Tag Archives: player

#436119 How 3D Printing, Vertical Farming, and ...

Food. What we eat, and how we grow it, will be fundamentally transformed in the next decade.

Already, indoor farming is projected to be a US$40.25 billion industry by 2022, with a compound annual growth rate of 9.65 percent. Meanwhile, the food 3D printing industry is expected to grow at an even higher rate, averaging 50 percent annual growth.

And converging exponential technologies—from materials science to AI-driven digital agriculture—are not slowing down. Today’s breakthroughs will soon allow our planet to boost its food production by nearly 70 percent, using a fraction of the real estate and resources, to feed 9 billion by mid-century.

What you consume, how it was grown, and how it will end up in your stomach will all ride the wave of converging exponentials, revolutionizing the most basic of human needs.

Printing Food
3D printing has already had a profound impact on the manufacturing sector. We are now able to print in hundreds of different materials, making anything from toys to houses to organs. However, we are finally seeing the emergence of 3D printers that can print food itself.

Redefine Meat, an Israeli startup, wants to tackle industrial meat production using 3D printers that can generate meat, no animals required. The printer takes in fat, water, and three different plant protein sources, using these ingredients to print a meat fiber matrix with trapped fat and water, thus mimicking the texture and flavor of real meat.

Slated for release in 2020 at a cost of $100,000, their machines are rapidly demonetizing and will begin by targeting clients in industrial-scale meat production.

Anrich3D aims to take this process a step further, 3D printing meals that are customized to your medical records, heath data from your smart wearables, and patterns detected by your sleep trackers. The company plans to use multiple extruders for multi-material printing, allowing them to dispense each ingredient precisely for nutritionally optimized meals. Currently in an R&D phase at the Nanyang Technological University in Singapore, the company hopes to have its first taste tests in 2020.

These are only a few of the many 3D food printing startups springing into existence. The benefits from such innovations are boundless.

Not only will food 3D printing grant consumers control over the ingredients and mixtures they consume, but it is already beginning to enable new innovations in flavor itself, democratizing far healthier meal options in newly customizable cuisine categories.

Vertical Farming
Vertical farming, whereby food is grown in vertical stacks (in skyscrapers and buildings rather than outside in fields), marks a classic case of converging exponential technologies. Over just the past decade, the technology has surged from a handful of early-stage pilots to a full-grown industry.

Today, the average American meal travels 1,500-2,500 miles to get to your plate. As summed up by Worldwatch Institute researcher Brian Halweil, “We are spending far more energy to get food to the table than the energy we get from eating the food.” Additionally, the longer foods are out of the soil, the less nutritious they become, losing on average 45 percent of their nutrition before being consumed.

Yet beyond cutting down on time and transportation losses, vertical farming eliminates a whole host of issues in food production. Relying on hydroponics and aeroponics, vertical farms allows us to grow crops with 90 percent less water than traditional agriculture—which is critical for our increasingly thirsty planet.

Currently, the largest player around is Bay Area-based Plenty Inc. With over $200 million in funding from Softbank, Plenty is taking a smart tech approach to indoor agriculture. Plants grow on 20-foot-high towers, monitored by tens of thousands of cameras and sensors, optimized by big data and machine learning.

This allows the company to pack 40 plants in the space previously occupied by 1. The process also produces yields 350 times greater than outdoor farmland, using less than 1 percent as much water.

And rather than bespoke veggies for the wealthy few, Plenty’s processes allow them to knock 20-35 percent off the costs of traditional grocery stores. To date, Plenty has their home base in South San Francisco, a 100,000 square-foot farm in Kent, Washington, an indoor farm in the United Arab Emirates, and recently started construction on over 300 farms in China.

Another major player is New Jersey-based Aerofarms, which can now grow two million pounds of leafy greens without sunlight or soil.

To do this, Aerofarms leverages AI-controlled LEDs to provide optimized wavelengths of light for each plant. Using aeroponics, the company delivers nutrients by misting them directly onto the plants’ roots—no soil required. Rather, plants are suspended in a growth mesh fabric made from recycled water bottles. And here too, sensors, cameras, and machine learning govern the entire process.

While 50-80 percent of the cost of vertical farming is human labor, autonomous robotics promises to solve that problem. Enter contenders like Iron Ox, a firm that has developed the Angus robot, capable of moving around plant-growing containers.

The writing is on the wall, and traditional agriculture is fast being turned on its head.

