Tag Archives: predictive

#436186 Video Friday: Invasion of the Mini ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

DARPA SubT Urban Circuit – February 18-27, 2020 – Olympia, Wash., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

There will be a Mini-Cheetah Workshop (sponsored by Naver Labs) a year from now at IROS 2020 in Las Vegas. Mini-Cheetahs for everyone!

That’s just a rendering, of course, but this isn’t:

[ MCW ]

I was like 95 percent sure that the Urban Circuit of the DARPA SubT Challenge was going to be in something very subway station-y. Oops!

In the Subterranean (SubT) Challenge, teams deploy autonomous ground and aerial systems to attempt to map, identify, and report artifacts along competition courses in underground environments. The artifacts represent items a first responder or service member may encounter in unknown underground sites. This video provides a preview of the Urban Circuit event location. The Urban Circuit is scheduled for February 18-27, 2020, at Satsop Business Park west of Olympia, Washington.

[ SubT ]

Researchers at SEAS and the Wyss Institute for Biologically Inspired Engineering have developed a resilient RoboBee powered by soft artificial muscles that can crash into walls, fall onto the floor, and collide with other RoboBees without being damaged. It is the first microrobot powered by soft actuators to achieve controlled flight.

To solve the problem of power density, the researchers built upon the electrically-driven soft actuators developed in the lab of David Clarke, the Extended Tarr Family Professor of Materials. These soft actuators are made using dielectric elastomers, soft materials with good insulating properties, that deform when an electric field is applied. By improving the electrode conductivity, the researchers were able to operate the actuator at 500 Hertz, on par with the rigid actuators used previously in similar robots.

Next, the researchers aim to increase the efficiency of the soft-powered robot, which still lags far behind more traditional flying robots.

[ Harvard ]

We present a system for fast and robust handovers with a robot character, together with a user study investigating the effect of robot speed and reaction time on perceived interaction quality. The system can match and exceed human speeds and confirms that users prefer human-level timing.

In a 3×3 user study, we vary the speed of the robot and add variable sensorimotor delays. We evaluate the social perception of the robot using the Robot Social Attribute Scale (RoSAS). Inclusion of a small delay, mimicking the delay of the human sensorimotor system, leads to an improvement in perceived qualities over both no delay and long delay conditions. Specifically, with no delay the robot is perceived as more discomforting and with a long delay, it is perceived as less warm.

[ Disney Research ]

When cars are autonomous, they’re not going to be able to pump themselves full of gas. Or, more likely, electrons. Kuka has the solution.

[ Kuka ]

This looks like fun, right?

[ Robocoaster ]

NASA is leading the way in the use of On-orbit Servicing, Assembly, and Manufacturing to enable large, persistent, upgradable, and maintainable spacecraft. This video was developed by the Advanced Concepts Lab (ACL) at NASA Langley Research Center.

[ NASA ]

The noisiest workshop by far at Humanoids last month (by far) was Musical Interactions With Humanoids, the end result of which was this:

[ Workshop ]

IROS is an IEEE event, and in furthering the IEEE mission to benefit humanity through technological innovation, IROS is doing a great job. But don’t take it from us – we are joined by IEEE President-Elect Professor Toshio Fukuda to find out a bit more about the impact events like IROS can have, as well as examine some of the issues around intelligent robotics and systems – from privacy to transparency of the systems at play.

[ IROS ]

Speaking of IROS, we hope you’ve been enjoying our coverage. We have already featured Harvard’s strange sea-urchin-inspired robot and a Japanese quadruped that can climb vertical ladders, with more stories to come over the next several weeks.

In the mean time, enjoy these 10 videos from the conference (as usual, we’re including the title, authors, and abstract for each—if you’d like more details about any of these projects, let us know and we’ll find out more for you).

“A Passive Closing, Tendon Driven, Adaptive Robot Hand for Ultra-Fast, Aerial Grasping and Perching,” by Andrew McLaren, Zak Fitzgerald, Geng Gao, and Minas Liarokapis from the University of Auckland, New Zealand.

Current grasping methods for aerial vehicles are slow, inaccurate and they cannot adapt to any target object. Thus, they do not allow for on-the-fly, ultra-fast grasping. In this paper, we present a passive closing, adaptive robot hand design that offers ultra-fast, aerial grasping for a wide range of everyday objects. We investigate alternative uses of structural compliance for the development of simple, adaptive robot grippers and hands and we propose an appropriate quick release mechanism that facilitates an instantaneous grasping execution. The quick release mechanism is triggered by a simple distance sensor. The proposed hand utilizes only two actuators to control multiple degrees of freedom over three fingers and it retains the superior grasping capabilities of adaptive grasping mechanisms, even under significant object pose or other environmental uncertainties. The hand achieves a grasping time of 96 ms, a maximum grasping force of 56 N and it is able to secure objects of various shapes at high speeds. The proposed hand can serve as the end-effector of grasping capable Unmanned Aerial Vehicle (UAV) platforms and it can offer perching capabilities, facilitating autonomous docking.

“Unstructured Terrain Navigation and Topographic Mapping With a Low-Cost Mobile Cuboid Robot,” by Andrew S. Morgan, Robert L. Baines, Hayley McClintock, and Brian Scassellati from Yale University, USA.

Current robotic terrain mapping techniques require expensive sensor suites to construct an environmental representation. In this work, we present a cube-shaped robot that can roll through unstructured terrain and construct a detailed topographic map of the surface that it traverses in real time with low computational and monetary expense. Our approach devolves many of the complexities of locomotion and mapping to passive mechanical features. Namely, rolling movement is achieved by sequentially inflating latex bladders that are located on four sides of the robot to destabilize and tip it. Sensing is achieved via arrays of fine plastic pins that passively conform to the geometry of underlying terrain, retracting into the cube. We developed a topography by shade algorithm to process images of the displaced pins to reconstruct terrain contours and elevation. We experimentally validated the efficacy of the proposed robot through object mapping and terrain locomotion tasks.

