Tag Archives: play

#432027 We Read This 800-Page Report on the ...

The longevity field is bustling but still fragmented, and the “silver tsunami” is coming.

That is the takeaway of The Science of Longevity, the behemoth first volume of a four-part series offering a bird’s-eye view of the longevity industry in 2017. The report, a joint production of the Biogerontology Research Foundation, Deep Knowledge Life Science, Aging Analytics Agency, and Longevity.International, synthesizes the growing array of academic and industry ventures related to aging, healthspan, and everything in between.

This is huge, not only in scale but also in ambition. The report, totally worth a read here, will be followed by four additional volumes in 2018, covering topics ranging from the business side of longevity ventures to financial systems to potential tensions between life extension and religion.

And that’s just the first step. The team hopes to publish updated versions of the report annually, giving scientists, investors, and regulatory agencies an easy way to keep their finger on the longevity pulse.

“In 2018, ‘aging’ remains an unnamed adversary in an undeclared war. For all intents and purposes it is mere abstraction in the eyes of regulatory authorities worldwide,” the authors write.

That needs to change.

People often arrive at the field of aging from disparate areas with wildly diverse opinions and strengths. The report compiles these individual efforts at cracking aging into a systematic resource—a “periodic table” for longevity that clearly lays out emerging trends and promising interventions.

The ultimate goal? A global framework serving as a road map to guide the burgeoning industry. With such a framework in hand, academics and industry alike are finally poised to petition the kind of large-scale investments and regulatory changes needed to tackle aging with a unified front.

Infographic depicting many of the key research hubs and non-profits within the field of geroscience.
Image Credit: Longevity.International
The Aging Globe
The global population is rapidly aging. And our medical and social systems aren’t ready to handle this oncoming “silver tsunami.”

Take the medical field. Many age-related diseases such as Alzheimer’s lack effective treatment options. Others, including high blood pressure, stroke, lung or heart problems, require continuous medication and monitoring, placing enormous strain on medical resources.

What’s more, because disease risk rises exponentially with age, medical care for the elderly becomes a game of whack-a-mole: curing any individual disease such as cancer only increases healthy lifespan by two to three years before another one hits.

That’s why in recent years there’s been increasing support for turning the focus to the root of the problem: aging. Rather than tackling individual diseases, geroscience aims to add healthy years to our lifespan—extending “healthspan,” so to speak.

Despite this relative consensus, the field still faces a roadblock. The US FDA does not yet recognize aging as a bona fide disease. Without such a designation, scientists are banned from testing potential interventions for aging in clinical trials (that said, many have used alternate measures such as age-related biomarkers or Alzheimer’s symptoms as a proxy).

Luckily, the FDA’s stance is set to change. The promising anti-aging drug metformin, for example, is already in clinical trials, examining its effect on a variety of age-related symptoms and diseases. This report, and others to follow, may help push progress along.

“It is critical for investors, policymakers, scientists, NGOs, and influential entities to prioritize the amelioration of the geriatric world scenario and recognize aging as a critical matter of global economic security,” the authors say.

Biomedical Gerontology
The causes of aging are complex, stubborn, and not all clear.

But the report lays out two main streams of intervention with already promising results.

The first is to understand the root causes of aging and stop them before damage accumulates. It’s like meddling with cogs and other inner workings of a clock to slow it down, the authors say.

The report lays out several treatments to keep an eye on.

Geroprotective drugs is a big one. Often repurposed from drugs already on the market, these traditional small molecule drugs target a wide variety of metabolic pathways that play a role in aging. Think anti-oxidants, anti-inflammatory, and drugs that mimic caloric restriction, a proven way to extend healthspan in animal models.

More exciting are the emerging technologies. One is nanotechnology. Nanoparticles of carbon, “bucky-balls,” for example, have already been shown to fight viral infections and dangerous ion particles, as well as stimulate the immune system and extend lifespan in mice (though others question the validity of the results).

Blood is another promising, if surprising, fountain of youth: recent studies found that molecules in the blood of the young rejuvenate the heart, brain, and muscles of aged rodents, though many of these findings have yet to be replicated.

Rejuvenation Biotechnology
The second approach is repair and maintenance.

Rather than meddling with inner clockwork, here we force back the hands of a clock to set it back. The main example? Stem cell therapy.

This type of approach would especially benefit the brain, which harbors small, scattered numbers of stem cells that deplete with age. For neurodegenerative diseases like Alzheimer’s, in which neurons progressively die off, stem cell therapy could in theory replace those lost cells and mend those broken circuits.

