Tag Archives: play

#437807 Why We Need Robot Sloths

An inherent characteristic of a robot (I would argue) is embodied motion. We tend to focus on motion rather a lot with robots, and the most dynamic robots get the most attention. This isn’t to say that highly dynamic robots don’t deserve our attention, but there are other robotic philosophies that, while perhaps less visually exciting, are equally valuable under the right circumstances. Magnus Egerstedt, a robotics professor at Georgia Tech, was inspired by some sloths he met in Costa Rica to explore the idea of “slowness as a design paradigm” through an arboreal robot called SlothBot.

Since the robot moves so slowly, why use a robot at all? It may be very energy-efficient, but it’s definitely not more energy efficient than a static sensing system that’s just bolted to a tree or whatever. The robot moves, of course, but it’s also going to be much more expensive (and likely much less reliable) than a handful of static sensors that could cover a similar area. The problem with static sensors, though, is that they’re constrained by power availability, and in environments like under a dense tree canopy, you’re not going to be able to augment their lifetime with solar panels. If your goal is a long-duration study of a small area (over weeks or months or more), SlothBot is uniquely useful in this context because it can crawl out from beneath a tree to find some sun to recharge itself, sunbathe for a while, and then crawl right back again to resume collecting data.

SlothBot is such an interesting concept that we had to check in with Egerstedt with a few more questions.

IEEE Spectrum: Tell us what you find so amazing about sloths!

Magnus Egerstedt: Apart from being kind of cute, the amazing thing about sloths is that they have carved out a successful ecological niche for themselves where being slow is not only acceptable but actually beneficial. Despite their pretty extreme low-energy lifestyle, they exhibit a number of interesting and sometimes outright strange behaviors. And, behaviors having to do with territoriality, foraging, or mating look rather different when you are that slow.

Are you leveraging the slothiness of the design for this robot somehow?

Sadly, the sloth design serves no technical purpose. But we are also viewing the SlothBot as an outreach platform to get kids excited about robotics and/or conservation biology. And having the robot look like a sloth certainly cannot hurt.

“Slowness is ideal for use cases that require a long-term, persistent presence in an environment, like for monitoring tasks. I can imagine slow robots being out on farm fields for entire growing cycles, or suspended on the ocean floor keeping track of pollutants or temperature variations.”
—Magnus Egerstedt, Georgia Tech

Can you talk more about slowness as a design paradigm?

The SlothBot is part of a broader design philosophy that I have started calling “Robot Ecology.” In ecology, the connections between individuals and their environments/habitats play a central role. And the same should hold true in robotics. The robot design must be understood in the environmental context in which it is to be deployed. And, if your task is to be present in a slowly varying environment over a long time scale, being slow seems like the right way to go. Slowness is ideal for use cases that require a long-term, persistent presence in an environment, like for monitoring tasks, where the environment itself is slowly varying. I can imagine slow robots being out on farm fields for entire growing cycles, or suspended on the ocean floor keeping track of pollutants or temperature variations.

How do sloths inspire SlothBot’s functionality?

Its motions are governed by what we call survival constraints. These constraints ensure that the SlothBot is always able to get to a sunny spot to recharge. The actual performance objective that we have given to the robot is to minimize energy consumption, i.e., to simply do nothing subject to the survival constraints. The majority of the time, the robot simply sits there under the trees, measuring various things, seemingly doing absolutely nothing and being rather sloth-like. Whenever the SlothBot does move, it does not move according to some fixed schedule. Instead, it moves because it has to in order to “survive.”

How would you like to improve SlothBot?

I have a few directions I would like to take the SlothBot. One is to make the sensor suites richer to make sure that it can become a versatile and useful science instrument. Another direction involves miniaturization – I would love to see a bunch of small SlothBots “living” among the trees somewhere in a rainforest for years, providing real-time data as to what is happening to the ecosystem. Continue reading

Posted in Human Robots

#437707 Video Friday: This Robot Will Restock ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

CLAWAR 2020 – August 24-26, 2020 – [Online Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
CYBATHLON 2020 – November 13-14, 2020 – [Online Event]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Tokyo startup Telexistence has recently unveiled a new robot called the Model-T, an advanced teleoperated humanoid that can use tools and grasp a wide range of objects. Japanese convenience store chain FamilyMart plans to test the Model-T to restock shelves in up to 20 stores by 2022. In the trial, a human “pilot” will operate the robot remotely, handling items like beverage bottles, rice balls, sandwiches, and bento boxes.

