Tag Archives: player
#432467 Dungeons and Dragons, Not Chess and Go: ...
Everyone had died—not that you’d know it, from how they were laughing about their poor choices and bad rolls of the dice. As a social anthropologist, I study how people understand artificial intelligence (AI) and our efforts towards attaining it; I’m also a life-long fan of Dungeons and Dragons (D&D), the inventive fantasy roleplaying game. During a recent quest, when I was playing an elf ranger, the trainee paladin (or holy knight) acted according to his noble character, and announced our presence at the mouth of a dragon’s lair. The results were disastrous. But while success in D&D means “beating the bad guy,” the game is also a creative sandbox, where failure can count as collective triumph so long as you tell a great tale.
What does this have to do with AI? In computer science, games are frequently used as a benchmark for an algorithm’s “intelligence.” The late Robert Wilensky, a professor at the University of California, Berkeley and a leading figure in AI, offered one reason why this might be. Computer scientists “looked around at who the smartest people were, and they were themselves, of course,” he told the authors of Compulsive Technology: Computers as Culture (1985). “They were all essentially mathematicians by training, and mathematicians do two things—they prove theorems and play chess. And they said, hey, if it proves a theorem or plays chess, it must be smart.” No surprise that demonstrations of AI’s “smarts” have focused on the artificial player’s prowess.
Yet the games that get chosen—like Go, the main battlefield for Google DeepMind’s algorithms in recent years—tend to be tightly bounded, with set objectives and clear paths to victory or defeat. These experiences have none of the open-ended collaboration of D&D. Which got me thinking: do we need a new test for intelligence, where the goal is not simply about success, but storytelling? What would it mean for an AI to “pass” as human in a game of D&D? Instead of the Turing test, perhaps we need an elf ranger test?
Of course, this is just a playful thought experiment, but it does highlight the flaws in certain models of intelligence. First, it reveals how intelligence has to work across a variety of environments. D&D participants can inhabit many characters in many games, and the individual player can “switch” between roles (the fighter, the thief, the healer). Meanwhile, AI researchers know that it’s super difficult to get a well-trained algorithm to apply its insights in even slightly different domains—something that we humans manage surprisingly well.
Second, D&D reminds us that intelligence is embodied. In computer games, the bodily aspect of the experience might range from pressing buttons on a controller in order to move an icon or avatar (a ping-pong paddle; a spaceship; an anthropomorphic, eternally hungry, yellow sphere), to more recent and immersive experiences involving virtual-reality goggles and haptic gloves. Even without these add-ons, games can still produce biological responses associated with stress and fear (if you’ve ever played Alien: Isolation you’ll understand). In the original D&D, the players encounter the game while sitting around a table together, feeling the story and its impact. Recent research in cognitive science suggests that bodily interactions are crucial to how we grasp more abstract mental concepts. But we give minimal attention to the embodiment of artificial agents, and how that might affect the way they learn and process information.
Finally, intelligence is social. AI algorithms typically learn through multiple rounds of competition, in which successful strategies get reinforced with rewards. True, it appears that humans also evolved to learn through repetition, reward and reinforcement. But there’s an important collaborative dimension to human intelligence. In the 1930s, the psychologist Lev Vygotsky identified the interaction of an expert and a novice as an example of what became called “scaffolded” learning, where the teacher demonstrates and then supports the learner in acquiring a new skill. In unbounded games, this cooperation is channelled through narrative. Games of It among small children can evolve from win/lose into attacks by terrible monsters, before shifting again to more complex narratives that explain why the monsters are attacking, who is the hero, and what they can do and why—narratives that aren’t always logical or even internally compatible. An AI that could engage in social storytelling is doubtless on a surer, more multifunctional footing than one that plays chess; and there’s no guarantee that chess is even a step on the road to attaining intelligence of this sort.