Materials Science
In an era where materials science, nanotechnology, and biotechnology are rapidly becoming the same field of study, key advances are enabling us to create healthier, more nutritious, more efficient, and longer-lasting food.

For starters, we are now able to boost the photosynthetic abilities of plants. Using novel techniques to improve a micro-step in the photosynthesis process chain, researchers at UCLA were able to boost tobacco crop yield by 14-20 percent. Meanwhile, the RIPE Project, backed by Bill Gates and run out of the University of Illinois, has matched and improved those numbers.

And to top things off, The University of Essex was even able to improve tobacco yield by 27-47 percent by increasing the levels of protein involved in photo-respiration.

In yet another win for food-related materials science, Santa Barbara-based Apeel Sciences is further tackling the vexing challenge of food waste. Now approaching commercialization, Apeel uses lipids and glycerolipids found in the peels, seeds, and pulps of all fruits and vegetables to create “cutin”—the fatty substance that composes the skin of fruits and prevents them from rapidly spoiling by trapping moisture.

By then spraying fruits with this generated substance, Apeel can preserve foods 60 percent longer using an odorless, tasteless, colorless organic substance.

And stores across the US are already using this method. By leveraging our advancing knowledge of plants and chemistry, materials science is allowing us to produce more food with far longer-lasting freshness and more nutritious value than ever before.

Convergence
With advances in 3D printing, vertical farming, and materials sciences, we can now make food smarter, more productive, and far more resilient.

By the end of the next decade, you should be able to 3D print a fusion cuisine dish from the comfort of your home, using ingredients harvested from vertical farms, with nutritional value optimized by AI and materials science. However, even this picture doesn’t account for all the rapid changes underway in the food industry.

Join me next week for Part 2 of the Future of Food for a discussion on how food production will be transformed, quite literally, from the bottom up.

Join Me
Abundance-Digital Online Community: Stay ahead of technological advancements and turn your passion into action. Abundance Digital is now part of Singularity University. Learn more.

Image Credit: Vanessa Bates Ramirez Continue reading

Posted in Human Robots

#435492 Humanoid table tennis players

Trust the Chinese to come up with Android Robots for one of their favorite sports! The robot can also play a human opponent, using either forehand or backhand strokes.

Posted in Human Robots

#435765 The Four Converging Technologies Giving ...

How each of us sees the world is about to change dramatically.

For all of human history, the experience of looking at the world was roughly the same for everyone. But boundaries between the digital and physical are beginning to fade.

The world around us is gaining layer upon layer of digitized, virtually overlaid information—making it rich, meaningful, and interactive. As a result, our respective experiences of the same environment are becoming vastly different, personalized to our goals, dreams, and desires.

Welcome to Web 3.0, or the Spatial Web. In version 1.0, static documents and read-only interactions limited the internet to one-way exchanges. Web 2.0 provided quite an upgrade, introducing multimedia content, interactive web pages, and participatory social media. Yet, all this was still mediated by two-dimensional screens.

Today, we are witnessing the rise of Web 3.0, riding the convergence of high-bandwidth 5G connectivity, rapidly evolving AR eyewear, an emerging trillion-sensor economy, and powerful artificial intelligence.

As a result, we will soon be able to superimpose digital information atop any physical surrounding—freeing our eyes from the tyranny of the screen, immersing us in smart environments, and making our world endlessly dynamic.

In the third post of our five-part series on augmented reality, we will explore the convergence of AR, AI, sensors, and blockchain and dive into the implications through a key use case in manufacturing.

A Tale of Convergence
Let’s deconstruct everything beneath the sleek AR display.

It all begins with graphics processing units (GPUs)—electric circuits that perform rapid calculations to render images. (GPUs can be found in mobile phones, game consoles, and computers.)

However, because AR requires such extensive computing power, single GPUs will not suffice. Instead, blockchain can now enable distributed GPU processing power, and blockchains specifically dedicated to AR holographic processing are on the rise.

Next up, cameras and sensors will aggregate real-time data from any environment to seamlessly integrate physical and virtual worlds. Meanwhile, body-tracking sensors are critical for aligning a user’s self-rendering in AR with a virtually enhanced environment. Depth sensors then provide data for 3D spatial maps, while cameras absorb more surface-level, detailed visual input. In some cases, sensors might even collect biometric data, such as heart rate and brain activity, to incorporate health-related feedback in our everyday AR interfaces and personal recommendation engines.