With Model-T and AWP, FamilyMart and TX aim to realize a completely new store operation by remoteizing and automating the merchandise restocking work, which requires a large number of labor-hours. As a result, stores can operate with less number of workers and enable them to recruit employees regardless of the store’s physical location.

[ Telexistence ]

Quadruped dance-off should be a new robotics competition at IROS or ICRA.

I dunno though, that moonwalk might keep Spot in the lead…

[ Unitree ]

Through a hybrid of simulation and real-life training, this air muscle robot is learning to play table tennis.

Table tennis requires to execute fast and precise motions. To gain precision it is necessary to explore in this high-speed regimes, however, exploration can be safety-critical at the same time. The combination of RL and muscular soft robots allows to close this gap. While robots actuated by pneumatic artificial muscles generate high forces that are required for e.g. smashing, they also offer safe execution of explosive motions due to antagonistic actuation.

To enable practical training without real balls, we introduce Hybrid Sim and Real Training (HYSR) that replays prerecorded real balls in simulation while executing actions on the real system. In this manner, RL can learn the challenging motor control of the PAM-driven robot while executing ~15000 hitting motions.

[ Max Planck Institute ]

Thanks Dieter!

Anthony Cowley wrote in to share his recent thesis work on UPSLAM, a fast and lightweight SLAM technique that records data in panoramic depth images (just PNGs) that are easy to visualize and even easier to share between robots, even on low-bandwidth networks.

[ UPenn ]

Thanks Anthony!

GITAI’s G1 is the space dedicated general-purpose robot. G1 robot will enable automation of various tasks internally & externally on space stations and for lunar base development.

[ Gitai ]

The University of Michigan has a fancy new treadmill that’s built right into the floor, which proves to be a bit much for Mini Cheetah.

But Cassie Blue won’t get stuck on no treadmill! She goes for a 0.3 mile walk across campus, which ends when a certain someone ran the gantry into Cassie Blue’s foot.

[ Michigan Robotics ]

Some serious quadruped research going on at UT Austin Human Centered Robotics Lab.

[ HCRL ]

Will Burrard-Lucas has spent lockdown upgrading his slightly indestructible BeetleCam wildlife photographing robot.

[ Will Burrard-Lucas ]

Teleoperated surgical robots are becoming commonplace in operating rooms, but many are massive (sometimes taking up an entire room) and are difficult to manipulate, especially if a complication arises and the robot needs to removed from the patient. A new collaboration between the Wyss Institute, Harvard University, and Sony Corporation has created the mini-RCM, a surgical robot the size of a tennis ball that weighs as much as a penny, and performed significantly better than manually operated tools in delicate mock-surgical procedures. Importantly, its small size means it is more comparable to the human tissues and structures on which it operates, and it can easily be removed by hand if needed.

[ Harvard Wyss ]

Yaskawa appears to be working on a robot that can scan you with a temperature gun and then jam a mask on your face?

[ Motoman ]

Maybe we should just not have people working in mines anymore, how about that?

[ Exyn ]

Many current human-robot interactive systems tend to use accurate and fast – but also costly – actuators and tracking systems to establish working prototypes that are safe to use and deploy for user studies. This paper presents an embedded framework to build a desktop space for human-robot interaction, using an open-source robot arm, as well as two RGB cameras connected to a Raspberry Pi-based controller that allow a fast yet low-cost object tracking and manipulation in 3D. We show in our evaluations that this facilitates prototyping a number of systems in which user and robot arm can commonly interact with physical objects.

[ Paper ]

IBM Research is proud to host professor Yoshua Bengio — one of the world’s leading experts in AI — in a discussion of how AI can contribute to the fight against COVID-19.

[ IBM Research ]

Ira Pastor, ideaXme life sciences ambassador interviews Professor Dr. Hiroshi Ishiguro, the Director of the Intelligent Robotics Laboratory, of the Department of Systems Innovation, in the Graduate School of Engineering Science, at Osaka University, Japan.

[ ideaXme ]

A CVPR talk from Stanford’s Chelsea Finn on “Generalization in Visuomotor Learning.”

[ Stanford ] Continue reading

Posted in Human Robots

#437667 17 Teams to Take Part in DARPA’s ...