Once a blue-sky idea, the discovery of induced pluripotent stem cells (iPSCs), where scientists can turn skin and other mature cells back into a stem-like state, hugely propelled the field into near reality. But to date, stem cells haven’t been widely adopted in clinics.

It’s “a toolkit of highly innovative, highly invasive technologies with clinical trials still a great many years off,” the authors say.

But there is a silver lining. The boom in 3D tissue printing offers an alternative approach to stem cells in replacing aging organs. Recent investment from the Methuselah Foundation and other institutions suggests interest remains high despite still being a ways from mainstream use.

A Disruptive Future
“We are finally beginning to see an industry emerge from mankind’s attempts to make sense of the biological chaos,” the authors conclude.

Looking through the trends, they identified several technologies rapidly gaining steam.

One is artificial intelligence, which is already used to bolster drug discovery. Machine learning may also help identify new longevity genes or bring personalized medicine to the clinic based on a patient’s records or biomarkers.

Another is senolytics, a class of drugs that kill off “zombie cells.” Over 10 prospective candidates are already in the pipeline, with some expected to enter the market in less than a decade, the authors say.

Finally, there’s the big gun—gene therapy. The treatment, unlike others mentioned, can directly target the root of any pathology. With a snip (or a swap), genetic tools can turn off damaging genes or switch on ones that promote a youthful profile. It is the most preventative technology at our disposal.

There have already been some success stories in animal models. Using gene therapy, rodents given a boost in telomerase activity, which lengthens the protective caps of DNA strands, live healthier for longer.

“Although it is the prospect farthest from widespread implementation, it may ultimately prove the most influential,” the authors say.

Ultimately, can we stop the silver tsunami before it strikes?

Perhaps not, the authors say. But we do have defenses: the technologies outlined in the report, though still immature, could one day stop the oncoming tidal wave in its tracks.

Now we just have to bring them out of the lab and into the real world. To push the transition along, the team launched Longevity.International, an online meeting ground that unites various stakeholders in the industry.

By providing scientists, entrepreneurs, investors, and policy-makers a platform for learning and discussion, the authors say, we may finally generate enough drive to implement our defenses against aging. The war has begun.

Read the report in full here, and watch out for others coming soon here. The second part of the report profiles 650 (!!!) longevity-focused research hubs, non-profits, scientists, conferences, and literature. It’s an enormously helpful resource—totally worth keeping it in your back pocket for future reference.

Image Credit: Worraket / Shutterstock.com Continue reading

Posted in Human Robots

#432009 How Swarm Intelligence Is Making Simple ...

As a group, simple creatures following simple rules can display a surprising amount of complexity, efficiency, and even creativity. Known as swarm intelligence, this trait is found throughout nature, but researchers have recently begun using it to transform various fields such as robotics, data mining, medicine, and blockchains.

Ants, for example, can only perform a limited range of functions, but an ant colony can build bridges, create superhighways of food and information, wage war, and enslave other ant species—all of which are beyond the comprehension of any single ant. Likewise, schools of fish, flocks of birds, beehives, and other species exhibit behavior indicative of planning by a higher intelligence that doesn’t actually exist.

It happens by a process called stigmergy. Simply put, a small change by a group member causes other members to behave differently, leading to a new pattern of behavior.

When an ant finds a food source, it marks the path with pheromones. This attracts other ants to that path, leads them to the food source, and prompts them to mark the same path with more pheromones. Over time, the most efficient route will become the superhighway, as the faster and easier a path is, the more ants will reach the food and the more pheromones will be on the path. Thus, it looks as if a more intelligent being chose the best path, but it emerged from the tiny, simple changes made by individuals.

So what does this mean for humans? Well, a lot. In the past few decades, researchers have developed numerous algorithms and metaheuristics, such as ant colony optimization and particle swarm optimization, and they are rapidly being adopted.

Swarm Robotics
A swarm of robots would work on the same principles as an ant colony: each member has a simple set of rules to follow, leading to self-organization and self-sufficiency.

For example, researchers at Georgia Robotics and InTelligent Systems (GRITS) created a small swarm of simple robots that can spell and play piano. The robots cannot communicate, but based solely on the position of surrounding robots, they are able to use their specially-created algorithm to determine the optimal path to complete their task.

This is also immensely useful for drone swarms.

Last February, Ehang, an aviation company out of China, created a swarm of a thousand drones that not only lit the sky with colorful, intricate displays, but demonstrated the ability to improvise and troubleshoot errors entirely autonomously.