The next step in the pipeline involves none other than AI. Processing enormous volumes of data instantaneously, embedded AI algorithms will power customized AR experiences in everything from artistic virtual overlays to personalized dietary annotations.

In retail, AIs will use your purchasing history, current closet inventory, and possibly even mood indicators to display digitally rendered items most suitable for your wardrobe, tailored to your measurements.

In healthcare, smart AR glasses will provide physicians with immediately accessible and maximally relevant information (parsed from the entirety of a patient’s medical records and current research) to aid in accurate diagnoses and treatments, freeing doctors to engage in the more human-centric tasks of establishing trust, educating patients and demonstrating empathy.

Image Credit: PHD Ventures.
Convergence in Manufacturing
One of the nearest-term use cases of AR is manufacturing, as large producers begin dedicating capital to enterprise AR headsets. And over the next ten years, AR will converge with AI, sensors, and blockchain to multiply manufacturer productivity and employee experience.

(1) Convergence with AI
In initial application, digital guides superimposed on production tables will vastly improve employee accuracy and speed, while minimizing error rates.

Already, the International Air Transport Association (IATA) — whose airlines supply 82 percent of air travel — recently implemented industrial tech company Atheer’s AR headsets in cargo management. And with barely any delay, IATA reported a whopping 30 percent improvement in cargo handling speed and no less than a 90 percent reduction in errors.

With similar success rates, Boeing brought Skylight’s smart AR glasses to the runway, now used in the manufacturing of hundreds of airplanes. Sure enough—the aerospace giant has now seen a 25 percent drop in production time and near-zero error rates.

Beyond cargo management and air travel, however, smart AR headsets will also enable on-the-job training without reducing the productivity of other workers or sacrificing hardware. Jaguar Land Rover, for instance, implemented Bosch’s Re’flekt One AR solution to gear technicians with “x-ray” vision: allowing them to visualize the insides of Range Rover Sport vehicles without removing any dashboards.

And as enterprise capabilities continue to soar, AIs will soon become the go-to experts, offering support to manufacturers in need of assembly assistance. Instant guidance and real-time feedback will dramatically reduce production downtime, boost overall output, and even help customers struggling with DIY assembly at home.

Perhaps one of the most profitable business opportunities, AR guidance through centralized AI systems will also serve to mitigate supply chain inefficiencies at extraordinary scale. Coordinating moving parts, eliminating the need for manned scanners at each checkpoint, and directing traffic within warehouses, joint AI-AR systems will vastly improve workflow while overseeing quality assurance.

After its initial implementation of AR “vision picking” in 2015, leading courier company DHL recently announced it would continue to use Google’s newest smart lens in warehouses across the world. Motivated by the initial group’s reported 15 percent jump in productivity, DHL’s decision is part of the logistics giant’s $300 million investment in new technologies.

And as direct-to-consumer e-commerce fundamentally transforms the retail sector, supply chain optimization will only grow increasingly vital. AR could very well prove the definitive step for gaining a competitive edge in delivery speeds.

As explained by Vital Enterprises CEO Ash Eldritch, “All these technologies that are coming together around artificial intelligence are going to augment the capabilities of the worker and that’s very powerful. I call it Augmented Intelligence. The idea is that you can take someone of a certain skill level and by augmenting them with artificial intelligence via augmented reality and the Internet of Things, you can elevate the skill level of that worker.”

Already, large producers like Goodyear, thyssenkrupp, and Johnson Controls are using the Microsoft HoloLens 2—priced at $3,500 per headset—for manufacturing and design purposes.

Perhaps the most heartening outcome of the AI-AR convergence is that, rather than replacing humans in manufacturing, AR is an ideal interface for human collaboration with AI. And as AI merges with human capital, prepare to see exponential improvements in productivity, professional training, and product quality.

(2) Convergence with Sensors
On the hardware front, these AI-AR systems will require a mass proliferation of sensors to detect the external environment and apply computer vision in AI decision-making.

To measure depth, for instance, some scanning depth sensors project a structured pattern of infrared light dots onto a scene, detecting and analyzing reflected light to generate 3D maps of the environment. Stereoscopic imaging, using two lenses, has also been commonly used for depth measurements. But leading technology like Microsoft’s HoloLens 2 and Intel’s RealSense 400-series camera implement a new method called “phased time-of-flight” (ToF).

In ToF sensing, the HoloLens 2 uses numerous lasers, each with 100 milliwatts (mW) of power, in quick bursts. The distance between nearby objects and the headset wearer is then measured by the amount of light in the return beam that has shifted from the original signal. Finally, the phase difference reveals the location of each object within the field of view, which enables accurate hand-tracking and surface reconstruction.