Among all of the other in-person events that have been totally wrecked by COVID-19 is the Cave Circuit of the DARPA Subterranean Challenge. DARPA has already hosted the in-person events for the Tunnel and Urban SubT circuits (see our previous coverage here), and the plan had always been for a trio of events representing three uniquely different underground environments in advance of the SubT Finals, which will somehow combine everything into one bonkers course.

While the SubT Urban Circuit event snuck in just under the lockdown wire in late February, DARPA made the difficult (but prudent) decision to cancel the in-person Cave Circuit event. What this means is that there will be no Systems Track Cave competition, which is a serious disappointment—we were very much looking forward to watching teams of robots navigating through an entirely unpredictable natural environment with a lot of verticality. Fortunately, DARPA is still running a Virtual Cave Circuit, and 17 teams will be taking part in this competition featuring a simulated cave environment that’s as dynamic and detailed as DARPA can make it.

From DARPA’s press releases:

DARPA’s Subterranean (SubT) Challenge will host its Cave Circuit Virtual Competition, which focuses on innovative solutions to map, navigate, and search complex, simulated cave environments November 17. Qualified teams have until Oct. 15 to develop and submit software-based solutions for the Cave Circuit via the SubT Virtual Portal, where their technologies will face unknown cave environments in the cloud-based SubT Simulator. Until then, teams can refine their roster of selected virtual robot models, choose sensor payloads, and continue to test autonomy approaches to maximize their score.

The Cave Circuit also introduces new simulation capabilities, including digital twins of Systems Competition robots to choose from, marsupial-style platforms combining air and ground robots, and breadcrumb nodes that can be dropped by robots to serve as communications relays. Each robot configuration has an associated cost, measured in SubT Credits – an in-simulation currency – based on performance characteristics such as speed, mobility, sensing, and battery life.

Each team’s simulated robots must navigate realistic caves, with features including natural terrain and dynamic rock falls, while they search for and locate various artifacts on the course within five meters of accuracy to score points during a 60-minute timed run. A correct report is worth one point. Each course contains 20 artifacts, which means each team has the potential for a maximum score of 20 points. Teams can leverage numerous practice worlds and even build their own worlds using the cave tiles found in the SubT Tech Repo to perfect their approach before they submit one official solution for scoring. The DARPA team will then evaluate the solution on a set of hidden competition scenarios.

Of the 17 qualified teams (you can see all of them here), there are a handful that we’ll quickly point out. Team BARCS, from Michigan Tech, was the winner of the SubT Virtual Urban Circuit, meaning that they may be the team to beat on Cave as well, although the course is likely to be unique enough that things will get interesting. Some Systems Track teams to watch include Coordinated Robotics, CTU-CRAS-NORLAB, MARBLE, NUS SEDS, and Robotika, and there are also a handful of brand new teams as well.

Now, just because there’s no dedicated Cave Circuit for the Systems Track teams, it doesn’t mean that there won’t be a Cave component (perhaps even a significant one) in the final event, which as far as we know is still scheduled to happen in fall of next year. We’ve heard that many of the Systems Track teams have been testing out their robots in caves anyway, and as the virtual event gets closer, we’ll be doing a sort of Virtual Systems Track series that highlights how different teams are doing mock Cave Circuits in caves they’ve found for themselves.

For more, we checked in with DARPA SubT program manager Dr. Timothy H. Chung.

IEEE Spectrum: Was it a difficult decision to cancel the Systems Track for Cave?

Tim Chung: The decision to go virtual only was heart wrenching, because I think DARPA’s role is to offer up opportunities that may be unimaginable for some of our competitors, like opening up a cave-type site for this competition. We crawled and climbed through a number of these sites, and I share the sense of disappointment that both our team and the competitors have that we won’t be able to share all the advances that have been made since the Urban Circuit. But what we’ve been able to do is pour a lot of our energy and the insights that we got from crawling around in those caves into what’s going to be a really great opportunity on the Virtual Competition side. And whether it’s a global pandemic, or just lack of access to physical sites like caves, virtual environments are an opportunity that we want to develop.

“The simulator offers us a chance to look at where things could be … it really allows for us to find where some of those limits are in the technology based only on our imagination.”
—Timothy H. Chung, DARPA

What kind of new features will be included in the Virtual Cave Circuit for this competition?

