Tag Archives: play

#435196 Avatar Love? New ‘Black Mirror’ ...

This week, the widely-anticipated fifth season of the dystopian series Black Mirror was released on Netflix. The storylines this season are less focused on far-out scenarios and increasingly aligned with current issues. With only three episodes, this season raises more questions than it answers, often leaving audiences bewildered.

The episode Smithereens explores our society’s crippling addiction to social media platforms and the monopoly they hold over our data. In Rachel, Jack and Ashley Too, we see the disruptive impact of technologies on the music and entertainment industry, and the price of fame for artists in the digital world. Like most Black Mirror episodes, these explore the sometimes disturbing implications of tech advancements on humanity.

But once again, in the midst of all the doom and gloom, the creators of the series leave us with a glimmer of hope. Aligned with Pride month, the episode Striking Vipers explores the impact of virtual reality on love, relationships, and sexual fluidity.

*The review contains a few spoilers.*

Striking Vipers
The first episode of the season, Striking Vipers may be one of the most thought-provoking episodes in Black Mirror history. Reminiscent of previous episodes San Junipero and Hang the DJ, the writers explore the potential for technology to transform human intimacy.

The episode tells the story of two old friends, Danny and Karl, whose friendship is reignited in an unconventional way. Karl unexpectedly appears at Danny’s 38th birthday and reintroduces him to the VR version of a game they used to play years before. In the game Striking Vipers X, each of the players is represented by an avatar of their choice in an uncanny digital reality. Following old tradition, Karl chooses to become the female fighter, Roxanne, and Danny takes on the role of the male fighter, Lance. The state-of-the-art VR headsets appear to use an advanced form of brain-machine interface to allow each player to be fully immersed in the virtual world, emulating all physical sensations.

To their surprise (and confusion), Danny and Karl find themselves transitioning from fist-fighting to kissing. Over the course of many games, they continue to explore a sexual and romantic relationship in the virtual world, leaving them confused and distant in the real world. The virtual and physical realities begin to blur, and so do the identities of the players with their avatars. Danny, who is married (in a heterosexual relationship) and is a father, begins to carry guilt and confusion in the real world. They both wonder if there would be any spark between them in real life.

The brain-machine interface (BMI) depicted in the episode is still science fiction, but that hasn’t stopped innovators from pushing the technology forward. Experts today are designing more intricate BMI systems while programming better algorithms to interpret the neural signals they capture. Scientists have already succeeded in enabling paralyzed patients to type with their minds, and are even allowing people to communicate with one another purely through brainwaves.

The convergence of BMIs with virtual reality and artificial intelligence could make the experience of such immersive digital realities possible. Virtual reality, too, is decreasing exponentially in cost and increasing in quality.

The narrative provides meaningful commentary on another tech area—gaming. It highlights video games not necessarily as addictive distractions, but rather as a platform for connecting with others in a deeper way. This is already very relevant. Video games like Final Fantasy are often a tool for meaningful digital connections for their players.

The Implications of Virtual Reality on Love and Relationships
The narrative of Striking Vipers raises many novel questions about the implications of immersive technologies on relationships: could the virtual world allow us a safe space to explore suppressed desires? Can virtual avatars make it easier for us to show affection to those we care about? Can a sexual or romantic encounter in the digital world be considered infidelity?

Above all, the episode explores the therapeutic possibilities of such technologies. While many fears about virtual reality had been raised in previous seasons of Black Mirror, this episode was focused on its potential. This includes the potential of immersive technology to be a source of liberation, meaningful connections, and self-exploration, as well as a tool for realizing our true identities and desires.

Once again, this is aligned with emerging trends in VR. We are seeing the rise of social VR applications and platforms that allow you to hang out with your friends and family as avatars in the virtual space. The technology is allowing for animation movies, such as Coco VR, to become an increasingly social and interactive experience. Considering that meaningful social interaction can alleviate depression and anxiety, such applications could contribute to well-being.

Techno-philosopher and National Geographic host Jason Silva points out that immersive media technologies can be “engines of empathy.” VR allows us to enter virtual spaces that mimic someone else’s state of mind, allowing us to empathize with the way they view the world. Silva said, “Imagine the intimacy that becomes possible when people meet and they say, ‘Hey, do you want to come visit my world? Do you want to see what it’s like to be inside my head?’”