“Toward a Ballbot for Physically Leading People: A Human-Centered Approach,” by Zhongyu Li and Ralph Hollis from Carnegie Mellon University, USA.

This work presents a new human-centered method for indoor service robots to provide people with physical assistance and active guidance while traveling through congested and narrow spaces. As most previous work is robot-centered, this paper develops an end-to-end framework which includes a feedback path of the measured human positions. The framework combines a planning algorithm and a human-robot interaction module to guide the led person to a specified planned position. The approach is deployed on a person-size dynamically stable mobile robot, the CMU ballbot. Trials were conducted where the ballbot physically led a blindfolded person to safely navigate in a cluttered environment.

“Achievement of Online Agile Manipulation Task for Aerial Transformable Multilink Robot,” by Fan Shi, Moju Zhao, Tomoki Anzai, Keita Ito, Xiangyu Chen, Kei Okada, and Masayuki Inaba from the University of Tokyo, Japan.

Transformable aerial robots are favorable in aerial manipulation tasks for their flexible ability to change configuration during the flight. By assuming robot keeping in the mild motion, the previous researches sacrifice aerial agility to simplify the complex non-linear system into a single rigid body with a linear controller. In this paper, we present a framework towards agile swing motion for the transformable multi-links aerial robot. We introduce a computational-efficient non-linear model predictive controller and joints motion primitive frame-work to achieve agile transforming motions and validate with a novel robot named HYRURS-X. Finally, we implement our framework under a table tennis task to validate the online and agile performance.

“Small-Scale Compliant Dual Arm With Tail for Winged Aerial Robots,” by Alejandro Suarez, Manuel Perez, Guillermo Heredia, and Anibal Ollero from the University of Seville, Spain.

Winged aerial robots represent an evolution of aerial manipulation robots, replacing the multirotor vehicles by fixed or flapping wing platforms. The development of this morphology is motivated in terms of efficiency, endurance and safety in some inspection operations where multirotor platforms may not be suitable. This paper presents a first prototype of compliant dual arm as preliminary step towards the realization of a winged aerial robot capable of perching and manipulating with the wings folded. The dual arm provides 6 DOF (degrees of freedom) for end effector positioning in a human-like kinematic configuration, with a reach of 25 cm (half-scale w.r.t. the human arm), and 0.2 kg weight. The prototype is built with micro metal gear motors, measuring the joint angles and the deflection with small potentiometers. The paper covers the design, electronics, modeling and control of the arms. Experimental results in test-bench validate the developed prototype and its functionalities, including joint position and torque control, bimanual grasping, the dynamic equilibrium with the tail, and the generation of 3D maps with laser sensors attached at the arms.

“A Novel Small-Scale Turtle-inspired Amphibious Spherical Robot,” by Huiming Xing, Shuxiang Guo, Liwei Shi, Xihuan Hou, Yu Liu, Huikang Liu, Yao Hu, Debin Xia, and Zan Li from Beijing Institute of Technology, China.

This paper describes a novel small-scale turtle-inspired Amphibious Spherical Robot (ASRobot) to accomplish exploration tasks in the restricted environment, such as amphibious areas and narrow underwater cave. A Legged, Multi-Vectored Water-Jet Composite Propulsion Mechanism (LMVWCPM) is designed with four legs, one of which contains three connecting rod parts, one water-jet thruster and three joints driven by digital servos. Using this mechanism, the robot is able to walk like amphibious turtles on various terrains and swim flexibly in submarine environment. A simplified kinematic model is established to analyze crawling gaits. With simulation of the crawling gait, the driving torques of different joints contributed to the choice of servos and the size of links of legs. Then we also modeled the robot in water and proposed several underwater locomotion. In order to assess the performance of the proposed robot, a series of experiments were carried out in the lab pool and on flat ground using the prototype robot. Experiments results verified the effectiveness of LMVWCPM and the amphibious control approaches.

“Advanced Autonomy on a Low-Cost Educational Drone Platform,” by Luke Eller, Theo Guerin, Baichuan Huang, Garrett Warren, Sophie Yang, Josh Roy, and Stefanie Tellex from Brown University, USA.

PiDrone is a quadrotor platform created to accompany an introductory robotics course. Students build an autonomous flying robot from scratch and learn to program it through assignments and projects. Existing educational robots do not have significant autonomous capabilities, such as high-level planning and mapping. We present a hardware and software framework for an autonomous aerial robot, in which all software for autonomy can run onboard the drone, implemented in Python. We present an Unscented Kalman Filter (UKF) for accurate state estimation. Next, we present an implementation of Monte Carlo (MC) Localization and Fast-SLAM for Simultaneous Localization and Mapping (SLAM). The performance of UKF, localization, and SLAM is tested and compared to ground truth, provided by a motion-capture system. Our evaluation demonstrates that our autonomous educational framework runs quickly and accurately on a Raspberry Pi in Python, making it ideal for use in educational settings.

“FlightGoggles: Photorealistic Sensor Simulation for Perception-driven Robotics using Photogrammetry and Virtual Reality,” by Winter Guerra, Ezra Tal, Varun Murali, Gilhyun Ryou and Sertac Karaman from the Massachusetts Institute of Technology, USA.