Further, just recently, the University of Cambridge and Koc University unveiled their idea for what they call the Energy Neutral Internet of Drones. Amazingly, this drone swarm would take initiative to share information or energy with other drones that did not receive a communication or are running low on energy.

Militaries all of the world are utilizing this as well.

Last year, the US Department of Defense announced it had successfully tested a swarm of miniature drones that could carry out complex missions cheaper and more efficiently. They claimed, “The micro-drones demonstrated advanced swarm behaviors such as collective decision-making, adaptive formation flying, and self-healing.”

Some experts estimate at least 30 nations are actively developing drone swarms—and even submersible drones—for military missions, including intelligence gathering, missile defense, precision missile strikes, and enhanced communication.

NASA also plans on deploying swarms of tiny spacecraft for space exploration, and the medical community is looking into using swarms of nanobots for precision delivery of drugs, microsurgery, targeting toxins, and biological sensors.

What If Humans Are the Ants?
The strength of any blockchain comes from the size and diversity of the community supporting it. Cryptocurrencies like Bitcoin, Ethereum, and Litecoin are driven by the people using, investing in, and, most importantly, mining them so their blockchains can function. Without an active community, or swarm, their blockchains wither away.

When viewed from a great height, a blockchain performs eerily like an ant colony in that it will naturally find the most efficient way to move vast amounts of information.

Miners compete with each other to perform the complex calculations necessary to add another block, for which the winner is rewarded with the blockchain’s native currency and agreed-upon fees. Of course, the miner with the more powerful computers is more likely to win the reward, thereby empowering the winner’s ability to mine and receive even more rewards. Over time, fewer and fewer miners are going to exist, as the winners are able to more efficiently shoulder more of the workload, in much the same way that ants build superhighways.

Further, a company called Unanimous AI has developed algorithms that allow humans to collectively make predictions. So far, the AI algorithms and their human participants have made some astoundingly accurate predictions, such as the first four winning horses of the Kentucky Derby, the Oscar winners, the Stanley Cup winners, and others. The more people involved in the swarm, the greater their predictive power will be.

To be clear, this is not a prediction based on group consensus. Rather, the swarm of humans uses software to input their opinions in real time, thus making micro-changes to the rest of the swarm and the inputs of other members.

Studies show that swarm intelligence consistently outperforms individuals and crowds working without the algorithms. While this is only the tip of the iceberg, some have suggested swarm intelligence can revolutionize how doctors diagnose a patient or how products are marketed to consumers. It might even be an essential step in truly creating AI.

While swarm intelligence is an essential part of many species’ success, it’s only a matter of time before humans harness its effectiveness as well.

Image Credit: Nature Bird Photography / Shutterstock.com Continue reading

Posted in Human Robots

#431999 Brain-Like Chips Now Beat the Human ...

Move over, deep learning. Neuromorphic computing—the next big thing in artificial intelligence—is on fire.

Just last week, two studies individually unveiled computer chips modeled after information processing in the human brain.

The first, published in Nature Materials, found a perfect solution to deal with unpredictability at synapses—the gap between two neurons that transmit and store information. The second, published in Science Advances, further amped up the system’s computational power, filling synapses with nanoclusters of supermagnetic material to bolster information encoding.

The result? Brain-like hardware systems that compute faster—and more efficiently—than the human brain.

“Ultimately we want a chip as big as a fingernail to replace one big supercomputer,” said Dr. Jeehwan Kim, who led the first study at MIT in Cambridge, Massachusetts.

Experts are hopeful.

“The field’s full of hype, and it’s nice to see quality work presented in an objective way,” said Dr. Carver Mead, an engineer at the California Institute of Technology in Pasadena not involved in the work.

Software to Hardware
The human brain is the ultimate computational wizard. With roughly 100 billion neurons densely packed into the size of a small football, the brain can deftly handle complex computation at lightning speed using very little energy.

AI experts have taken note. The past few years saw brain-inspired algorithms that can identify faces, falsify voices, and play a variety of games at—and often above—human capability.

But software is only part of the equation. Our current computers, with their transistors and binary digital systems, aren’t equipped to run these powerful algorithms.

That’s where neuromorphic computing comes in. The idea is simple: fabricate a computer chip that mimics the brain at the hardware level. Here, data is both processed and stored within the chip in an analog manner. Each artificial synapse can accumulate and integrate small bits of information from multiple sources and fire only when it reaches a threshold—much like its biological counterpart.