With a far lower computing power requirement, the phased ToF sensor is also more durable than stereoscopic sensing, which relies on the precise alignment of two prisms. The phased ToF sensor’s silicon base also makes it easily mass-produced, rendering the HoloLens 2 a far better candidate for widespread consumer adoption.

To apply inertial measurement—typically used in airplanes and spacecraft—the HoloLens 2 additionally uses a built-in accelerometer, gyroscope, and magnetometer. Further equipped with four “environment understanding cameras” that track head movements, the headset also uses a 2.4MP HD photographic video camera and ambient light sensor that work in concert to enable advanced computer vision.

For natural viewing experiences, sensor-supplied gaze tracking increasingly creates depth in digital displays. Nvidia’s work on Foveated AR Display, for instance, brings the primary foveal area into focus, while peripheral regions fall into a softer background— mimicking natural visual perception and concentrating computing power on the area that needs it most.

Gaze tracking sensors are also slated to grant users control over their (now immersive) screens without any hand gestures. Conducting simple visual cues, even staring at an object for more than three seconds, will activate commands instantaneously.

And our manufacturing example above is not the only one. Stacked convergence of blockchain, sensors, AI and AR will disrupt almost every major industry.

Take healthcare, for example, wherein biometric sensors will soon customize users’ AR experiences. Already, MIT Media Lab’s Deep Reality group has created an underwater VR relaxation experience that responds to real-time brain activity detected by a modified version of the Muse EEG. The experience even adapts to users’ biometric data, from heart rate to electro dermal activity (inputted from an Empatica E4 wristband).

Now rapidly dematerializing, sensors will converge with AR to improve physical-digital surface integration, intuitive hand and eye controls, and an increasingly personalized augmented world. Keep an eye on companies like MicroVision, now making tremendous leaps in sensor technology.

While I’ll be doing a deep dive into sensor applications across each industry in our next blog, it’s critical to first discuss how we might power sensor- and AI-driven augmented worlds.

(3) Convergence with Blockchain
Because AR requires much more compute power than typical 2D experiences, centralized GPUs and cloud computing systems are hard at work to provide the necessary infrastructure. Nonetheless, the workload is taxing and blockchain may prove the best solution.

A major player in this pursuit, Otoy aims to create the largest distributed GPU network in the world, called the Render Network RNDR. Built specifically on the Ethereum blockchain for holographic media, and undergoing Beta testing, this network is set to revolutionize AR deployment accessibility.

Alphabet Chairman Eric Schmidt (an investor in Otoy’s network), has even said, “I predicted that 90% of computing would eventually reside in the web based cloud… Otoy has created a remarkable technology which moves that last 10%—high-end graphics processing—entirely to the cloud. This is a disruptive and important achievement. In my view, it marks the tipping point where the web replaces the PC as the dominant computing platform of the future.”

Leveraging the crowd, RNDR allows anyone with a GPU to contribute their power to the network for a commission of up to $300 a month in RNDR tokens. These can then be redeemed in cash or used to create users’ own AR content.

In a double win, Otoy’s blockchain network and similar iterations not only allow designers to profit when not using their GPUs, but also democratize the experience for newer artists in the field.

And beyond these networks’ power suppliers, distributing GPU processing power will allow more manufacturing companies to access AR design tools and customize learning experiences. By further dispersing content creation across a broad network of individuals, blockchain also has the valuable potential to boost AR hardware investment across a number of industry beneficiaries.

On the consumer side, startups like Scanetchain are also entering the blockchain-AR space for a different reason. Allowing users to scan items with their smartphone, Scanetchain’s app provides access to a trove of information, from manufacturer and price, to origin and shipping details.

Based on NEM (a peer-to-peer cryptocurrency that implements a blockchain consensus algorithm), the app aims to make information far more accessible and, in the process, create a social network of purchasing behavior. Users earn tokens by watching ads, and all transactions are hashed into blocks and securely recorded.

The writing is on the wall—our future of brick-and-mortar retail will largely lean on blockchain to create the necessary digital links.

Final Thoughts
Integrating AI into AR creates an “auto-magical” manufacturing pipeline that will fundamentally transform the industry, cutting down on marginal costs, reducing inefficiencies and waste, and maximizing employee productivity.