In some ways, this failure to look at roleplaying as a technical hurdle for intelligence is strange. D&D was a key cultural touchstone for technologists in the 1980s and the inspiration for many early text-based computer games, as Katie Hafner and Matthew Lyon point out in Where Wizards Stay up Late: The Origins of the Internet (1996). Even today, AI researchers who play games in their free time often mention D&D specifically. So instead of beating adversaries in games, we might learn more about intelligence if we tried to teach artificial agents to play together as we do: as paladins and elf rangers.
This article was originally published at Aeon and has been republished under Creative Commons.
Image Credit:Benny Mazur/Flickr / CC BY 2.0 Continue reading
#432236 Why Hasn’t AI Mastered Language ...
In the myth about the Tower of Babel, people conspired to build a city and tower that would reach heaven. Their creator observed, “And now nothing will be restrained from them, which they have imagined to do.” According to the myth, God thwarted this effort by creating diverse languages so that they could no longer collaborate.
In our modern times, we’re experiencing a state of unprecedented connectivity thanks to technology. However, we’re still living under the shadow of the Tower of Babel. Language remains a barrier in business and marketing. Even though technological devices can quickly and easily connect, humans from different parts of the world often can’t.
Translation agencies step in, making presentations, contracts, outsourcing instructions, and advertisements comprehensible to all intended recipients. Some agencies also offer “localization” expertise. For instance, if a company is marketing in Quebec, the advertisements need to be in Québécois French, not European French. Risk-averse companies may be reluctant to invest in these translations. Consequently, these ventures haven’t achieved full market penetration.
Global markets are waiting, but AI-powered language translation isn’t ready yet, despite recent advancements in natural language processing and sentiment analysis. AI still has difficulties processing requests in one language, without the additional complications of translation. In November 2016, Google added a neural network to its translation tool. However, some of its translations are still socially and grammatically odd. I spoke to technologists and a language professor to find out why.
“To Google’s credit, they made a pretty massive improvement that appeared almost overnight. You know, I don’t use it as much. I will say this. Language is hard,” said Michael Housman, chief data science officer at RapportBoost.AI and faculty member of Singularity University.
He explained that the ideal scenario for machine learning and artificial intelligence is something with fixed rules and a clear-cut measure of success or failure. He named chess as an obvious example, and noted machines were able to beat the best human Go player. This happened faster than anyone anticipated because of the game’s very clear rules and limited set of moves.
Housman elaborated, “Language is almost the opposite of that. There aren’t as clearly-cut and defined rules. The conversation can go in an infinite number of different directions. And then of course, you need labeled data. You need to tell the machine to do it right or wrong.”
Housman noted that it’s inherently difficult to assign these informative labels. “Two translators won’t even agree on whether it was translated properly or not,” he said. “Language is kind of the wild west, in terms of data.”
Google’s technology is now able to consider the entirety of a sentence, as opposed to merely translating individual words. Still, the glitches linger. I asked Dr. Jorge Majfud, Associate Professor of Spanish, Latin American Literature, and International Studies at Jacksonville University, to explain why consistently accurate language translation has thus far eluded AI.
He replied, “The problem is that considering the ‘entire’ sentence is still not enough. The same way the meaning of a word depends on the rest of the sentence (more in English than in Spanish), the meaning of a sentence depends on the rest of the paragraph and the rest of the text, as the meaning of a text depends on a larger context called culture, speaker intentions, etc.”
He noted that sarcasm and irony only make sense within this widened context. Similarly, idioms can be problematic for automated translations.
“Google translation is a good tool if you use it as a tool, that is, not to substitute human learning or understanding,” he said, before offering examples of mistranslations that could occur.
“Months ago, I went to buy a drill at Home Depot and I read a sign under a machine: ‘Saw machine.’ Right below it, the Spanish translation: ‘La máquina vió,’ which means, ‘The machine did see it.’ Saw, not as a noun but as a verb in the preterit form,” he explained.