What is most fascinating about Striking Vipers is that it explores how we may redefine love with virtual reality; we are introduced to love between virtual avatars. While this kind of love may seem confusing to audiences, it may be one of the complex implications of virtual reality on human relationships.

In many ways, the title Black Mirror couldn’t be more appropriate, as each episode serves as a mirror to the most disturbing aspects of our psyches as they get amplified through technology. However, what we see in uplifting and thought-provoking plots like Striking Vipers, San Junipero, and Hang The DJ is that technology could also amplify the most positive aspects of our humanity. This includes our powerful capacity to love.

Image Credit: Arsgera / Shutterstock.com Continue reading

Posted in Human Robots

#435172 DARPA’s New Project Is Investing ...

When Elon Musk and DARPA both hop aboard the cyborg hypetrain, you know brain-machine interfaces (BMIs) are about to achieve the impossible.

BMIs, already the stuff of science fiction, facilitate crosstalk between biological wetware with external computers, turning human users into literal cyborgs. Yet mind-controlled robotic arms, microelectrode “nerve patches”, or “memory Band-Aids” are still purely experimental medical treatments for those with nervous system impairments.

With the Next-Generation Nonsurgical Neurotechnology (N3) program, DARPA is looking to expand BMIs to the military. This month, the project tapped six academic teams to engineer radically different BMIs to hook up machines to the brains of able-bodied soldiers. The goal is to ditch surgery altogether—while minimizing any biological interventions—to link up brain and machine.

Rather than microelectrodes, which are currently surgically inserted into the brain to hijack neural communication, the project is looking to acoustic signals, electromagnetic waves, nanotechnology, genetically-enhanced neurons, and infrared beams for their next-gen BMIs.

It’s a radical departure from current protocol, with potentially thrilling—or devastating—impact. Wireless BMIs could dramatically boost bodily functions of veterans with neural damage or post-traumatic stress disorder (PTSD), or allow a single soldier to control swarms of AI-enabled drones with his or her mind. Or, similar to the Black Mirror episode Men Against Fire, it could cloud the perception of soldiers, distancing them from the emotional guilt of warfare.

When trickled down to civilian use, these new technologies are poised to revolutionize medical treatment. Or they could galvanize the transhumanist movement with an inconceivably powerful tool that fundamentally alters society—for better or worse.

Here’s what you need to know.

Radical Upgrades
The four-year N3 program focuses on two main aspects: noninvasive and “minutely” invasive neural interfaces to both read and write into the brain.

Because noninvasive technologies sit on the scalp, their sensors and stimulators will likely measure entire networks of neurons, such as those controlling movement. These systems could then allow soldiers to remotely pilot robots in the field—drones, rescue bots, or carriers like Boston Dynamics’ BigDog. The system could even boost multitasking prowess—mind-controlling multiple weapons at once—similar to how able-bodied humans can operate a third robotic arm in addition to their own two.

In contrast, minutely invasive technologies allow scientists to deliver nanotransducers without surgery: for example, an injection of a virus carrying light-sensitive sensors, or other chemical, biotech, or self-assembled nanobots that can reach individual neurons and control their activity independently without damaging sensitive tissue. The proposed use for these technologies isn’t yet well-specified, but as animal experiments have shown, controlling the activity of single neurons at multiple points is sufficient to program artificial memories of fear, desire, and experiences directly into the brain.

“A neural interface that enables fast, effective, and intuitive hands-free interaction with military systems by able-bodied warfighters is the ultimate program goal,” DARPA wrote in its funding brief, released early last year.

The only technologies that will be considered must have a viable path toward eventual use in healthy human subjects.

“Final N3 deliverables will include a complete integrated bidirectional brain-machine interface system,” the project description states. This doesn’t just include hardware, but also new algorithms tailored to these system, demonstrated in a “Department of Defense-relevant application.”

The Tools
Right off the bat, the usual tools of the BMI trade, including microelectrodes, MRI, or transcranial magnetic stimulation (TMS) are off the table. These popular technologies rely on surgery, heavy machinery, or personnel to sit very still—conditions unlikely in the real world.

The six teams will tap into three different kinds of natural phenomena for communication: magnetism, light beams, and acoustic waves.