I’m really excited about these particular features because we’re seeing an opportunity for increased synergy between the physical and the virtual. The first I’d say is that we scanned some of the Systems Track robots using photogrammetry and combined that with some additional models that we got from the systems competitors themselves to turn their systems robots into virtual models. We often talk about the sim to real transfer and how successful we can get a simulation to transfer over to the physical world, but now we’ve taken something from the physical world and made it virtual. We’ve validated the controllers as well as the kinematics of the robots, we’ve iterated with the systems competitors themselves, and now we have these 13 robots (air and ground) in the SubT Tech Repo that now all virtual competitors can take advantage of.

We also have additional robot capability. Those comms bread crumbs are common among many of the competitors, so we’ve adopted that in the virtual world, and now you have comms relay nodes that are baked in to the SubT Simulator—you can have either six or twelve comms nodes that you can drop from a variety of our ground robot platforms. We have the marsupial deployment capability now, so now we have parent ground robots that can be mixed and matched with different child drones to become marsupial pairs.

And this is something I’ve been planning for for a while: we now have the ability to trigger things like rock falls. They still don’t quite look like Indiana Jones with the boulder coming down the corridor, but this comes really close. In addition to it just being an interesting and realistic consideration, we get to really dynamically test and stress the robots’ ability to navigate and recognize that something has changed in the environment and respond to it.

Image: DARPA

DARPA is still running a Virtual Cave Circuit, and 17 teams will be taking part in this competition featuring a simulated cave environment.

No simulation is perfect, so can you talk to us about what kinds of things aren’t being simulated right now? Where does the simulator not match up to reality?

I think that question is foundational to any conversation about simulation. I’ll give you a couple of examples:

We have the ability to represent wholesale damage to a robot, but it’s not at the actuator or component level. So there’s not a reliability model, although I think that would be really interesting to incorporate so that you could do assessments on things like mean time to failure. But if a robot falls off a ledge, it can be disabled by virtue of being too damaged to continue.

With communications, and this is one that’s near and dear not only to my heart but also to all of those that have lived through developing communication systems and robotic systems, we’ve gone through and conducted RF surveys of underground environments to get a better handle on what propagation effects are. There’s a lot of research that has gone into this, and trying to carry through some of that realism, we do have path loss models for RF communications baked into the SubT Simulator. For example, when you drop a bread crumb node, it’s using a path loss model so that it can represent the degradation of signal as you go farther into a cave. Now, we’re not modeling it at the Maxwell equations level, which I think would be awesome, but we’re not quite there yet.

We do have things like battery depletion, sensor degradation to the extent that simulators can degrade sensor inputs, and things like that. It’s just amazing how close we can get in some places, and how far away we still are in others, and I think showing where the limits are of how far you can get simulation is all part and parcel of why SubT Challenge wants to have both System and Virtual tracks. Simulation can be an accelerant, but it’s not going to be the panacea for development and innovation, and I think all the competitors are cognizant those limitations.

One of the most amazing things about the SubT Virtual Track is that all of the robots operate fully autonomously, without the human(s) in the loop that the System Track teams have when they compete. Why make the Virtual Track even more challenging in that way?

I think it’s one of the defining, delineating attributes of the Virtual Track. Our continued vision for the simulation side is that the simulator offers us a chance to look at where things could be, and allows for us to explore things like larger scales, or increased complexity, or types of environments that we can’t physically gain access to—it really allows for us to find where some of those limits are in the technology based only on our imagination, and this is one of the intrinsic values of simulation.

But I think finding a way to incorporate human input, or more generally human factors like teleoperation interfaces and the in-situ stress that you might not be able to recreate in the context of a virtual competition provided a good reason for us to delineate the two competitions, with the Virtual Competition really being about the role of fully autonomous or self-sufficient systems going off and doing their solution without human guidance, while also acknowledging that the real world has conditions that would not necessarily be represented by a fully simulated version. Having said that, I think cognitive engineering still has an incredibly important role to play in human robot interaction.

What do we have to look forward to during the Virtual Competition Showcase?

We have a number of additional features and capabilities that we’ve baked into the simulator that will allow for us to derive some additional insights into our competition runs. Those insights might involve things like the performance of one or more robots in a given scenario, or the impact of the environment on different types of robots, and what I can tease is that this will be an opportunity for us to showcase both the technology and also the excitement of the robots competing in the virtual environment. I’m trying not to give too many spoilers, but we’ll have an opportunity to really get into the details.