FlightGoggles is a photorealistic sensor simulator for perception-driven robotic vehicles. The key contributions of FlightGoggles are twofold. First, FlightGoggles provides photorealistic exteroceptive sensor simulation using graphics assets generated with photogrammetry. Second, it provides the ability to combine (i) synthetic exteroceptive measurements generated in silico in real time and (ii) vehicle dynamics and proprioceptive measurements generated in motio by vehicle(s) in flight in a motion-capture facility. FlightGoggles is capable of simulating a virtual-reality environment around autonomous vehicle(s) in flight. While a vehicle is in flight in the FlightGoggles virtual reality environment, exteroceptive sensors are rendered synthetically in real time while all complex dynamics are generated organically through natural interactions of the vehicle. The FlightGoggles framework allows for researchers to accelerate development by circumventing the need to estimate complex and hard-to-model interactions such as aerodynamics, motor mechanics, battery electrochemistry, and behavior of other agents. The ability to perform vehicle-in-the-loop experiments with photorealistic exteroceptive sensor simulation facilitates novel research directions involving, e.g., fast and agile autonomous flight in obstacle-rich environments, safe human interaction, and flexible sensor selection. FlightGoggles has been utilized as the main test for selecting nine teams that will advance in the AlphaPilot autonomous drone racing challenge. We survey approaches and results from the top AlphaPilot teams, which may be of independent interest. FlightGoggles is distributed as open-source software along with the photorealistic graphics assets for several simulation environments, under the MIT license at http://flightgoggles.mit.edu.

“An Autonomous Quadrotor System for Robust High-Speed Flight Through Cluttered Environments Without GPS,” by Marc Rigter, Benjamin Morrell, Robert G. Reid, Gene B. Merewether, Theodore Tzanetos, Vinay Rajur, KC Wong, and Larry H. Matthies from University of Sydney, Australia; NASA Jet Propulsion Laboratory, California Institute of Technology, USA; and Georgia Institute of Technology, USA.

Robust autonomous flight without GPS is key to many emerging drone applications, such as delivery, search and rescue, and warehouse inspection. These and other appli- cations require accurate trajectory tracking through cluttered static environments, where GPS can be unreliable, while high- speed, agile, flight can increase efficiency. We describe the hardware and software of a quadrotor system that meets these requirements with onboard processing: a custom 300 mm wide quadrotor that uses two wide-field-of-view cameras for visual- inertial motion tracking and relocalization to a prior map. Collision-free trajectories are planned offline and tracked online with a custom tracking controller. This controller includes compensation for drag and variability in propeller performance, enabling accurate trajectory tracking, even at high speeds where aerodynamic effects are significant. We describe a system identification approach that identifies quadrotor-specific parameters via maximum likelihood estimation from flight data. Results from flight experiments are presented, which 1) validate the system identification method, 2) show that our controller with aerodynamic compensation reduces tracking error by more than 50% in both horizontal flights at up to 8.5 m/s and vertical flights at up to 3.1 m/s compared to the state-of-the-art, and 3) demonstrate our system tracking complex, aggressive, trajectories.

“Morphing Structure for Changing Hydrodynamic Characteristics of a Soft Underwater Walking Robot,” by Michael Ishida, Dylan Drotman, Benjamin Shih, Mark Hermes, Mitul Luhar, and Michael T. Tolley from the University of California, San Diego (UCSD) and University of Southern California, USA.

Existing platforms for underwater exploration and inspection are often limited to traversing open water and must expend large amounts of energy to maintain a position in flow for long periods of time. Many benthic animals overcome these limitations using legged locomotion and have different hydrodynamic profiles dictated by different body morphologies. This work presents an underwater legged robot with soft legs and a soft inflatable morphing body that can change shape to influence its hydrodynamic characteristics. Flow over the morphing body separates behind the trailing edge of the inflated shape, so whether the protrusion is at the front, center, or back of the robot influences the amount of drag and lift. When the legged robot (2.87 N underwater weight) needs to remain stationary in flow, an asymmetrically inflated body resists sliding by reducing lift on the body by 40% (from 0.52 N to 0.31 N) at the highest flow rate tested while only increasing drag by 5.5% (from 1.75 N to 1.85 N). When the legged robot needs to walk with flow, a large inflated body is pushed along by the flow, causing the robot to walk 16% faster than it would with an uninflated body. The body shape significantly affects the ability of the robot to walk against flow as it is able to walk against 0.09 m/s flow with the uninflated body, but is pushed backwards with a large inflated body. We demonstrate that the robot can detect changes in flow velocity with a commercial force sensor and respond by morphing into a hydrodynamically preferable shape. Continue reading

Posted in Human Robots

#435828 Video Friday: Boston Dynamics’ ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RoboBusiness 2019 – October 1-3, 2019 – Santa Clara, Calif., USA
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

You’ve almost certainly seen the new Spot and Atlas videos from Boston Dynamics, if for no other reason than we posted about Spot’s commercial availability earlier this week. But what, are we supposed to NOT include them in Video Friday anyway? Psh! Here you go:

[ Boston Dynamics ]

Eight deadly-looking robots. One Giant Nut trophy. Tonight is the BattleBots season finale, airing on Discovery, 8 p.m. ET, or check your local channels.

[ BattleBots ]

Thanks Trey!

Speaking of battling robots… Having giant robots fight each other is one of those things that sounds really great in theory, but doesn’t work out so well in reality. And sadly, MegaBots is having to deal with reality, which means putting their giant fighting robot up on eBay.

As of Friday afternoon, the current bid is just over $100,000 with a week to go.

[ MegaBots ]

Michigan Engineering has figured out the secret formula to getting 150,000 views on YouTube: drone plus nail gun.

[ Michigan Engineering ]

Michael Burke from the University of Edinburgh writes:

We’ve been learning to scoop grapefruit segments using a PR2, by “feeling” the difference between peel and pulp. We use joint torque measurements to predict the probability that the knife is in the peel or pulp, and use this to apply feedback control to a nominal cutting trajectory learned from human demonstration, so that we remain in a position of maximum uncertainty about which medium we’re cutting. This means we slice along the boundary between the two mediums. It works pretty well!

