Tag Archives: possible
#436911 Scientists Linked Artificial and ...
Scientists have linked up two silicon-based artificial neurons with a biological one across multiple countries into a fully-functional network. Using standard internet protocols, they established a chain of communication whereby an artificial neuron controls a living, biological one, and passes on the info to another artificial one.
Whoa.
We’ve talked plenty about brain-computer interfaces and novel computer chips that resemble the brain. We’ve covered how those “neuromorphic” chips could link up into tremendously powerful computing entities, using engineered communication nodes called artificial synapses.
As Moore’s law is dying, we even said that neuromorphic computing is one path towards the future of extremely powerful, low energy consumption artificial neural network-based computing—in hardware—that could in theory better link up with the brain. Because the chips “speak” the brain’s language, in theory they could become neuroprosthesis hubs far more advanced and “natural” than anything currently possible.
This month, an international team put all of those ingredients together, turning theory into reality.
The three labs, scattered across Padova, Italy, Zurich, Switzerland, and Southampton, England, collaborated to create a fully self-controlled, hybrid artificial-biological neural network that communicated using biological principles, but over the internet.
The three-neuron network, linked through artificial synapses that emulate the real thing, was able to reproduce a classic neuroscience experiment that’s considered the basis of learning and memory in the brain. In other words, artificial neuron and synapse “chips” have progressed to the point where they can actually use a biological neuron intermediary to form a circuit that, at least partially, behaves like the real thing.
That’s not to say cyborg brains are coming soon. The simulation only recreated a small network that supports excitatory transmission in the hippocampus—a critical region that supports memory—and most brain functions require enormous cross-talk between numerous neurons and circuits. Nevertheless, the study is a jaw-dropping demonstration of how far we’ve come in recreating biological neurons and synapses in artificial hardware.
And perhaps one day, the currently “experimental” neuromorphic hardware will be integrated into broken biological neural circuits as bridges to restore movement, memory, personality, and even a sense of self.
The Artificial Brain Boom
One important thing: this study relies heavily on a decade of research into neuromorphic computing, or the implementation of brain functions inside computer chips.
The best-known example is perhaps IBM’s TrueNorth, which leveraged the brain’s computational principles to build a completely different computer than what we have today. Today’s computers run on a von Neumann architecture, in which memory and processing modules are physically separate. In contrast, the brain’s computing and memory are simultaneously achieved at synapses, small “hubs” on individual neurons that talk to adjacent ones.
Because memory and processing occur on the same site, biological neurons don’t have to shuttle data back and forth between processing and storage compartments, massively reducing processing time and energy use. What’s more, a neuron’s history will also influence how it behaves in the future, increasing flexibility and adaptability compared to computers. With the rise of deep learning, which loosely mimics neural processing as the prima donna of AI, the need to reduce power while boosting speed and flexible learning is becoming ever more tantamount in the AI community.
Neuromorphic computing was partially born out of this need. Most chips utilize special ingredients that change their resistance (or other physical characteristics) to mimic how a neuron might adapt to stimulation. Some chips emulate a whole neuron, that is, how it responds to a history of stimulation—does it get easier or harder to fire? Others imitate synapses themselves, that is, how easily they will pass on the information to another neuron.
Although single neuromorphic chips have proven to be far more efficient and powerful than current computer chips running machine learning algorithms in toy problems, so far few people have tried putting the artificial components together with biological ones in the ultimate test.
That’s what this study did.
A Hybrid Network
Still with me? Let’s talk network.
It’s gonna sound complicated, but remember: learning is the formation of neural networks, and neurons that fire together wire together. To rephrase: when learning, neurons will spontaneously organize into networks so that future instances will re-trigger the entire network. To “wire” together, downstream neurons will become more responsive to their upstream neural partners, so that even a whisper will cause them to activate. In contrast, some types of stimulation will cause the downstream neuron to “chill out” so that only an upstream “shout” will trigger downstream activation.
Both these properties—easier or harder to activate downstream neurons—are essentially how the brain forms connections. The “amping up,” in neuroscience jargon, is long-term potentiation (LTP), whereas the down-tuning is LTD (long-term depression). These two phenomena were first discovered in the rodent hippocampus more than half a century ago, and ever since have been considered as the biological basis of how the brain learns and remembers, and implicated in neurological problems such as addition (seriously, you can’t pass Neuro 101 without learning about LTP and LTD!).
So it’s perhaps especially salient that one of the first artificial-brain hybrid networks recapitulated this classic result.
To visualize: the three-neuron network began in Switzerland, with an artificial neuron with the badass name of “silicon spiking neuron.” That neuron is linked to an artificial synapse, a “memristor” located in the UK, which is then linked to a biological rat neuron cultured in Italy. The rat neuron has a “smart” microelectrode, controlled by the artificial synapse, to stimulate it. This is the artificial-to-biological pathway.
Meanwhile, the rat neuron in Italy also has electrodes that listen in on its electrical signaling. This signaling is passed back to another artificial synapse in the UK, which is then used to control a second artificial neuron back in Switzerland. This is the biological-to-artificial pathway back. As a testimony in how far we’ve come in digitizing neural signaling, all of the biological neural responses are digitized and sent over the internet to control its far-out artificial partner.
Here’s the crux: to demonstrate a functional neural network, just having the biological neuron passively “pass on” electrical stimulation isn’t enough. It has to show the capacity to learn, that is, to be able to mimic the amping up and down-tuning that are LTP and LTD, respectively.
You’ve probably guessed the results: certain stimulation patterns to the first artificial neuron in Switzerland changed how the artificial synapse in the UK operated. This, in turn, changed the stimulation to the biological neuron, so that it either amped up or toned down depending on the input.
