enough), which allows it to resume cleaning after emptying it’s bin or recharging. You’ll get a map of the area that the i3 has cleaned once it’s finished, but that map won’t persist between cleaning sessions, meaning that you can’t do things like set keep-out zones or identify specific rooms for the robot to clean. Many of the more useful features that iRobot’s app offers are based on persistent maps, and this is probably the biggest gap in functionality between the i3 and its more expensive siblings.

According to iRobot senior global product manager Sarah Wang, the kind of augmented dead-reckoning-based mapping that the i3 uses actually works really well: “Based on our internal and external testing, the performance is equivalent with our products that have cameras, like the Roomba 960,” she says. To get this level of performance, though, you do have to be careful, Wang adds. “If you kidnap i3, then it will be very confused, because it doesn’t have a reference to know where it is.” “Kidnapping” is a term that’s used often in robotics to refer to a situation in which an autonomous robot gets moved to an unmapped location, and in the context of a home robot, the best example of this is if you decide that you want your robot to vacuum a different room instead, so you pick it up and move it there.

iRobot used to make this easy by giving all of its robots carrying handles, but not anymore, because getting moved around makes things really difficult for any robot trying to keep track of where it is. While robots like the i7 can recover using their cameras to look for unique features that they recognize, the only permanent, unique landmark that the i3 can for sure identify is the beacon on its dock. What this means is that when it comes to the i3, even more than other Roomba models, the best strategy, is to just “let it do its thing,” says iRobot senior principal system engineer Landon Unninayar.

Photo: iRobot

The Roomba i3 is iRobot’s new low to midrange vacuum, starting at $400.

If you’re looking to spend a bit less than the $400 starting price of the i3, there are other options to be aware of as well. The Roomba 614, for example, does a totally decent job and costs $250. It’s scheduling isn’t very clever, it doesn’t make maps, and it won’t empty itself, but it will absolutely help keep your floors clean as long as you don’t mind being a little bit more hands-on. (And there’s also Neato’s D4, which offers basic persistent maps—and lasers!—for $330.)

The other thing to consider if you’re trying to decide between the i3 and a more expensive Roomba is that without the camera, the i3 likely won’t be able to take advantage of nearly as many of the future improvements that iRobot has said it’s working on. Spending more money on a robot with additional sensors isn’t just buying what it can do now, but also investing in what it may be able to do later on, with its more sophisticated localization and ability to recognize objects. iRobot has promised major app updates every six months, and our guess is that most of the cool new stuff is going to show in the i7 and s9. So, if your top priority is just cleaner floors, the i3 is a solid choice. But if you want a part of what iRobot is working on next, the i3 might end up holding you back. Continue reading

Posted in Human Robots

#437620 The Trillion-Transistor Chip That Just ...

The history of computer chips is a thrilling tale of extreme miniaturization.

The smaller, the better is a trend that’s given birth to the digital world as we know it. So, why on earth would you want to reverse course and make chips a lot bigger? Well, while there’s no particularly good reason to have a chip the size of an iPad in an iPad, such a chip may prove to be genius for more specific uses, like artificial intelligence or simulations of the physical world.

At least, that’s what Cerebras, the maker of the biggest computer chip in the world, is hoping.

The Cerebras Wafer-Scale Engine is massive any way you slice it. The chip is 8.5 inches to a side and houses 1.2 trillion transistors. The next biggest chip, NVIDIA’s A100 GPU, measures an inch to a side and has a mere 54 billion transistors. The former is new, largely untested and, so far, one-of-a-kind. The latter is well-loved, mass-produced, and has taken over the world of AI and supercomputing in the last decade.

So can Goliath flip the script on David? Cerebras is on a mission to find out.

Big Chips Beyond AI
When Cerebras first came out of stealth last year, the company said it could significantly speed up the training of deep learning models.

Since then, the WSE has made its way into a handful of supercomputing labs, where the company’s customers are putting it through its paces. One of those labs, the National Energy Technology Laboratory, is looking to see what it can do beyond AI.