Bolstering the AI-AR convergence, sensor technology is already blurring the boundaries between our augmented and physical worlds, soon to be near-undetectable. While intuitive hand and eye motions dictate commands in a hands-free interface, biometric data is poised to customize each AR experience to be far more in touch with our mental and physical health.

And underpinning it all, distributed computing power with blockchain networks like RNDR will democratize AR, boosting global consumer adoption at plummeting price points.

As AR soars in importance—whether in retail, manufacturing, entertainment, or beyond—the stacked convergence discussed above merits significant investment over the next decade. The augmented world is only just getting started.

Join Me
(1) A360 Executive Mastermind: Want even more context about how converging exponential technologies will transform your business and industry? Consider joining Abundance 360, a highly selective community of 360 exponentially minded CEOs, who are on a 25-year journey with me—or as I call it, a “countdown to the Singularity.” If you’d like to learn more and consider joining our 2020 membership, apply here.

Share this with your friends, especially if they are interested in any of the areas outlined above.

(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs — those who want to get involved and play at a higher level. Click here to learn more.

This article originally appeared on Diamandis.com

Image Credit: Funky Focus / Pixabay Continue reading

Posted in Human Robots

#435731 Video Friday: NASA Is Sending This ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

MARSS 2019 – July 1-5, 2019 – Helsinki, Finland
ICRES 2019 – July 29-30, 2019 – London, UK
DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, PA, USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

The big news today is that NASA is sending a robot to Saturn’s moon Titan. A flying robot. The Dragonfly mission will launch in 2026 and arrive in 2034, but you knew that already, because last January, we posted a detailed article about the concept from the Applied Physics Lab at Johns Hopkins University. And now it’s not a concept anymore, yay!

Again, read all the details plus an interview in 2018 article.

[ NASA ]

A robotic gripping arm that uses engineered bacteria to “taste” for a specific chemical has been developed by engineers at the University of California, Davis, and Carnegie Mellon University. The gripper is a proof-of-concept for biologically-based soft robotics.

The new device uses a biosensing module based on E. coli bacteria engineered to respond to the chemical IPTG by producing a fluorescent protein. The bacterial cells reside in wells with a flexible, porous membrane that allows chemicals to enter but keeps the cells inside. This biosensing module is built into the surface of a flexible gripper on a robotic arm, so the gripper can “taste” the environment through its fingers.

When IPTG crosses the membrane into the chamber, the cells fluoresce and electronic circuits inside the module detect the light. The electrical signal travels to the gripper’s control unit, which can decide whether to pick something up or release it.

[ UC Davis ]

The Toyota Research Institute (TRI) is taking on the hard problems in manipulation research toward making human-assist robots reliable and robust. Dr. Russ Tedrake, TRI Vice President of Robotics Research, explains how we are exploring the challenges and addressing the reliability gap by using a robot loading dishes in a dishwasher as an example task.

[ TRI ]

The Tactile Telerobot is the world’s first haptic telerobotic system that transmits realistic touch feedback to an operator located anywhere in the world. It is the product of joint collaboration between Shadow Robot Company, HaptX, and SynTouch. All Nippon Airways funded the project’s initial research and development.

What’s really unique about this is the HaptX tactile feedback system, which is something we’ve been following for several years now. It’s one of the most magical tech experiences I’ve ever had, and you can read about it here and here.

[ HaptX ]

Thanks Andrew!

I love how snake robots can emulate some of the fanciest moves of real snakes, and then also do bonkers things that real snakes never do.

[ Matsuno Lab ]

Here are a couple interesting videos from the Human-Robot Interaction Lab at Tufts.

A robot is instructed to perform an action and cannot do it due to lack of sensors. But when another robot is placed nearby, it can execute the instruction by tacitly tapping into the other robot’s mind and using that robot’s sensors for its own actions. Yes, it’s automatic, and yes, it’s the BORG!

Two Nao robots are instructed to perform a dance and are able to do it right after instruction. Moreover, they can switch roles immediately, and even a third different PR2 robot can perform the dance right away, demonstrating the ability of our DIARC architecture to learn quickly and share the knowledge with any type of robot running the architecture.

Compared to Nao, PR2 just sounds… depressed.

[ HRI Lab ]

This work explores the problem of robot tool construction – creating tools from parts available in the environment. We advance the state-of-the-art in robotic tool construction by introducing an approach that enables the robot to construct a wider range of tools with greater computational efficiency. Specifically, given an action that the robot wishes to accomplish and a set of building parts available to the robot, our approach reasons about the shape of the parts and potential ways of attaching them, generating a ranking of part combinations that the robot then uses to construct and test the target tool. We validate our approach on the construction of five tools using a physical 7-DOF robot arm.