Check back as we get closer to the 17 November event for more on the DARPA SubT Challenge. Continue reading

Posted in Human Robots

#437645 How Robots Became Essential Workers in ...

Photo: Sivaram V/Reuters

A robot, developed by Asimov Robotics to spread awareness about the coronavirus, holds a tray with face masks and sanitizer.

As the coronavirus emergency exploded into a full-blown pandemic in early 2020, forcing countless businesses to shutter, robot-making companies found themselves in an unusual situation: Many saw a surge in orders. Robots don’t need masks, can be easily disinfected, and, of course, they don’t get sick.

An army of automatons has since been deployed all over the world to help with the crisis: They are monitoring patients, sanitizing hospitals, making deliveries, and helping frontline medical workers reduce their exposure to the virus. Not all robots operate autonomously—many, in fact, require direct human supervision, and most are limited to simple, repetitive tasks. But robot makers say the experience they’ve gained during this trial-by-fire deployment will make their future machines smarter and more capable. These photos illustrate how robots are helping us fight this pandemic—and how they might be able to assist with the next one.

DROID TEAM

Photo: Clement Uwiringiyimana/Reuters

A squad of robots serves as the first line of defense against person-to-person transmission at a medical center in Kigali, Rwanda. Patients walking into the facility get their temperature checked by the machines, which are equipped with thermal cameras atop their heads. Developed by UBTech Robotics, in China, the robots also use their distinctive appearance—they resemble characters out of a Star Wars movie—to get people’s attention and remind them to wash their hands and wear masks.

Photo: Clement Uwiringiyimana/Reuters

SAY “AAH”
To speed up COVID-19 testing, a team of Danish doctors and engineers at the University of Southern Denmark and at Lifeline Robotics is developing a fully automated swab robot. It uses computer vision and machine learning to identify the perfect target spot inside the person’s throat; then a robotic arm with a long swab reaches in to collect the sample—all done with a swiftness and consistency that humans can’t match. In this photo, one of the creators, Esben Østergaard, puts his neck on the line to demonstrate that the robot is safe.

Photo: University of Southern Denmark

GERM ZAPPER
After six of its doctors became infected with the coronavirus, the Sassarese hospital in Sardinia, Italy, tightened its safety measures. It also brought in the robots. The machines, developed by UVD Robots, use lidar to navigate autonomously. Each bot carries an array of powerful short-wavelength ultraviolet-C lights that destroy the genetic material of viruses and other pathogens after a few minutes of exposure. Now there is a spike in demand for UV-disinfection robots as hospitals worldwide deploy them to sterilize intensive care units and operating theaters.

Photo: UVD Robots

RUNNING ERRANDS

In medical facilities, an ideal role for robots is taking over repetitive chores so that nurses and physicians can spend their time doing more important tasks. At Shenzhen Third People’s Hospital, in China, a robot called Aimbot drives down the hallways, enforcing face-mask and social-distancing rules and spraying disinfectant. At a hospital near Austin, Texas, a humanoid robot developed by Diligent Robotics fetches supplies and brings them to patients’ rooms. It repeats this task day and night, tirelessly, allowing the hospital staff to spend more time interacting with patients.

Photos, left: Diligent Robotics; Right: UBTech Robotics

THE DOCTOR IS IN
Nurses and doctors at Circolo Hospital in Varese, in northern Italy—the country’s hardest-hit region—use robots as their avatars, enabling them to check on their patients around the clock while minimizing exposure and conserving protective equipment. The robots, developed by Chinese firm Sanbot, are equipped with cameras and microphones and can also access patient data like blood oxygen levels. Telepresence robots, originally designed for offices, are becoming an invaluable tool for medical workers treating highly infectious diseases like COVID-19, reducing the risk that they’ll contract the pathogen they’re fighting against.

Photo: Miguel Medina/AFP/Getty Images

HELP FROM ABOVE

Photo: Zipline

Authorities in several countries attempted to use drones to enforce lockdowns and social-distancing rules, but the effectiveness of such measures remains unclear. A better use of drones was for making deliveries. In the United States, startup Zipline deployed its fixed-wing autonomous aircraft to connect two medical facilities 17 kilometers apart. For the staff at the Huntersville Medical Center, in North Carolina, masks, gowns, and gloves literally fell from the skies. The hope is that drones like Zipline’s will one day be able to deliver other kinds of critical materials, transport test samples, and distribute drugs and vaccines.