So, in a recent trial, researchers pitted the chip—which is housed in an all-in-one system about the size of a dorm room mini-fridge called the CS-1—against a supercomputer in a fluid dynamics simulation. Simulating the movement of fluids is a common supercomputer application useful for solving complex problems like weather forecasting and airplane wing design.

The trial was described in a preprint paper written by a team led by Cerebras’s Michael James and NETL’s Dirk Van Essendelft and presented at the supercomputing conference SC20 this week. The team said the CS-1 completed a simulation of combustion in a power plant roughly 200 times faster than it took the Joule 2.0 supercomputer to do a similar task.

The CS-1 was actually faster-than-real-time. As Cerebrus wrote in a blog post, “It can tell you what is going to happen in the future faster than the laws of physics produce the same result.”

The researchers said the CS-1’s performance couldn’t be matched by any number of CPUs and GPUs. And CEO and cofounder Andrew Feldman told VentureBeat that would be true “no matter how large the supercomputer is.” At a point, scaling a supercomputer like Joule no longer produces better results in this kind of problem. That’s why Joule’s simulation speed peaked at 16,384 cores, a fraction of its total 86,400 cores.

A comparison of the two machines drives the point home. Joule is the 81st fastest supercomputer in the world, takes up dozens of server racks, consumes up to 450 kilowatts of power, and required tens of millions of dollars to build. The CS-1, by comparison, fits in a third of a server rack, consumes 20 kilowatts of power, and sells for a few million dollars.

While the task is niche (but useful) and the problem well-suited to the CS-1, it’s still a pretty stunning result. So how’d they pull it off? It’s all in the design.

Cut the Commute
Computer chips begin life on a big piece of silicon called a wafer. Multiple chips are etched onto the same wafer and then the wafer is cut into individual chips. While the WSE is also etched onto a silicon wafer, the wafer is left intact as a single, operating unit. This wafer-scale chip contains almost 400,000 processing cores. Each core is connected to its own dedicated memory and its four neighboring cores.

Putting that many cores on a single chip and giving them their own memory is why the WSE is bigger; it’s also why, in this case, it’s better.

Most large-scale computing tasks depend on massively parallel processing. Researchers distribute the task among hundreds or thousands of chips. The chips need to work in concert, so they’re in constant communication, shuttling information back and forth. A similar process takes place within each chip, as information moves between processor cores, which are doing the calculations, and shared memory to store the results.

It’s a little like an old-timey company that does all its business on paper.

The company uses couriers to send and collect documents from other branches and archives across town. The couriers know the best routes through the city, but the trips take some minimum amount of time determined by the distance between the branches and archives, the courier’s top speed, and how many other couriers are on the road. In short, distance and traffic slow things down.

Now, imagine the company builds a brand new gleaming skyscraper. Every branch is moved into the new building and every worker gets a small filing cabinet in their office to store documents. Now any document they need can be stored and retrieved in the time it takes to step across the office or down the hall to their neighbor’s office. The information commute has all but disappeared. Everything’s in the same house.

Cerebras’s megachip is a bit like that skyscraper. The way it shuttles information—aided further by its specially tailored compiling software—is far more efficient compared to a traditional supercomputer that needs to network a ton of traditional chips.

Simulating the World as It Unfolds
It’s worth noting the chip can only handle problems small enough to fit on the wafer. But such problems may have quite practical applications because of the machine’s ability to do high-fidelity simulation in real-time. The authors note, for example, the machine should in theory be able to accurately simulate the air flow around a helicopter trying to land on a flight deck and semi-automate the process—something not possible with traditional chips.

Another opportunity, they note, would be to use a simulation as input to train a neural network also residing on the chip. In an intriguing and related example, a Caltech machine learning technique recently proved to be 1,000 times faster at solving the same kind of partial differential equations at play here to simulate fluid dynamics.

They also note that improvements in the chip (and others like it, should they arrive) will push back the limits of what can be accomplished. Already, Cerebras has teased the release of its next-generation chip, which will have 2.6 trillion transistors, 850,00 cores, and more than double the memory.