Dr. Majfud warned, “We should be aware of the fragility of their ‘interpretation.’ Because to translate is basically to interpret, not just an idea but a feeling. Human feelings and ideas that only humans can understand—and sometimes not even we, humans, understand other humans.”
He noted that cultures, gender, and even age can pose barriers to this understanding and also contended that an over-reliance on technology is leading to our cultural and political decline. Dr. Majfud mentioned that Argentinean writer Julio Cortázar used to refer to dictionaries as “cemeteries.” He suggested that automatic translators could be called “zombies.”
Erik Cambria is an academic AI researcher and assistant professor at Nanyang Technological University in Singapore. He mostly focuses on natural language processing, which is at the core of AI-powered language translation. Like Dr. Majfud, he sees the complexity and associated risks. “There are so many things that we unconsciously do when we read a piece of text,” he told me. Reading comprehension requires multiple interrelated tasks, which haven’t been accounted for in past attempts to automate translation.
Cambria continued, “The biggest issue with machine translation today is that we tend to go from the syntactic form of a sentence in the input language to the syntactic form of that sentence in the target language. That’s not what we humans do. We first decode the meaning of the sentence in the input language and then we encode that meaning into the target language.”
Additionally, there are cultural risks involved with these translations. Dr. Ramesh Srinivasan, Director of UCLA’s Digital Cultures Lab, said that new technological tools sometimes reflect underlying biases.
“There tend to be two parameters that shape how we design ‘intelligent systems.’ One is the values and you might say biases of those that create the systems. And the second is the world if you will that they learn from,” he told me. “If you build AI systems that reflect the biases of their creators and of the world more largely, you get some, occasionally, spectacular failures.”
Dr. Srinivasan said translation tools should be transparent about their capabilities and limitations. He said, “You know, the idea that a single system can take languages that I believe are very diverse semantically and syntactically from one another and claim to unite them or universalize them, or essentially make them sort of a singular entity, it’s a misnomer, right?”
Mary Cochran, co-founder of Launching Labs Marketing, sees the commercial upside. She mentioned that listings in online marketplaces such as Amazon could potentially be auto-translated and optimized for buyers in other countries.
She said, “I believe that we’re just at the tip of the iceberg, so to speak, with what AI can do with marketing. And with better translation, and more globalization around the world, AI can’t help but lead to exploding markets.”
Image Credit: igor kisselev / Shutterstock.com Continue reading
#432165 Silicon Valley Is Winning the Race to ...
Henry Ford didn’t invent the motor car. The late 1800s saw a flurry of innovation by hundreds of companies battling to deliver on the promise of fast, efficient and reasonably-priced mechanical transportation. Ford later came to dominate the industry thanks to the development of the moving assembly line.
Today, the sector is poised for another breakthrough with the advent of cars that drive themselves. But unlike the original wave of automobile innovation, the race for supremacy in autonomous vehicles is concentrated among a few corporate giants. So who is set to dominate this time?
I’ve analyzed six companies we think are leading the race to build the first truly driverless car. Three of these—General Motors, Ford, and Volkswagen—come from the existing car industry and need to integrate self-driving technology into their existing fleet of mass-produced vehicles. The other three—Tesla, Uber, and Waymo (owned by the same company as Google)—are newcomers from the digital technology world of Silicon Valley and have to build a mass manufacturing capability.
While it’s impossible to know all the developments at any given time, we have tracked investments, strategic partnerships, and official press releases to learn more about what’s happening behind the scenes. The car industry typically rates self-driving technology on a scale from Level 0 (no automation) to Level 5 (full automation). We’ve assessed where each company is now and estimated how far they are from reaching the top level. Here’s how we think each player is performing.
Volkswagen
Volkswagen has invested in taxi-hailing app Gett and partnered with chip-maker Nvidia to develop an artificial intelligence co-pilot for its cars. In 2018, the VW Group is set to release the Audi A8, the first production vehicle that reaches Level 3 on the scale, “conditional driving automation.” This means the car’s computer will handle all driving functions, but a human has to be ready to take over if necessary.