[ Paper ] via [ Robust Autonomy and Decisions Group ]

Thanks Michael!

Hey look, it’s Jan with eight EMYS robot heads. Hi, Jan! Hi, EMYSes!

[ EMYS ]

We’re putting the KRAKEN Arm through its paces, demonstrating that it can unfold from an Express Rack locker on the International Space Station and access neighboring lockers in NASA’s FabLab system to enable transfer of materials and parts between manufacturing, inspection, and storage stations. The KRAKEN arm will be able to change between multiple ’end effector’ tools such as grippers and inspection sensors – those are in development so they’re not shown in this video.

[ Tethers Unlimited ]

UBTECH’s Alpha Mini Robot with Smart Robot’s “Maatje” software is offering healthcare service to children at Praktijk Intraverte Multidisciplinary Institution in Netherlands.

This institution is using Alpha Mini in counseling children’s behavior. Alpha Mini can move and talk to children and offers games and activities to stimulate and interact with them. Alpha Mini talks, helps and motivates children thereby becoming more flexible in society.

[ UBTECH ]

Some impressive work here from Anusha Nagabandi, Kurt Konoglie, Sergey Levine, Vikash Kumar at Google Brain, training a dexterous multi-fingered hand to do that thing with two balls that I’m really bad at.

Dexterous multi-fingered hands can provide robots with the ability to flexibly perform a wide range of manipulation skills. However, many of the more complex behaviors are also notoriously difficult to control: Performing in-hand object manipulation, executing finger gaits to move objects, and exhibiting precise fine motor skills such as writing, all require finely balancing contact forces, breaking and reestablishing contacts repeatedly, and maintaining control of unactuated objects. In this work, we demonstrate that our method of online planning with deep dynamics models (PDDM) addresses both of these limitations; we show that improvements in learned dynamics models, together with improvements in online model-predictive control, can indeed enable efficient and effective learning of flexible contact-rich dexterous manipulation skills — and that too, on a 24-DoF anthropomorphic hand in the real world, using just 2-4 hours of purely real-world data to learn to simultaneously coordinate multiple free-floating objects.

[ PDDM ]

Thanks Vikash!

CMU’s Ballbot has a deceptively light touch that’s ideal for leading people around.

A paper on this has been submitted to IROS 2019.

[ CMU ]

The Autonomous Robots Lab at the University of Nevada is sharing some of the work they’ve done on path planning and exploration for aerial robots during the DARPA SubT Challenge.

[ Autonomous Robots Lab ]

More proof that anything can be a drone if you staple some motors to it. Even 32 feet of styrofoam insulation.

[ YouTube ]

Whatever you think of military drones, we can all agree that they look cool.

[ Boeing ]

I appreciate the fact that iCub has eyelids, I really do, but sometimes, it ends up looking kinda sleepy in research videos.

[ EPFL LASA ]

Video shows autonomous flight of a lightweight aerial vehicle outdoors and indoors on the campus of Carnegie Mellon University. The vehicle is equipped with limited onboard sensing from a front-facing camera and a proximity sensor. The aerial autonomy is enabled by utilizing a 3D prior map built in Step 1.

[ CMU ]

The Stanford Space Robotics Facility allows researchers to test innovative guidance and navigation algorithms on a realistic frictionless, underactuated system.

[ Stanford ASL ]

In this video, Ian and CP discuss Misty’s many capabilities including robust locomotion, obstacle avoidance, 3D mapping/SLAM, face detection and recognition, sound localization, hardware extensibility, photo and video capture, and programmable personality. They also talk about some of the skills he’s built using these capabilities (and others) and how those skills can be expanded upon by you.

[ Misty Robotics ]

This week’s CMU RI Seminar comes from Aaron Parness at Caltech and NASA JPL, on “Robotic Grippers for Planetary Applications.”

The previous generation of NASA missions to the outer solar system discovered salt water oceans on Europa and Enceladus, each with more liquid water than Earth – compelling targets to look for extraterrestrial life. Closer to home, JAXA and NASA have imaged sky-light entrances to lava tube caves on the Moon more than 100 m in diameter and ESA has characterized the incredibly varied and complex terrain of Comet 67P. While JPL has successfully landed and operated four rovers on the surface of Mars using a 6-wheeled rocker-bogie architecture, future missions will require new mobility architectures for these extreme environments. Unfortunately, the highest value science targets often lie in the terrain that is hardest to access. This talk will explore robotic grippers that enable missions to these extreme terrains through their ability to grip a wide variety of surfaces (shapes, sizes, and geotechnical properties). To prepare for use in space where repair or replacement is not possible, we field-test these grippers and robots in analog extreme terrain on Earth. Many of these systems are enabled by advances in autonomy. The talk will present a rapid overview of my work and a detailed case study of an underactuated rock gripper for deflecting asteroids.

[ CMU ]

Rod Brooks gives some of the best robotics talks ever. He gave this one earlier this week at UC Berkeley, on “Steps Toward Super Intelligence and the Search for a New Path.”

[ UC Berkeley ] Continue reading

Posted in Human Robots

#435748 Video Friday: This Robot Is Like a ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RSS 2019 – June 22-26, 2019 – Freiburg, Germany
Hamlyn Symposium on Medical Robotics – June 23-26, 2019 – London, U.K.
ETH Robotics Summer School – June 27-1, 2019 – Zurich, Switzerland
MARSS 2019 – July 1-5, 2019 – Helsinki, Finland
ICRES 2019 – July 29-30, 2019 – London, U.K.
DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, Pa., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

It’s been a while since we last spoke to Joe Jones, the inventor of Roomba, about his solar-powered, weed-killing robot, called Tertill, which he was launching as a Kickstarter project. Tertill is now available for purchase (US $300) and is shipping right now.