Photos: Zipline

SPECIAL DELIVERY
It’s not quite a robot takeover, but the streets and sidewalks of dozens of cities around the world have seen a proliferation of hurrying wheeled machines. Delivery robots are now in high demand as online orders continue to skyrocket.

In Hamburg, the six-wheeled robots developed by Starship Technologies navigate using cameras, GPS, and radar to bring groceries to customers.

Photo: Christian Charisius/Picture Alliance/Getty Images

In Medellín, Colombia, a startup called Rappi deployed a fleet of robots, built by Kiwibot, to deliver takeout to people in lockdown.

Photo: Joaquin Sarmiento/AFP/Getty Images

China’s JD.com, one of the country’s largest e-commerce companies, is using 20 robots to transport goods in Changsha, Hunan province; each vehicle has 22 separate compartments, which customers unlock using face authentication.

Photos: TPG/Getty Images

LIFE THROUGH ROBOTS
Robots can’t replace real human interaction, of course, but they can help people feel more connected at a time when meetings and other social activities are mostly on hold.

In Ostend, Belgium, ZoraBots brought one of its waist-high robots, equipped with cameras, microphones, and a screen, to a nursing home, allowing residents like Jozef Gouwy to virtually communicate with loved ones despite a ban on in-person visits.

Photo: Yves Herman/Reuters

In Manila, nearly 200 high school students took turns “teleporting” into a tall wheeled robot, developed by the school’s robotics club, to walk on stage during their graduation ceremony.

Photo: Ezra Acayan/Getty Images

And while Japan’s Chiba Zoological Park was temporarily closed due to the pandemic, the zoo used an autonomous robotic vehicle called RakuRo, equipped with 360-degree cameras, to offer virtual tours to children quarantined at home.

Photo: Tomohiro Ohsumi/Getty Images

SENTRY ROBOTS
Offices, stores, and medical centers are adopting robots as enforcers of a new coronavirus code.

At Fortis Hospital in Bangalore, India, a robot called Mitra uses a thermal camera to perform a preliminary screening of patients.

Photo: Manjunath Kiran/AFP/Getty Images

In Tunisia, the police use a tanklike robot to patrol the streets of its capital city, Tunis, verifying that citizens have permission to go out during curfew hours.

Photo: Khaled Nasraoui/Picture Alliance/Getty Images

And in Singapore, the Bishan-Ang Moh Kio Park unleashed a Spot robot dog, developed by Boston Dynamics, to search for social-distancing violators. Spot won’t bark at them but will rather play a recorded message reminding park-goers to keep their distance.

Photo: Roslan Rahman/AFP/Getty Images

This article appears in the October 2020 print issue as “How Robots Became Essential Workers.” Continue reading

Posted in Human Robots

#437639 Boston Dynamics’ Spot Is Helping ...

In terms of places where you absolutely want a robot to go instead of you, what remains of the utterly destroyed Chernobyl Reactor 4 should be very near the top of your list. The reactor, which suffered a catastrophic meltdown in 1986, has been covered up in almost every way possible in an effort to keep its nuclear core contained. But eventually, that nuclear material is going to have to be dealt with somehow, and in order to do that, it’s important to understand which bits of it are just really bad, and which bits are the actual worst. And this is where Spot is stepping in to help.

The big open space that Spot is walking through is right next to what’s left of Reactor 4. Within six months of the disaster, Reactor 4 was covered in a sarcophagus made of concrete and steel to try and keep all the nasty nuclear fuel from leaking out more than it already had, and it still contains “30 tons of highly contaminated dust, 16 tons of uranium and plutonium, and 200 tons of radioactive lava.” Oof. Over the next 10 years, the sarcophagus slowly deteriorated, and despite the addition of that gigantic network of steel support beams that you can see in the video, in the late 1990s it was decided to erect an enormous building over the entire mess to try and stabilize it for as long as possible.

Reactor 4 is now snugly inside the massive New Safe Confinement (NSC) structure, and the idea is that eventually, the structure will allow for the safe disassembly of what’s left of the reactor, although nobody is quite sure how to do that. This is all just to say that the area inside of the containment structure offers a lot of good opportunities for robots to take over from humans.