Dr. Jacob Robinson at Rice University, for example, is combining genetic engineering, infrared laser beams, and nanomagnets for a bidirectional system. The $18 million project, MOANA (Magnetic, Optical and Acoustic Neural Access device) uses viruses to deliver two extra genes into the brain. One encodes a protein that sits on top of neurons and emits infrared light when the cell activates. Red and infrared light can penetrate through the skull. This lets a skull cap, embedded with light emitters and detectors, pick up these signals for subsequent decoding. Ultra-fast and utra-sensitvie photodetectors will further allow the cap to ignore scattered light and tease out relevant signals emanating from targeted portions of the brain, the team explained.

The other new gene helps write commands into the brain. This protein tethers iron nanoparticles to the neurons’ activation mechanism. Using magnetic coils on the headset, the team can then remotely stimulate magnetic super-neurons to fire while leaving others alone. Although the team plans to start in cell cultures and animals, their goal is to eventually transmit a visual image from one person to another. “In four years we hope to demonstrate direct, brain-to-brain communication at the speed of thought and without brain surgery,” said Robinson.

Other projects in N3 are just are ambitious.

The Carnegie Mellon team, for example, plans to use ultrasound waves to pinpoint light interaction in targeted brain regions, which can then be measured through a wearable “hat.” To write into the brain, they propose a flexible, wearable electrical mini-generator that counterbalances the noisy effect of the skull and scalp to target specific neural groups.

Similarly, a group at Johns Hopkins is also measuring light path changes in the brain to correlate them with regional brain activity to “read” wetware commands.

The Teledyne Scientific & Imaging group, in contrast, is turning to tiny light-powered “magnetometers” to detect small, localized magnetic fields that neurons generate when they fire, and match these signals to brain output.

The nonprofit Battelle team gets even fancier with their ”BrainSTORMS” nanotransducers: magnetic nanoparticles wrapped in a piezoelectric shell. The shell can convert electrical signals from neurons into magnetic ones and vice-versa. This allows external transceivers to wirelessly pick up the transformed signals and stimulate the brain through a bidirectional highway.

The magnetometers can be delivered into the brain through a nasal spray or other non-invasive methods, and magnetically guided towards targeted brain regions. When no longer needed, they can once again be steered out of the brain and into the bloodstream, where the body can excrete them without harm.

Four-Year Miracle
Mind-blown? Yeah, same. However, the challenges facing the teams are enormous.

DARPA’s stated goal is to hook up at least 16 sites in the brain with the BMI, with a lag of less than 50 milliseconds—on the scale of average human visual perception. That’s crazy high resolution for devices sitting outside the brain, both in space and time. Brain tissue, blood vessels, and the scalp and skull are all barriers that scatter and dissipate neural signals. All six teams will need to figure out the least computationally-intensive ways to fish out relevant brain signals from background noise, and triangulate them to the appropriate brain region to decipher intent.

In the long run, four years and an average $20 million per project isn’t much to potentially transform our relationship with machines—for better or worse. DARPA, to its credit, is keenly aware of potential misuse of remote brain control. The program is under the guidance of a panel of external advisors with expertise in bioethical issues. And although DARPA’s focus is on enabling able-bodied soldiers to better tackle combat challenges, it’s hard to argue that wireless, non-invasive BMIs will also benefit those most in need: veterans and other people with debilitating nerve damage. To this end, the program is heavily engaging the FDA to ensure it meets safety and efficacy regulations for human use.

Will we be there in just four years? I’m skeptical. But these electrical, optical, acoustic, magnetic, and genetic BMIs, as crazy as they sound, seem inevitable.

“DARPA is preparing for a future in which a combination of unmanned systems, AI, and cyber operations may cause conflicts to play out on timelines that are too short for humans to effectively manage with current technology alone,” said Al Emondi, the N3 program manager.

The question is, now that we know what’s in store, how should the rest of us prepare?

Image Credit: With permission from DARPA N3 project. Continue reading

Posted in Human Robots

#435167 A Closer Look at the Robots Helping Us ...

Buck Rogers had Twiki. Luke Skywalker palled around with C-3PO and R2-D2. And astronauts aboard the International Space Station (ISS) now have their own robotic companions in space—Astrobee.

A pair of the cube-shaped robots were launched to the ISS during an April re-supply mission and are currently being commissioned for use on the space station. The free-flying space robots, dubbed Bumble and Honey, are the latest generation of robotic machines to join the human crew on the ISS.

Exploration of the solar system and beyond will require autonomous machines that can assist humans with numerous tasks—or go where we cannot. NASA has said repeatedly that robots will be instrumental in future space missions to the moon, Mars, and even to the icy moon Europa.