[ Tertill ]

Usually, we don’t post videos that involve drone use that looks to be either illegal or unsafe. These flights over the protests in Hong Kong are almost certainly both. However, it’s also a unique perspective on the scale of these protests.

[ Team BlackSheep ]

ICYMI: iRobot announced this week that it has acquired Root Robotics.

[ iRobot ]

This Boston Dynamics parody video went viral this week.

The CGI is good but the gratuitous violence—even if it’s against a fake robot—is a bit too much?

This is still our favorite Boston Dynamics parody video:

[ Corridor ]

Biomedical Engineering Department Head Bin He and his team have developed the first-ever successful non-invasive mind-controlled robotic arm to continuously track a computer cursor.

[ CMU ]

Organic chemists, prepare to meet your replacement:

Automated chemical synthesis carries great promises of safety, efficiency and reproducibility for both research and industry laboratories. Current approaches are based on specifically-designed automation systems, which present two major drawbacks: (i) existing apparatus must be modified to be integrated into the automation systems; (ii) such systems are not flexible and would require substantial re-design to handle new reactions or procedures. In this paper, we propose a system based on a robot arm which, by mimicking the motions of human chemists, is able to perform complex chemical reactions without any modifications to the existing setup used by humans. The system is capable of precise liquid handling, mixing, filtering, and is flexible: new skills and procedures could be added with minimum effort. We show that the robot is able to perform a Michael reaction, reaching a yield of 34%, which is comparable to that obtained by a junior chemist (undergraduate student in Chemistry).

[ arXiv ] via [ NTU ]

So yeah, ICRA 2019 was huge and awesome. Here are some brief highlights.

[ Montreal Gazette ]

For about US $5, this drone will deliver raw meat and beer to you if you live on an uninhabited island in Tokyo Bay.

[ Nikkei ]

The Smart Microsystems Lab at Michigan State University has a new version of their Autonomous Surface Craft. It’s autonomous, open source, and awfully hard to sink.

[ SML ]

As drone shows go, this one is pretty good.

[ CCTV ]

Here’s a remote controlled robot shooting stuff with a very large gun.

[ HDT ]

Over a period of three quarters (September 2018 thru May 2019), we’ve had the opportunity to work with five graduating University of Denver students as they brought their idea for a Misty II arm extension to life.

[ Misty Robotics ]

If you wonder how it looks to inspect burners and superheaters of a boiler with an Elios 2, here you are! This inspection was performed by Svenska Elektrod in a peat-fired boiler for Vattenfall in Sweden. Enjoy!

[ Flyability ]

The newest Soft Robotics technology, mGrip mini fingers, made for tight spaces, small packaging, and delicate items, giving limitless opportunities for your applications.

[ Soft Robotics ]

What if legged robots were able to generate dynamic motions in real-time while interacting with a complex environment? Such technology would represent a significant step forward the deployment of legged systems in real world scenarios. This means being able to replace humans in the execution of dangerous tasks and to collaborate with them in industrial applications.

This workshop aims to bring together researchers from all the relevant communities in legged locomotion such as: numerical optimization, machine learning (ML), model predictive control (MPC) and computational geometry in order to chart the most promising methods to address the above-mentioned scientific challenges.

[ Num Opt Wkshp ]

Army researchers teamed with the U.S. Marine Corps to fly and test 3-D printed quadcopter prototypes a the Marine Corps Air Ground Combat Center in 29 Palms, California recently.

[ CCDC ARL ]

Lex Fridman’s Artificial Intelligence podcast featuring Rosalind Picard.

[ AI Podcast ]

In this week’s episode of Robots in Depth, per speaks with Christian Guttmann, executive director of the Nordic AI Artificial Intelligence Institute.

Christian Guttmann talks about AI and wanting to understand intelligence enough to recreate it. Christian has be focusing on AI in healthcare and has recently started to communicate the opportunities and challenges in artificial intelligence to the general public. This is something that the host Per Sjöborg is also very passionate about. We also get to hear about the Nordic AI institute and the work it does to inform all parts of society about AI.

[ Robots in Depth ] Continue reading

Posted in Human Robots

#435260 How Tech Can Help Curb Emissions by ...

Trees are a low-tech, high-efficiency way to offset much of humankind’s negative impact on the climate. What’s even better, we have plenty of room for a lot more of them.

A new study conducted by researchers at Switzerland’s ETH-Zürich, published in Science, details how Earth could support almost an additional billion hectares of trees without the new forests pushing into existing urban or agricultural areas. Once the trees grow to maturity, they could store more than 200 billion metric tons of carbon.

Great news indeed, but it still leaves us with some huge unanswered questions. Where and how are we going to plant all the new trees? What kind of trees should we plant? How can we ensure that the new forests become a boon for people in those areas?

Answers to all of the above likely involve technology.

Math + Trees = Challenges
The ETH-Zürich research team combined Google Earth mapping software with a database of nearly 80,000 existing forests to create a predictive model for optimal planting locations. In total, 0.9 billion hectares of new, continuous forest could be planted. Once mature, the 500 billion new trees in these forests would be capable of storing about two-thirds of the carbon we have emitted since the industrial revolution.

Other researchers have noted that the study may overestimate how efficient trees are at storing carbon, as well as underestimate how much carbon humans have emitted over time. However, all seem to agree that new forests would offset much of our cumulative carbon emissions—still an impressive feat as the target of keeping global warming this century at under 1.5 degrees Celsius becomes harder and harder to reach.