Similarly, the response of the biological neuron altered the second artificial synapse, which then controlled the output of the second artificial neuron. Altogether, the biological and artificial components seamlessly linked up, over thousands of miles, into a functional neural circuit.
Cyborg Mind-Meld
So…I’m still picking my jaw up off the floor.
It’s utterly insane seeing a classic neuroscience learning experiment repeated with an integrated network with artificial components. That said, a three-neuron network is far from the thousands of synapses (if not more) needed to truly re-establish a broken neural circuit in the hippocampus, which DARPA has been aiming to do. And LTP/LTD has come under fire recently as the de facto brain mechanism for learning, though so far they remain cemented as neuroscience dogma.
However, this is one of the few studies where you see fields coming together. As Richard Feynman famously said, “What I cannot recreate, I cannot understand.” Even though neuromorphic chips were built on a high-level rather than molecular-level understanding of how neurons work, the study shows that artificial versions can still synapse with their biological counterparts. We’re not just on the right path towards understanding the brain, we’re recreating it, in hardware—if just a little.
While the study doesn’t have immediate use cases, practically it does boost both the neuromorphic computing and neuroprosthetic fields.
“We are very excited with this new development,” said study author Dr. Themis Prodromakis at the University of Southampton. “On one side it sets the basis for a novel scenario that was never encountered during natural evolution, where biological and artificial neurons are linked together and communicate across global networks; laying the foundations for the Internet of Neuro-electronics. On the other hand, it brings new prospects to neuroprosthetic technologies, paving the way towards research into replacing dysfunctional parts of the brain with AI chips.”
Image Credit: Gerd Altmann from Pixabay Continue reading
#436546 How AI Helped Predict the Coronavirus ...
Coronavirus has been all over the news for the last couple weeks. A dedicated hospital sprang up in just eight days, the stock market took a hit, Chinese New Year celebrations were spoiled, and travel restrictions are in effect.
But let’s rewind a bit; some crucial events took place before we got to this point.
A little under two weeks before the World Health Organization (WHO) alerted the public of the coronavirus outbreak, a Canadian artificial intelligence company was already sounding the alarm. BlueDot uses AI-powered algorithms to analyze information from a multitude of sources to identify disease outbreaks and forecast how they may spread. On December 31st 2019, the company sent out a warning to its customers to avoid Wuhan, where the virus originated. The WHO didn’t send out a similar public notice until January 9th, 2020.
The story of BlueDot’s early warning is the latest example of how AI can improve our identification of and response to new virus outbreaks.
Predictions Are Bad News
Global pandemic or relatively minor scare? The jury is still out on the coronavirus. However, the math points to signs that the worst is yet to come.
Scientists are still working to determine how infectious the virus is. Initial analysis suggests it may be somewhere between influenza and polio on the virus reproduction number scale, which indicates how many new cases one case leads to.
UK and US-based researchers have published a preliminary paper estimating that the confirmed infected people in Wuhan only represent five percent of those who are actually infected. If the models are correct, 190,000 people in Wuhan will be infected by now, major Chinese cities are on the cusp of large-scale outbreaks, and the virus will continue to spread to other countries.
Finding the Start
The spread of a given virus is partly linked to how long it remains undetected. Identifying a new virus is the first step towards mobilizing a response and, in time, creating a vaccine. Warning at-risk populations as quickly as possible also helps with limiting the spread.
These are among the reasons why BlueDot’s achievement is important in and of itself. Furthermore, it illustrates how AIs can sift through vast troves of data to identify ongoing virus outbreaks.
BlueDot uses natural language processing and machine learning to scour a variety of information sources, including chomping through 100,000 news reports in 65 languages a day. Data is compared with flight records to help predict virus outbreak patterns. Once the automated data sifting is completed, epidemiologists check that the findings make sense from a scientific standpoint, and reports are sent to BlueDot’s customers, which include governments, businesses, and public health organizations.
AI for Virus Detection and Prevention
Other companies, such as Metabiota, are also using data-driven approaches to track the spread of the likes of the coronavirus.
Researchers have trained neural networks to predict the spread of infectious diseases in real time. Others are using AI algorithms to identify how preventive measures can have the greatest effect. AI is also being used to create new drugs, which we may well see repeated for the coronavirus.
If the work of scientists Barbara Han and David Redding comes to fruition, AI and machine learning may even help us predict where virus outbreaks are likely to strike—before they do.
The Uncertainty Factor
One of AI’s core strengths when working on identifying and limiting the effects of virus outbreaks is its incredibly insistent nature. AIs never tire, can sift through enormous amounts of data, and identify possible correlations and causations that humans can’t.
However, there are limits to AI’s ability to both identify virus outbreaks and predict how they will spread. Perhaps the best-known example comes from the neighboring field of big data analytics. At its launch, Google Flu Trends was heralded as a great leap forward in relation to identifying and estimating the spread of the flu—until it underestimated the 2013 flu season by a whopping 140 percent and was quietly put to rest.
Poor data quality was identified as one of the main reasons Google Flu Trends failed. Unreliable or faulty data can wreak havoc on the prediction power of AIs.
In our increasingly interconnected world, tracking the movements of potentially infected individuals (by car, trains, buses, or planes) is just one vector surrounded by a lot of uncertainty.
The fact that BlueDot was able to correctly identify the coronavirus, in part due to its AI technology, illustrates that smart computer systems can be incredibly useful in helping us navigate these uncertainties.
Importantly, though, this isn’t the same as AI being at a point where it unerringly does so on its own—which is why BlueDot employs human experts to validate the AI’s findings.
Image Credit: Coronavirus molecular illustration, Gianluca Tomasello/Wikimedia Commons Continue reading