This particular Spot is owned by the U.K. Atomic Energy Authority, and was packed off to Russia with the assistance of the Robotics and Artificial Intelligence in Nuclear (RAIN) initiative and the National Centre for Nuclear Robotics. Dr. Dave Megson-Smith, who is a researcher at the University of Bristol, in the U.K., and part of the Hot Robotics Facility at the National Nuclear User Facility, was one of the scientists lucky enough to accompany Spot on its adventure. Megson-Smith specializes in sensor development, and he equipped Spot with a collimated radiation sensor in addition to its mapping payload. “We actually built a map of the radiation coming out of the front wall of Chernobyl power plant as we were in there with it,” Megson-Smith told us, and was able to share this picture, which shows a map of gamma photon count rate:

Image: University of Bristol

Researchers equipped Spot with a collimated radiation sensor and use one of the data readings (gamma photon count rate) to create a map of the radiation coming out of the front wall of the Chernobyl power plant.

So what’s the reason you’d want to use a very expensive legged robot to wander around what looks like a very flat and robot friendly floor? As it turns out, the floor is very dusty in there, and a priority inside the NSC is to keep dust down as much as possible, since the dust is radioactive and gets on everything and is consequently the easiest way for radioactivity to escape the NSC. “You want to minimize picking up material, so we consider the total contact surface area,” says Megson-Smith. “If you use a legged system rather than a wheeled or tracked system, you have a much smaller footprint and you disturb the environment a lot less.” While it’s nice that Spot is nimble and can climb stairs and stuff, tracked vehicles can do that as well, so in this case, the primary driving factor of choosing a robot to work inside Chernobyl is minimizing those contact points.

Right now, routine weekly measurements in contaminated spaces at Chernobyl are done by humans, which puts those humans at risk. Spot, or a robot like it, could potentially take over from those humans, as a sort of “automated safety checker”

Right now, routine weekly measurements in contaminated spaces at Chernobyl are done by humans, which puts those humans at risk. Spot, or a robot like it, could potentially take over from those humans, as a sort of “automated safety checker” able to work in medium level contaminated environments.” As far as more dangerous areas go, there’s a lot of uncertainty about what Spot is actually capable of, according to Megson-Smith. “What you think the problems are, and what the industry thinks the problems are, are subtly different things.

We were thinking that we’d have to make robots incredibly radiation proof to go into these contaminated environments, but they said, “can you just give us a system that we can send into places where humans already can go, but where we just don’t want to send humans.” Making robots incredibly radiation proof is challenging, and without extensive testing and ruggedizing, failures can be frequent, as many robots discovered at Fukushima. Indeed, Megson-Smith that in Fukushima there’s a particular section that’s known as a “robot graveyard” where robots just go to die, and they’ve had to up their standards again and again to keep the robots from failing. “So the thing they’re worried about with Spot is, what is its tolerance? What components will fail, and what can we do to harden it?” he says. “We’re approaching Boston Dynamics at the moment to see if they’ll work with us to address some of those questions.

There’s been a small amount of testing of how robots fair under harsh radiation, Megson-Smith told us, including (relatively recently) a KUKA LBR800 arm, which “stopped operating after a large radiation dose of 164.55(±1.09) Gy to its end effector, and the component causing the failure was an optical encoder.” And in case you’re wondering how much radiation that is, a 1 to 2 Gy dose to the entire body gets you acute radiation sickness and possibly death, while 8 Gy is usually just straight-up death. The goal here is not to kill robots (I mean, it sort of is), but as Megson-Smith says, “if we can work out what the weak points are in a robotic system, can we address those, can we redesign those, or at least understand when they might start to fail?” Now all he has to do is convince Boston Dynamics to send them a Spot that they can zap until it keels over.

The goal for Spot in the short term is fully autonomous radiation mapping, which seems very possible. It’ll also get tested with a wider range of sensor packages, and (happily for the robot) this will all take place safely back at home in the U.K. As far as Chernobyl is concerned, robots will likely have a substantial role to play in the near future. “Ultimately, Chernobyl has to be taken apart and decommissioned. That’s the long-term plan for the facility. To do that, you first need to understand everything, which is where we come in with our sensor systems and robotic platforms,” Megson-Smith tells us. “Since there are entire swathes of the Chernobyl nuclear plant where people can’t go in, we’d need robots like Spot to do those environmental characterizations.” Continue reading

Posted in Human Robots