Of course, it still remains to be seen whether wafer-scale computing really takes off. The idea has been around for decades, but Cerebras is the first to pursue it seriously. Clearly, they believe they’ve solved the problem in a way that’s useful and economical.

Other new architectures are also being pursued in the lab. Memristor-based neuromorphic chips, for example, mimic the brain by putting processing and memory into individual transistor-like components. And of course, quantum computers are in a separate lane, but tackle similar problems.

It could be that one of these technologies eventually rises to rule them all. Or, and this seems just as likely, computing may splinter into a bizarre quilt of radical chips, all stitched together to make the most of each depending on the situation.

Image credit: Cerebras Continue reading

Posted in Human Robots

#437614 Video Friday: Poimo Is a Portable ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

IROS 2020 – October 25-29, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Engineers at the University of California San Diego have built a squid-like robot that can swim untethered, propelling itself by generating jets of water. The robot carries its own power source inside its body. It can also carry a sensor, such as a camera, for underwater exploration.

[ UCSD ]

Thanks Ioana!

Shark Robotics, French and European leader in Unmanned Ground Vehicles, is announcing today a disinfection add-on for Boston Dynamics Spot robot, designed to fight the COVID-19 pandemic. The Spot robot with Shark’s purpose-built disinfection payload can decontaminate up to 2,000 m2 in 15 minutes, in any space that needs to be sanitized – such as hospitals, metro stations, offices, warehouses or facilities.

[ Shark Robotics ]

Here’s an update on the Poimo portable inflatable mobility project we wrote about a little while ago; while not strictly robotics, it seems like it holds some promise for rapidly developing different soft structures that robotics might find useful.

[ University of Tokyo ]

Thanks Ryuma!

Pretty cool that you can do useful force feedback teleop while video chatting through a “regular broadband Internet connection.” Although, what “regular” means to you is a bit subjective, right?

[ HEBI Robotics ]

Thanks Dave!

While NASA's Mars rover Perseverance travels through space toward the Red Planet, its nearly identical rover twin is hard at work on Earth. The vehicle system test bed (VSTB) rover named OPTIMISM is a full-scale engineering version of the Mars-bound rover. It is used to test hardware and software before the commands are sent up to the Perseverance rover.

[ NASA ]

Jacquard takes ordinary, familiar objects and enhances them with new digital abilities and experiences, while remaining true to their original purpose — like being your favorite jacket, backpack or a pair of shoes that you love to wear.

Our ambition is simple: to make life easier. By staying connected to your digital world, your things can do so much more. Skip a song by brushing your sleeve. Take a picture by tapping on a shoulder strap. Get reminded about the phone you left behind with a blink of light or a haptic buzz on your cuff.

[ Google ATAP ]

Should you attend the IROS 2020 workshop on “Planetary Exploration Robots: Challenges and Opportunities”? Of course you should!

[ Workshop ]

Kuka makes a lot of these videos where I can’t help but think that if they put as much effort into programming the robot as they did into producing the video, the result would be much more impressive.

[ Kuka ]

The Colorado School of Mines is one of the first customers to buy a Spot robot from Boston Dynamics to help with robotics research. Watch as scientists take Spot into the school's mine for the first time.

[ HCR ] via [ CNET ]

A very interesting soft(ish) actuator from Ayato Kanada at Kyushu University's Control Engineering Lab.

A flexible ultrasonic motor (FUSM), which generates linear motion as a novel soft actuator. This motor consists of a single metal cube stator with a hole and an elastic elongated coil spring inserted into the hole. When voltages are applied to piezoelectric plates on the stator, the coil spring moves back and forward as a linear slider. In the FUSM that uses the friction drive as the principle, the most important parameter for optimizing its output is the preload between the stator and slider. The coil spring has a slightly larger diameter than the stator hole and generates the preload by expanding in a radial direction. The coil springs act not only as a flexible slider but also as a resistive positional sensor. Changes in the resistance between the stator and the coil spring end are converted to a voltage and used for position detection.