Recently, there was a story about a Brazilian couple who replanted trees in the valley where they live. The couple planted about 2.7 million trees in two decades. Back-of-the-napkin math shows that they on average planted 370 trees a day, meaning planting 500 billion trees would take about 3.7 million years. While an over-simplification, the point is that planting trees by hand is not realistic. Even with a million people going at a rate of 370 trees a day, it would take 83 years. Current technologies are also not likely to be able to meet the challenge, especially in remote locations.

Tree-Bombing Drones
Technology can speed up the planting process, including a new generation of drones that take tree planting to the skies. Drone planting generally involves dropping biodegradable seed pods at a designated area. The pods dissolve over time, and the tree seeds grow in the earth below. DroneSeed is one example; its 55-pound drones can plant up to 800 seeds an hour. Another startup, Biocarbon Engineering, has used various techniques, including drones, to plant 38 different species of trees across three continents.

Drone planting has distinct advantages when it comes to planting in hard-to-access areas—one example is mangrove forests, which are disappearing rapidly, increasing the risk of floods and storm surges.

Challenges include increasing the range and speed of drone planting, and perhaps most importantly, the success rate, as automatic planting from a height is still likely to be less accurate when it comes to what depth the tree saplings are planted. However, drones are already showing impressive numbers for sapling survival rates.

AI, Sensors, and Eye-In-the-Sky
Planting the trees is the first step in a long road toward an actual forest. Companies are leveraging artificial intelligence and satellite imagery in a multitude of ways to increase protection and understanding of forested areas.

20tree.ai, a Portugal-based startup, uses AI to analyze satellite imagery and monitor the state of entire forests at a fraction of the cost of manual monitoring. The approach can lead to faster identification of threats like pest infestation and a better understanding of the state of forests.

AI can also play a pivotal role in protecting existing forest areas by predicting where deforestation is likely to occur.

Closer to the ground—and sometimes in it—new networks of sensors can provide detailed information about the state and needs of trees. One such project is Trace, where individual trees are equipped with a TreeTalker, an internet of things-based device that can provide real-time monitoring of the tree’s functions and well-being. The information can be used to, among other things, optimize the use of available resources, such as providing the exact amount of water a tree needs.

Budding Technologies Are Controversial
Trees are in many ways fauna’s marathon runners—slow-growing and sturdy, but still susceptible to sickness and pests. Many deforested areas are likely not as rich in nutrients as they once were, which could slow down reforestation. Much of the positive impact that said trees could have on carbon levels in the atmosphere is likely decades away.

Bioengineering, for example through CRISPR, could provide solutions, making trees more resistant and faster-growing. Such technologies are being explored in relation to Ghana’s at-risk cocoa trees. Other exponential technologies could also hold much future potential—for instance micro-robots to assist the dwindling number of bees with pollination.

These technologies remain mired in controversy, and perhaps rightfully so. Bioengineering’s massive potential is for many offset by the inherent risks of engineered plants out-competing existing fauna or growing beyond our control. Micro-robots for pollination may solve a problem, but don’t do much to address the root cause: that we seem to be disrupting and destroying integral parts of natural cycles.

Tech Not The Whole Answer
So, is it realistic to plant 500 billion new trees? The short answer would be that yes, it’s possible—with the help of technology.

However, there are many unanswered challenges. For example, many of areas identified by the ETH-Zürich research team are not readily available for reforestation. Some are currently reserved for grazing, others owned by private entities, and others again are located in remote areas or areas prone to political instability, beyond the reach of most replanting efforts.

If we do wish to plant 500 billion trees to offset some of the negative impacts we have had on the planet, we might well want to combine the best of exponential technology with reforestation as well as a move to other forms of agriculture.

Such an approach might also help address a major issue: that few of the proposed new forests will likely succeed without ensuring that people living in and around the areas where reforestation takes place become involved, and can reap rewards from turning arable land into forests.

Image Credit: Lillac/Shutterstock.com Continue reading

Posted in Human Robots

#434827 AI and Robotics Are Transforming ...

During the past 50 years, the frequency of recorded natural disasters has surged nearly five-fold.

In this blog, I’ll be exploring how converging exponential technologies (AI, robotics, drones, sensors, networks) are transforming the future of disaster relief—how we can prevent them in the first place and get help to victims during that first golden hour wherein immediate relief can save lives.

Here are the three areas of greatest impact:

AI, predictive mapping, and the power of the crowd
Next-gen robotics and swarm solutions
Aerial drones and immediate aid supply

Let’s dive in!

Artificial Intelligence and Predictive Mapping
When it comes to immediate and high-precision emergency response, data is gold.

Already, the meteoric rise of space-based networks, stratosphere-hovering balloons, and 5G telecommunications infrastructure is in the process of connecting every last individual on the planet.

Aside from democratizing the world’s information, however, this upsurge in connectivity will soon grant anyone the ability to broadcast detailed geo-tagged data, particularly those most vulnerable to natural disasters.

Armed with the power of data broadcasting and the force of the crowd, disaster victims now play a vital role in emergency response, turning a historically one-way blind rescue operation into a two-way dialogue between connected crowds and smart response systems.

With a skyrocketing abundance of data, however, comes a new paradigm: one in which we no longer face a scarcity of answers. Instead, it will be the quality of our questions that matters most.

This is where AI comes in: our mining mechanism.

In the case of emergency response, what if we could strategically map an almost endless amount of incoming data points? Or predict the dynamics of a flood and identify a tsunami’s most vulnerable targets before it even strikes? Or even amplify critical signals to trigger automatic aid by surveillance drones and immediately alert crowdsourced volunteers?