Experts believe the speed and efficiency gains will be enormous.

For one, the chips will no longer have to transfer data between the central processing unit (CPU) and storage blocks, which wastes both time and energy. For another, like biological neural networks, neuromorphic devices can support neurons that run millions of streams of parallel computation.

A “Brain-on-a-chip”
Optimism aside, reproducing the biological synapse in hardware form hasn’t been as easy as anticipated.

Neuromorphic chips exist in many forms, but often look like a nanoscale metal sandwich. The “bread” pieces are generally made of conductive plates surrounding a switching medium—a conductive material of sorts that acts like the gap in a biological synapse.

When a voltage is applied, as in the case of data input, ions move within the switching medium, which then creates conductive streams to stimulate the downstream plate. This change in conductivity mimics the way biological neurons change their “weight,” or the strength of connectivity between two adjacent neurons.

But so far, neuromorphic synapses have been rather unpredictable. According to Kim, that’s because the switching medium is often comprised of material that can’t channel ions to exact locations on the downstream plate.

“Once you apply some voltage to represent some data with your artificial neuron, you have to erase and be able to write it again in the exact same way,” explains Kim. “But in an amorphous solid, when you write again, the ions go in different directions because there are lots of defects.”

In his new study, Kim and colleagues swapped the jelly-like switching medium for silicon, a material with only a single line of defects that acts like a channel to guide ions.

The chip starts with a thin wafer of silicon etched with a honeycomb-like pattern. On top is a layer of silicon germanium—something often present in transistors—in the same pattern. This creates a funnel-like dislocation, a kind of Grand Canal that perfectly shuttles ions across the artificial synapse.

The researchers then made a neuromorphic chip containing these synapses and shot an electrical zap through them. Incredibly, the synapses’ response varied by only four percent—much higher than any neuromorphic device made with an amorphous switching medium.

In a computer simulation, the team built a multi-layer artificial neural network using parameters measured from their device. After tens of thousands of training examples, their neural network correctly recognized samples 95 percent of the time, just 2 percent lower than state-of-the-art software algorithms.

The upside? The neuromorphic chip requires much less space than the hardware that runs deep learning algorithms. Forget supercomputers—these chips could one day run complex computations right on our handheld devices.

A Magnetic Boost
Meanwhile, in Boulder, Colorado, Dr. Michael Schneider at the National Institute of Standards and Technology also realized that the standard switching medium had to go.

“There must be a better way to do this, because nature has figured out a better way to do this,” he says.

His solution? Nanoclusters of magnetic manganese.

Schneider’s chip contained two slices of superconducting electrodes made out of niobium, which channel electricity with no resistance. When researchers applied different magnetic fields to the synapse, they could control the alignment of the manganese “filling.”

The switch gave the chip a double boost. For one, by aligning the switching medium, the team could predict the ion flow and boost uniformity. For another, the magnetic manganese itself adds computational power. The chip can now encode data in both the level of electrical input and the direction of the magnetisms without bulking up the synapse.

It seriously worked. At one billion times per second, the chips fired several orders of magnitude faster than human neurons. Plus, the chips required just one ten-thousandth of the energy used by their biological counterparts, all the while synthesizing input from nine different sources in an analog manner.

The Road Ahead
These studies show that we may be nearing a benchmark where artificial synapses match—or even outperform—their human inspiration.

But to Dr. Steven Furber, an expert in neuromorphic computing, we still have a ways before the chips go mainstream.

Many of the special materials used in these chips require specific temperatures, he says. Magnetic manganese chips, for example, require temperatures around absolute zero to operate, meaning they come with the need for giant cooling tanks filled with liquid helium—obviously not practical for everyday use.

Another is scalability. Millions of synapses are necessary before a neuromorphic device can be used to tackle everyday problems such as facial recognition. So far, no deal.

But these problems may in fact be a driving force for the entire field. Intense competition could push teams into exploring different ideas and solutions to similar problems, much like these two studies.

If so, future chips may come in diverse flavors. Similar to our vast array of deep learning algorithms and operating systems, the computer chips of the future may also vary depending on specific requirements and needs.

It is worth developing as many different technological approaches as possible, says Furber, especially as neuroscientists increasingly understand what makes our biological synapses—the ultimate inspiration—so amazingly efficient.

Image Credit: arakio / Shutterstock.com Continue reading

Posted in Human Robots

#431958 The Next Generation of Cameras Might See ...