Ford
Ford already sells cars with a Level 2 autopilot, “partial driving automation.” This means one or more aspects of driving are controlled by a computer based on information about the environment, for example combined cruise control and lane centering. Alongside other investments, the company has put $1 billion into Argo AI, an artificial intelligence company for self-driving vehicles. Following a trial to test pizza delivery using autonomous vehicles, Ford is now testing Level 4 cars on public roads. These feature “high automation,” where the car can drive entirely on its own but not in certain conditions such as when the road surface is poor or the weather is bad.
General Motors
GM also sells vehicles with Level 2 automation but, after buying Silicon Valley startup Cruise Automation in 2016, now plans to launch the first mass-production-ready Level 5 autonomy vehicle that drives completely on its own by 2019. The Cruise AV will have no steering wheel or pedals to allow a human to take over and be part of a large fleet of driverless taxis the company plans to operate in big cities. But crucially the company hasn’t yet secured permission to test the car on public roads.
Waymo (Google)
Waymo Level 5 testing. Image Credit: Waymo
Founded as a special project in 2009, Waymo separated from Google (though they’re both owned by the same parent firm, Alphabet) in 2016. Though it has never made, sold, or operated a car on a commercial basis, Waymo has created test vehicles that have clocked more than 4 million miles without human drivers as of November 2017. Waymo tested its Level 5 car, “Firefly,” between 2015 and 2017 but then decided to focus on hardware that could be installed in other manufacturers’ vehicles, starting with the Chrysler Pacifica.
Uber
The taxi-hailing app maker Uber has been testing autonomous cars on the streets of Pittsburgh since 2016, always with an employee behind the wheel ready to take over in case of a malfunction. After buying the self-driving truck company Otto in 2016 for a reported $680 million, Uber is now expanding its AI capabilities and plans to test NVIDIA’s latest chips in Otto’s vehicles. It has also partnered with Volvo to create a self-driving fleet of cars and with Toyota to co-create a ride-sharing autonomous vehicle.
Tesla
The first major car manufacturer to come from Silicon Valley, Tesla was also the first to introduce Level 2 autopilot back in 2015. The following year, it announced that all new Teslas would have the hardware for full autonomy, meaning once the software is finished it can be deployed on existing cars with an instant upgrade. Some experts have challenged this approach, arguing that the company has merely added surround cameras to its production cars that aren’t as capable as the laser-based sensing systems that most other carmakers are using.
But the company has collected data from hundreds of thousands of cars, driving millions of miles across all terrains. So, we shouldn’t dismiss the firm’s founder, Elon Musk, when he claims a Level 4 Tesla will drive from LA to New York without any human interference within the first half of 2018.
Winners
Who’s leading the race? Image Credit: IMD
At the moment, the disruptors like Tesla, Waymo, and Uber seem to have the upper hand. While the traditional automakers are focusing on bringing Level 3 and 4 partial automation to market, the new companies are leapfrogging them by moving more directly towards Level 5 full automation. Waymo may have the least experience of dealing with consumers in this sector, but it has already clocked up a huge amount of time testing some of the most advanced technology on public roads.
The incumbent carmakers are also focused on the difficult process of integrating new technology and business models into their existing manufacturing operations by buying up small companies. The challengers, on the other hand, are easily partnering with other big players including manufacturers to get the scale and expertise they need more quickly.
Tesla is building its own manufacturing capability but also collecting vast amounts of critical data that will enable it to more easily upgrade its cars when ready for full automation. In particular, Waymo’s experience, technology capability, and ability to secure solid partnerships puts it at the head of the pack.
This article was originally published on The Conversation. Read the original article.
Image Credit: Waymo Continue reading
#431839 The Hidden Human Workforce Powering ...
The tech industry touts its ability to automate tasks and remove slow and expensive humans from the equation. But in the background, a lot of the legwork training machine learning systems, solving problems software can’t, and cleaning up its mistakes is still done by people.