Already, a number of key players are leveraging AI, crowdsourced intelligence, and cutting-edge visualizations to optimize crisis response and multiply relief speeds.

Take One Concern, for instance. Born out of Stanford under the mentorship of leading AI expert Andrew Ng, One Concern leverages AI through analytical disaster assessment and calculated damage estimates.

Partnering with the cities of Los Angeles, San Francisco, and numerous cities in San Mateo County, the platform assigns verified, unique ‘digital fingerprints’ to every element in a city. Building robust models of each system, One Concern’s AI platform can then monitor site-specific impacts of not only climate change but each individual natural disaster, from sweeping thermal shifts to seismic movement.

This data, combined with that of city infrastructure and former disasters, are then used to predict future damage under a range of disaster scenarios, informing prevention methods and structures in need of reinforcement.

Within just four years, One Concern can now make precise predictions with an 85 percent accuracy rate in under 15 minutes.

And as IoT-connected devices and intelligent hardware continue to boom, a blooming trillion-sensor economy will only serve to amplify AI’s predictive capacity, offering us immediate, preventive strategies long before disaster strikes.

Beyond natural disasters, however, crowdsourced intelligence, predictive crisis mapping, and AI-powered responses are just as formidable a triage in humanitarian disasters.

One extraordinary story is that of Ushahidi. When violence broke out after the 2007 Kenyan elections, one local blogger proposed a simple yet powerful question to the web: “Any techies out there willing to do a mashup of where the violence and destruction is occurring and put it on a map?”

Within days, four ‘techies’ heeded the call, building a platform that crowdsourced first-hand reports via SMS, mined the web for answers, and—with over 40,000 verified reports—sent alerts back to locals on the ground and viewers across the world.

Today, Ushahidi has been used in over 150 countries, reaching a total of 20 million people across 100,000+ deployments. Now an open-source crisis-mapping software, its V3 (or “Ushahidi in the Cloud”) is accessible to anyone, mining millions of Tweets, hundreds of thousands of news articles, and geo-tagged, time-stamped data from countless sources.

Aggregating one of the longest-running crisis maps to date, Ushahidi’s Syria Tracker has proved invaluable in the crowdsourcing of witness reports. Providing real-time geographic visualizations of all verified data, Syria Tracker has enabled civilians to report everything from missing people and relief supply needs to civilian casualties and disease outbreaks— all while evading the government’s cell network, keeping identities private, and verifying reports prior to publication.

As mobile connectivity and abundant sensors converge with AI-mined crowd intelligence, real-time awareness will only multiply in speed and scale.

Imagining the Future….

Within the next 10 years, spatial web technology might even allow us to tap into mesh networks.

As I’ve explored in a previous blog on the implications of the spatial web, while traditional networks rely on a limited set of wired access points (or wireless hotspots), a wireless mesh network can connect entire cities via hundreds of dispersed nodes that communicate with each other and share a network connection non-hierarchically.

In short, this means that individual mobile users can together establish a local mesh network using nothing but the computing power in their own devices.

Take this a step further, and a local population of strangers could collectively broadcast countless 360-degree feeds across a local mesh network.

Imagine a scenario in which armed attacks break out across disjointed urban districts, each cluster of eye witnesses and at-risk civilians broadcasting an aggregate of 360-degree videos, all fed through photogrammetry AIs that build out a live hologram in real time, giving family members and first responders complete information.

Or take a coastal community in the throes of torrential rainfall and failing infrastructure. Now empowered by a collective live feed, verification of data reports takes a matter of seconds, and richly-layered data informs first responders and AI platforms with unbelievable accuracy and specificity of relief needs.

By linking all the right technological pieces, we might even see the rise of automated drone deliveries. Imagine: crowdsourced intelligence is first cross-referenced with sensor data and verified algorithmically. AI is then leveraged to determine the specific needs and degree of urgency at ultra-precise coordinates. Within minutes, once approved by personnel, swarm robots rush to collect the requisite supplies, equipping size-appropriate drones with the right aid for rapid-fire delivery.

This brings us to a second critical convergence: robots and drones.

While cutting-edge drone technology revolutionizes the way we deliver aid, new breakthroughs in AI-geared robotics are paving the way for superhuman emergency responses in some of today’s most dangerous environments.

Let’s explore a few of the most disruptive examples to reach the testing phase.

First up….

Autonomous Robots and Swarm Solutions
As hardware advancements converge with exploding AI capabilities, disaster relief robots are graduating from assistance roles to fully autonomous responders at a breakneck pace.

Born out of MIT’s Biomimetic Robotics Lab, the Cheetah III is but one of many robots that may form our first line of defense in everything from earthquake search-and-rescue missions to high-risk ops in dangerous radiation zones.

Now capable of running at 6.4 meters per second, Cheetah III can even leap up to a height of 60 centimeters, autonomously determining how to avoid obstacles and jump over hurdles as they arise.

Initially designed to perform spectral inspection tasks in hazardous settings (think: nuclear plants or chemical factories), the Cheetah’s various iterations have focused on increasing its payload capacity, range of motion, and even a gripping function with enhanced dexterity.

Cheetah III and future versions are aimed at saving lives in almost any environment.

And the Cheetah III is not alone. Just this February, Tokyo’s Electric Power Company (TEPCO) has put one of its own robots to the test. For the first time since Japan’s devastating 2011 tsunami, which led to three nuclear meltdowns in the nation’s Fukushima nuclear power plant, a robot has successfully examined the reactor’s fuel.

Broadcasting the process with its built-in camera, the robot was able to retrieve small chunks of radioactive fuel at five of the six test sites, offering tremendous promise for long-term plans to clean up the still-deadly interior.