[ RAIL Lab ] via [ RSS ]

We like Magazino’s approach to warehouse picking- constrain the problem to something you can reliably solve, like shoeboxes.

Magazino has announced a new pricing model for their robots. You pay 55k euros for the robot itself, and then after that, all you pay to keep the robot working is 6 cents per pick, so the robot is only costing you money for the work that it actually does.

[ Magazino ]

Thanks Florin!

Human-Robot Collaborations are happening across factories worldwide, yet very few are using it for smaller businesses, due to high costs or the difficulty of customization. Elephant Robotics, a new player from Shenzhen, the Silicon Valley of Asia, has set its sight on helping smaller businesses gain access to smart robotics. They created a Catbot (a collaborative robotic arm) that will offer high efficiency and flexibility to various industries.

The Catbot is set to help from education projects, photography, massaging, to being a personal barista or co-playing a table game. The customizations are endless. To increase the flexibility of usage, the Catbot is extremely easy to program from a high precision task up to covering hefty ground projects.

[ Elephant Robotics ]

Thanks Johnson!

Dronistics, an EPFL spin-off, has been testing out their enclosed delivery drone in the Dominican Republic through a partnership with WeRobotics.

[ WeRobotics ]

QTrobot is an expressive humanoid robot designed to help children with autism spectrum disorder and children with special educational needs in learning new skills. QTrobot uses simple and exaggerated facial expressions combined by interactive games and stories, to help children improve their emotional skills. QTrobot helps children to learn about and better understand the emotions and teach them strategies to handle their emotions more effectively.

[ LuxAI ]

Here’s a typical day in the life of a Tertill solar-powered autonomous weed-destroying robot.

$300, now shipping from Franklin Robotics.

[ Tertill ]

PAL Robotics is excited to announce a new TIAGo with two arms, TIAGo++! After carefully listening to the robotics community needs, we used TIAGo’s modularity to integrate two 7-DoF arms to our mobile manipulator. TIAGo++ can help you swiftly accomplish your research goals, opening endless possibilities in mobile manipulation.

[ PAL Robotics ]

Thanks Jack!

You’ve definitely already met the Cobalt security robot, but Toyota AI Ventures just threw a pile of money at them and would therefore like you to experience this re-introduction:

[ Cobalt Robotics ] via [ Toyota AI ]

ROSIE is a mobile manipulator kit from HEBI Robotics. And if you don’t like ROSIE, the modular nature of HEBI’s hardware means that you can take her apart and make something more interesting.

[ HEBI Robotics ]

Learn about Kawasaki Robotics’ second addition to their line of duAro dual-arm collaborative robots, duAro2. This model offers an extended vertical reach (550 mm) and an increased payload capacity (3 kg/arm).

[ Kawasaki Robotics ]

Drone Delivery Canada has partnered with Peel Region Paramedics to pilot its proprietary drone delivery platform to enable rapid first responder technology via drone with the goal to reduce response time and potentially save lives.

[ Drone Delivery Canada ]

In this week’s episode of Robots in Depth, Per speaks with Harri Ketamo, from Headai.

Harri Ketamo talks about AI and how he aims to mimic human decision making with algorithms. Harri has done a lot of AI for computer games to create opponents that are entertaining to play against. It is easy to develop a very bad or a very good opponent, but designing an opponent that behaves like a human, is entertaining to play against and that you can beat is quite hard. He talks about how AI in computer games is a very important story telling tool and an important part of making a game entertaining to play.

This work led him into other parts of the AI field. Harri thinks that we sometimes have a problem separating what is real from what is the type of story telling he knows from gaming AI. He calls for critical analysis of AI and says that data has to be used to verify AI decisions and results.

[ Robots in Depth ]

Thanks Per! Continue reading

Posted in Human Robots

#435213 Robot traps ball without coding

Dr. Kee-hoon Kim's team at the Center for Intelligent & Interactive Robotics of the Korea Institute of Science and Technology (KIST) developed a way of teaching “impedance-controlled robots” through human demonstrations using surface electromyograms (sEMG) of muscles, and succeeded in teaching a robot to trap a dropped ball like a soccer player. A surface electromyogram is an electric signal produced during muscle activation that can be picked up on the surface of the skin. Continue reading

Posted in Human Robots