The Astrobee robots will specifically test robotic capabilities in zero gravity, replacing the SPHERES (Synchronized Position Hold, Engage, Reorient, Experimental Satellite) robots that have been on the ISS for more than a decade to test various technologies ranging from communications to navigation.

The 18-sided robots, each about the size of a volleyball or an oversized Dungeons and Dragons die, use CO2-based cold-gas thrusters for movement and a series of ultrasonic beacons for orientation. The Astrobee robots, on the other hand, can propel themselves autonomously around the interior of the ISS using electric fans and six cameras.

The modular design of the Astrobee robots means they are highly plug-and-play, capable of being reconfigured with different hardware modules. The robots’ software is also open-source, encouraging scientists and programmers to develop and test new algorithms and features.

And, yes, the Astrobee robots will be busy as bees once they are fully commissioned this fall, with experiments planned to begin next year. Scientists hope to learn more about how robots can assist space crews and perform caretaking duties on spacecraft.

Robots Working Together
The Astrobee robots are expected to be joined by a familiar “face” on the ISS later this year—the humanoid robot Robonaut.

Robonaut, also known as R2, was the first US-built robot on the ISS. It joined the crew back in 2011 without legs, which were added in 2014. However, the installation never entirely worked, as R2 experienced power failures that eventually led to its return to Earth last year to fix the problem. If all goes as planned, the space station’s first humanoid robot will return to the ISS to lend a hand to the astronauts and the new robotic arrivals.

In particular, NASA is interested in how the two different robotic platforms can complement each other, with an eye toward outfitting the agency’s proposed lunar orbital space station with various robots that can supplement a human crew.

“We don’t have definite plans for what would happen on the Gateway yet, but there’s a general recognition that intra-vehicular robots are important for space stations,” Astrobee technical lead Trey Smith in the NASA Intelligent Robotics Group told IEEE Spectrum. “And so, it would not be surprising to see a mobile manipulator like Robonaut, and a free flyer like Astrobee, on the Gateway.”

While the focus on R2 has been to test its capabilities in zero gravity and to use it for mundane or dangerous tasks in space, the technology enabling the humanoid robot has proven to be equally useful on Earth.

For example, R2 has amazing dexterity for a robot, with sensors, actuators, and tendons comparable to the nerves, muscles, and tendons in a human hand. Based on that design, engineers are working on a robotic glove that can help factory workers, for instance, do their jobs better while reducing the risk of repetitive injuries. R2 has also inspired development of a robotic exoskeleton for both astronauts in space and paraplegics on Earth.

Working Hard on Soft Robotics
While innovative and technologically sophisticated, Astrobee and Robonaut are typical robots in that neither one would do well in a limbo contest. In other words, most robots are limited in their flexibility and agility based on current hardware and materials.

A subfield of robotics known as soft robotics involves developing robots with highly pliant materials that mimic biological organisms in how they move. Scientists at NASA’s Langley Research Center are investigating how soft robots could help with future space exploration.

Specifically, the researchers are looking at a series of properties to understand how actuators—components responsible for moving a robotic part, such as Robonaut’s hand—can be built and used in space.

The team first 3D prints a mold and then pours a flexible material like silicone into the mold. Air bladders or chambers in the actuator expand and compress using just air.

Some of the first applications of soft robotics sound more tool-like than R2-D2-like. For example, two soft robots could connect to produce a temporary shelter for astronauts on the moon or serve as an impromptu wind shield during one of Mars’ infamous dust storms.

The idea is to use soft robots in situations that are “dangerous, dirty, or dull,” according to Jack Fitzpatrick, a NASA intern working on the soft robotics project at Langley.

Working on Mars
Of course, space robots aren’t only designed to assist humans. In many instances, they are the only option to explore even relatively close celestial bodies like Mars. Four American-made robotic rovers have been used to investigate the fourth planet from the sun since 1997.

Opportunity is perhaps the most famous, covering about 25 miles of terrain across Mars over 15 years. A dust storm knocked it out of commission last year, with NASA officially ending the mission in February.

However, the biggest and baddest of the Mars rovers, Curiosity, is still crawling across the Martian surface, sending back valuable data since 2012. The car-size robot carries 17 cameras, a laser to vaporize rocks for study, and a drill to collect samples. It is on the hunt for signs of biological life.

The next year or two could see a virtual traffic jam of robots to Mars. NASA’s Mars 2020 Rover is next in line to visit the Red Planet, sporting scientific gadgets like an X-ray fluorescence spectrometer for chemical analyses and ground-penetrating radar to see below the Martian surface.