Also out of Japan, Mitsubishi Heavy Industries (MHi) is even using robots to fight fires with full autonomy. In a remarkable new feat, MHi’s Water Cannon Bot can now put out blazes in difficult-to-access or highly dangerous fire sites.

Delivering foam or water at 4,000 liters per minute and 1 megapascal (MPa) of pressure, the Cannon Bot and its accompanying Hose Extension Bot even form part of a greater AI-geared system to conduct reconnaissance and surveillance on larger transport vehicles.

As wildfires grow ever more untameable, high-volume production of such bots could prove a true lifesaver. Paired with predictive AI forest fire mapping and autonomous hauling vehicles, not only will solutions like MHi’s Cannon Bot save numerous lives, but avoid population displacement and paralyzing damage to our natural environment before disaster has the chance to spread.

But even in cases where emergency shelter is needed, groundbreaking (literally) robotics solutions are fast to the rescue.

After multiple iterations by Fastbrick Robotics, the Hadrian X end-to-end bricklaying robot can now autonomously build a fully livable, 180-square-meter home in under three days. Using a laser-guided robotic attachment, the all-in-one brick-loaded truck simply drives to a construction site and directs blocks through its robotic arm in accordance with a 3D model.

Meeting verified building standards, Hadrian and similar solutions hold massive promise in the long-term, deployable across post-conflict refugee sites and regions recovering from natural catastrophes.

But what if we need to build emergency shelters from local soil at hand? Marking an extraordinary convergence between robotics and 3D printing, the Institute for Advanced Architecture of Catalonia (IAAC) is already working on a solution.

In a major feat for low-cost construction in remote zones, IAAC has found a way to convert almost any soil into a building material with three times the tensile strength of industrial clay. Offering myriad benefits, including natural insulation, low GHG emissions, fire protection, air circulation, and thermal mediation, IAAC’s new 3D printed native soil can build houses on-site for as little as $1,000.

But while cutting-edge robotics unlock extraordinary new frontiers for low-cost, large-scale emergency construction, novel hardware and computing breakthroughs are also enabling robotic scale at the other extreme of the spectrum.

Again, inspired by biological phenomena, robotics specialists across the US have begun to pilot tiny robotic prototypes for locating trapped individuals and assessing infrastructural damage.

Take RoboBees, tiny Harvard-developed bots that use electrostatic adhesion to ‘perch’ on walls and even ceilings, evaluating structural damage in the aftermath of an earthquake.

Or Carnegie Mellon’s prototyped Snakebot, capable of navigating through entry points that would otherwise be completely inaccessible to human responders. Driven by AI, the Snakebot can maneuver through even the most densely-packed rubble to locate survivors, using cameras and microphones for communication.

But when it comes to fast-paced reconnaissance in inaccessible regions, miniature robot swarms have good company.

Next-Generation Drones for Instantaneous Relief Supplies
Particularly in the case of wildfires and conflict zones, autonomous drone technology is fundamentally revolutionizing the way we identify survivors in need and automate relief supply.

Not only are drones enabling high-resolution imagery for real-time mapping and damage assessment, but preliminary research shows that UAVs far outpace ground-based rescue teams in locating isolated survivors.

As presented by a team of electrical engineers from the University of Science and Technology of China, drones could even build out a mobile wireless broadband network in record time using a “drone-assisted multi-hop device-to-device” program.

And as shown during Houston’s Hurricane Harvey, drones can provide scores of predictive intel on everything from future flooding to damage estimates.

Among multiple others, a team led by Texas A&M computer science professor and director of the university’s Center for Robot-Assisted Search and Rescue Dr. Robin Murphy flew a total of 119 drone missions over the city, from small-scale quadcopters to military-grade unmanned planes. Not only were these critical for monitoring levee infrastructure, but also for identifying those left behind by human rescue teams.

But beyond surveillance, UAVs have begun to provide lifesaving supplies across some of the most remote regions of the globe. One of the most inspiring examples to date is Zipline.

Created in 2014, Zipline has completed 12,352 life-saving drone deliveries to date. While drones are designed, tested, and assembled in California, Zipline primarily operates in Rwanda and Tanzania, hiring local operators and providing over 11 million people with instant access to medical supplies.

Providing everything from vaccines and HIV medications to blood and IV tubes, Zipline’s drones far outpace ground-based supply transport, in many instances providing life-critical blood cells, plasma, and platelets in under an hour.

But drone technology is even beginning to transcend the limited scale of medical supplies and food.

Now developing its drones under contracts with DARPA and the US Marine Corps, Logistic Gliders, Inc. has built autonomously-navigating drones capable of carrying 1,800 pounds of cargo over unprecedented long distances.

Built from plywood, Logistic’s gliders are projected to cost as little as a few hundred dollars each, making them perfect candidates for high-volume remote aid deliveries, whether navigated by a pilot or self-flown in accordance with real-time disaster zone mapping.

As hardware continues to advance, autonomous drone technology coupled with real-time mapping algorithms pose no end of abundant opportunities for aid supply, disaster monitoring, and richly layered intel previously unimaginable for humanitarian relief.

Concluding Thoughts
Perhaps one of the most consequential and impactful applications of converging technologies is their transformation of disaster relief methods.

While AI-driven intel platforms crowdsource firsthand experiential data from those on the ground, mobile connectivity and drone-supplied networks are granting newfound narrative power to those most in need.

And as a wave of new hardware advancements gives rise to robotic responders, swarm technology, and aerial drones, we are fast approaching an age of instantaneous and efficiently-distributed responses in the midst of conflict and natural catastrophes alike.

Empowered by these new tools, what might we create when everyone on the planet has the same access to relief supplies and immediate resources? In a new age of prevention and fast recovery, what futures can you envision?

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Arcansel / Shutterstock.com Continue reading

Posted in Human Robots