This was highlighted recently when Expensify, which promises to automatically scan photos of receipts to extract data for expense reports, was criticized for sending customers’ personally identifiable receipts to workers on Amazon’s Mechanical Turk (MTurk) crowdsourcing platform.
The company uses text analysis software to read the receipts, but if the automated system falls down then the images are passed to a human for review. While entrusting this job to random workers on MTurk was maybe not so wise—and the company quickly stopped after the furor—the incident brought to light that this kind of human safety net behind AI-powered services is actually very common.
As Wired notes, similar services like Ibotta and Receipt Hog that collect receipt information for marketing purposes also use crowdsourced workers. In a similar vein, while most users might assume their Facebook newsfeed is governed by faceless algorithms, the company has been ramping up the number of human moderators it employs to catch objectionable content that slips through the net, as has YouTube. Twitter also has thousands of human overseers.
Humans aren’t always witting contributors either. The old text-based reCAPTCHA problems Google used to use to distinguish humans from machines was actually simultaneously helping the company digitize books by getting humans to interpret hard-to-read text.
“Every product that uses AI also uses people,” Jeffrey Bigham, a crowdsourcing expert at Carnegie Mellon University, told Wired. “I wouldn’t even say it’s a backstop so much as a core part of the process.”
Some companies are not shy about their use of crowdsourced workers. Startup Eloquent Labs wants to insert them between customer service chatbots and human agents who step in when the machines fail. Many times the AI is pretty certain what particular work means, and an MTurk worker can step in and quickly classify them faster and cheaper than a service agent.
Fashion retailer Gilt provides “pre-emptive shipping,” which uses data analytics to predict what people will buy to get products to them faster. The company uses MTurk workers to provide subjective critiques of clothing that feed into their models.
MTurk isn’t the only player. Companies like Cloudfactory and Crowdflower provide crowdsourced human manpower tailored to particular niches, and some companies prefer to maintain their own communities of workers. Unlabel uses an army of 50,000 humans to check and edit the translations its artificial intelligence system produces for customers.
Most of the time these human workers aren’t just filling in the gaps, they’re also helping to train the machine learning component of these companies’ services by providing new examples of how to solve problems. Other times humans aren’t used “in-the-loop” with AI systems, but to prepare data sets they can learn from by labeling images, text, or audio.
It’s even possible to use crowdsourced workers to carry out tasks typically tackled by machine learning, such as large-scale image analysis and forecasting.
Zooniverse gets citizen scientists to classify images of distant galaxies or videos of animals to help academics analyze large data sets too complex for computers. Almanis creates forecasts on everything from economics to politics with impressive accuracy by giving those who sign up to the website incentives for backing the correct answer to a question. Researchers have used MTurkers to power a chatbot, and there’s even a toolkit for building algorithms to control this human intelligence called TurKit.
So what does this prominent role for humans in AI services mean? Firstly, it suggests that many tools people assume are powered by AI may in fact be relying on humans. This has obvious privacy implications, as the Expensify story highlighted, but should also raise concerns about whether customers are really getting what they pay for.
One example of this is IBM’s Watson for oncology, which is marketed as a data-driven AI system for providing cancer treatment recommendations. But an investigation by STAT highlighted that it’s actually largely driven by recommendations from a handful of (admittedly highly skilled) doctors at Memorial Sloan Kettering Cancer Center in New York.
Secondly, humans intervening in AI-run processes also suggests AI is still largely helpless without us, which is somewhat comforting to know among all the doomsday predictions of AI destroying jobs. At the same time, though, much of this crowdsourced work is monotonous, poorly paid, and isolating.
As machines trained by human workers get better at all kinds of tasks, this kind of piecemeal work filling in the increasingly small gaps in their capabilities may get more common. While tech companies often talk about AI augmenting human intelligence, for many it may actually end up being the other way around.
Image Credit: kentoh / Shutterstock.com Continue reading