You might be really pleased with the camera technology in your latest smartphone, which can recognize your face and take slow-mo video in ultra-high definition. But these technological feats are just the start of a larger revolution that is underway.

The latest camera research is shifting away from increasing the number of mega-pixels towards fusing camera data with computational processing. By that, we don’t mean the Photoshop style of processing where effects and filters are added to a picture, but rather a radical new approach where the incoming data may not actually look like at an image at all. It only becomes an image after a series of computational steps that often involve complex mathematics and modeling how light travels through the scene or the camera.

This additional layer of computational processing magically frees us from the chains of conventional imaging techniques. One day we may not even need cameras in the conventional sense any more. Instead we will use light detectors that only a few years ago we would never have considered any use for imaging. And they will be able to do incredible things, like see through fog, inside the human body and even behind walls.

Single Pixel Cameras
One extreme example is the single pixel camera, which relies on a beautifully simple principle. Typical cameras use lots of pixels (tiny sensor elements) to capture a scene that is likely illuminated by a single light source. But you can also do things the other way around, capturing information from many light sources with a single pixel.

To do this you need a controlled light source, for example a simple data projector that illuminates the scene one spot at a time or with a series of different patterns. For each illumination spot or pattern, you then measure the amount of light reflected and add everything together to create the final image.

Clearly the disadvantage of taking a photo in this is way is that you have to send out lots of illumination spots or patterns in order to produce one image (which would take just one snapshot with a regular camera). But this form of imaging would allow you to create otherwise impossible cameras, for example that work at wavelengths of light beyond the visible spectrum, where good detectors cannot be made into cameras.

These cameras could be used to take photos through fog or thick falling snow. Or they could mimic the eyes of some animals and automatically increase an image’s resolution (the amount of detail it captures) depending on what’s in the scene.

It is even possible to capture images from light particles that have never even interacted with the object we want to photograph. This would take advantage of the idea of “quantum entanglement,” that two particles can be connected in a way that means whatever happens to one happens to the other, even if they are a long distance apart. This has intriguing possibilities for looking at objects whose properties might change when lit up, such as the eye. For example, does a retina look the same when in darkness as in light?

Multi-Sensor Imaging
Single-pixel imaging is just one of the simplest innovations in upcoming camera technology and relies, on the face of it, on the traditional concept of what forms a picture. But we are currently witnessing a surge of interest for systems that use lots of information but traditional techniques only collect a small part of it.

This is where we could use multi-sensor approaches that involve many different detectors pointed at the same scene. The Hubble telescope was a pioneering example of this, producing pictures made from combinations of many different images taken at different wavelengths. But now you can buy commercial versions of this kind of technology, such as the Lytro camera that collects information about light intensity and direction on the same sensor, to produce images that can be refocused after the image has been taken.

The next generation camera will probably look something like the Light L16 camera, which features ground-breaking technology based on more than ten different sensors. Their data are combined using a computer to provide a 50 MB, re-focusable and re-zoomable, professional-quality image. The camera itself looks like a very exciting Picasso interpretation of a crazy cell-phone camera.

Yet these are just the first steps towards a new generation of cameras that will change the way in which we think of and take images. Researchers are also working hard on the problem of seeing through fog, seeing behind walls, and even imaging deep inside the human body and brain.

All of these techniques rely on combining images with models that explain how light travels through through or around different substances.

Another interesting approach that is gaining ground relies on artificial intelligence to “learn” to recognize objects from the data. These techniques are inspired by learning processes in the human brain and are likely to play a major role in future imaging systems.

Single photon and quantum imaging technologies are also maturing to the point that they can take pictures with incredibly low light levels and videos with incredibly fast speeds reaching a trillion frames per second. This is enough to even capture images of light itself traveling across as scene.

Some of these applications might require a little time to fully develop, but we now know that the underlying physics should allow us to solve these and other problems through a clever combination of new technology and computational ingenuity.

This article was originally published on The Conversation. Read the original article.

Image Credit: Sylvia Adams / Shutterstock.com Continue reading

Posted in Human Robots

#431957 Is Conversation with Humans the Best ...

Robots are evolving in fascinating ways. Cloud computing, big data and the Internet of Things have all helped open new doors for artificial intelligence. Robots are also learning from much simpler mediums, such as human speech. Researchers Hit Roadblocks With AI Development Some experts believe that engaging in conversations with humans is going to play …

The post Is Conversation with Humans the Best Machine Learning Model for Robots? appeared first on TFOT. Continue reading

Posted in Human Robots