[ Control Engineering Lab ]

Thanks Ayato!

We show how to use the limbs of a quadruped robot to identify fine-grained soil, representative for Martian regolith.

[ Paper ] via [ ANYmal Research ]

PR2 is serving breakfast and cleaning up afterwards. It’s slow, but all you have to do is eat and leave.

That poor PR2 is a little more naked than it's probably comfortable with.

[ EASE ]

NVIDIA researchers present a hierarchical framework that combines model-based control and reinforcement learning (RL) to synthesize robust controllers for a quadruped robot (the Unitree Laikago).

[ NVIDIA ]

What's interesting about this assembly task is that the robot is using its arm only for positioning, and doing the actual assembly with just fingers.

[ RC2L ]

In this electronics assembly application, Kawasaki's cobot duAro2 uses a tool changing station to tackle a multitude of tasks and assemble different CPU models.

Okay but can it apply thermal paste to a CPU in the right way? Personally, I find that impossible.

[ Kawasaki ]

You only need to watch this video long enough to appreciate the concept of putting a robot on a robot.

[ Impress ]

In this lecture, we’ll hear from the man behind one of the biggest robotics companies in the world, Boston Dynamics, whose robotic dog, Spot, has been used to encourage social distancing in Singapore and is now getting ready for FDA approval to be able to measure patients’ vital signs in hospitals.

[ Alan Turing Institute ]

Greg Kahn from UC Berkeley wrote in to share his recent dissertation talk on “Mobile Robot Learning.”

In order to create mobile robots that can autonomously navigate real-world environments, we need generalizable perception and control systems that can reason about the outcomes of navigational decisions. Learning-based methods, in which the robot learns to navigate by observing the outcomes of navigational decisions in the real world, offer considerable promise for obtaining these intelligent navigation systems. However, there are many challenges impeding mobile robots from autonomously learning to act in the real-world, in particular (1) sample-efficiency–how to learn using a limited amount of data? (2) supervision–how to tell the robot what to do? and (3) safety–how to ensure the robot and environment are not damaged or destroyed during learning? In this talk, I will present deep reinforcement learning methods for addressing these real world mobile robot learning challenges and show results which enable ground and aerial robots to navigate in complex indoor and outdoor environments.

[ UC Berkeley ]

Thanks Greg!

Leila Takayama from UC Santa Cruz (and previously Google X and Willow Garage) gives a talk entitled “Toward a more human-centered future of robotics.”

Robots are no longer only in outer space, in factory cages, or in our imaginations. We interact with robotic agents when withdrawing cash from bank ATMs, driving cars with adaptive cruise control, and tuning our smart home thermostats. In the moment of those interactions with robotic agents, we behave in ways that do not necessarily align with the rational belief that robots are just plain machines. Through a combination of controlled experiments and field studies, we use theories and concepts from the social sciences to explore ways that human and robotic agents come together, including how people interact with personal robots and how people interact through telepresence robots. Together, we will explore topics and raise questions about the psychology of human-robot interaction and how we could invent a future of a more human-centered robotics that we actually want to live in.

[ Leila Takayama ]

Roboticist and stand-up comedian Naomi Fitter from Oregon State University gives a talk on “Everything I Know about Telepresence.”

Telepresence robots hold promise to connect people by providing videoconferencing and navigation abilities in far-away environments. At the same time, the impacts of current commercial telepresence robots are not well understood, and circumstances of robot use including internet connection stability, odd personalizations, and interpersonal relationship between a robot operator and people co-located with the robot can overshadow the benefit of the robot itself. And although the idea of telepresence robots has been around for over two decades, available nonverbal expressive abilities through telepresence robots are limited, and suitable operator user interfaces for the robot (for example, controls that allow for the operator to hold a conversation and move the robot simultaneously) remain elusive. So where should we be using telepresence robots? Are there any pitfalls to watch out for? What do we know about potential robot expressivity and user interfaces? This talk will cover my attempts to address these questions and ways in which the robotics research community can build off of this work

[ Talking Robotics ] Continue reading

Posted in Human Robots