This diagram shows the instrument payload for the Mars 2020 mission. Image Credit: NASA.
Meanwhile, the Europeans have teamed with the Russians on a rover called Rosalind Franklin, named after a famed British chemist, that will drill down into the Martian ground for evidence of past or present life as soon as 2021.

The Chinese are also preparing to begin searching for life on Mars using robots as soon as next year, as part of the country’s Mars Global Remote Sensing Orbiter and Small Rover program. The mission is scheduled to be the first in a series of launches that would culminate with bringing samples back from Mars to Earth.

Perhaps there is no more famous utterance in the universe of science fiction as “to boldly go where no one has gone before.” However, the fact is that human exploration of the solar system and beyond will only be possible with robots of different sizes, shapes, and sophistication.

Image Credit: NASA. Continue reading

Posted in Human Robots

#435159 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
DeepMind Can Now Beat Us at Multiplayer Games Too
Cade Metz | The New York Times
“DeepMind’s project is part of a broad effort to build artificial intelligence that can play enormously complex, three-dimensional video games, including Quake III, Dota 2 and StarCraft II. Many researchers believe that success in the virtual arena will eventually lead to automated systems with improved abilities in the real world.”

ROBOTICS
Tiny Robots Carry Stem Cells Through a Mouse
Emily Waltz | IEEE Spectrum
“Engineers have built microrobots to perform all sorts of tasks in the body, and can now add to that list another key skill: delivering stem cells. In a paper, published [May 29] in Science Robotics, researchers describe propelling a magnetically-controlled, stem-cell-carrying bot through a live mouse.” [Video shows microbots navigating a microfluidic chip. MRI could not be used to image the mouse as the bots navigate magnetically.]

COMPUTING
How a Quantum Computer Could Break 2048-Bit RSA Encryption in 8 Hours
Emerging Technology From the arXiv | MIT Technology Review
“[Two researchers] have found a more efficient way for quantum computers to perform the code-breaking calculations, reducing the resources they require by orders of magnitude. Consequently, these machines are significantly closer to reality than anyone suspected.” [The arXiv is a pre-print server for research that has not yet been peer reviewed.]

AUTOMATION
Lyft Has Completed 55,000 Self Driving Rides in Las Vegas
Christine Fisher | Engadget
“One year ago, Lyft launched its self-driving ride service in Las Vegas. Today, the company announced its 30-vehicle fleet has made 55,000 trips. That makes it the largest commercial program of its kind in the US.”

TRANSPORTATION
Flying Car Startup Alaka’i Bets Hydrogen Can Outdo Batteries
Eric Adams | Wired
“Alaka’i says the final product will be able to fly for up to four hours and cover 400 miles on a single load of fuel, which can be replenished in 10 minutes at a hydrogen fueling station. It has built a functional, full-scale prototype that will make its first flight ‘imminently,’ a spokesperson says.”

ETHICS
The World Economic Forum Wants to Develop Global Rules for AI
Will Knight | MIT Technology Review
“This week, AI experts, politicians, and CEOs will gather to ask an important question: Can the United States, China, or anyone else agree on how artificial intelligence should be used and controlled?”

SPACE
Building a Rocket in a Garage to Take on SpaceX and Blue Origin
Jackson Ryan | CNET
“While billionaire entrepreneurs like SpaceX’s Elon Musk and Blue Origin’s Jeff Bezos push the boundaries of human spaceflight and exploration, a legion of smaller private startups around the world have been developing their own rocket technology to launch lighter payloads into orbit.”

Image Credit: Kevin Crosby / Unsplash Continue reading

Posted in Human Robots

#435152 The Futuristic Tech Disrupting Real ...

In the wake of the housing market collapse of 2008, one entrepreneur decided to dive right into the failing real estate industry. But this time, he didn’t buy any real estate to begin with. Instead, Glenn Sanford decided to launch the first-ever cloud-based real estate brokerage, eXp Realty.

Contracting virtual platform VirBELA to build out the company’s mega-campus in VR, eXp Realty demonstrates the power of a dematerialized workspace, throwing out hefty overhead costs and fundamentally redefining what ‘real estate’ really means. Ten years later, eXp Realty has an army of 14,000 agents across all 50 US states, 3 Canadian provinces, and 400 MLS market areas… all without a single physical office.

But VR is just one of many exponential technologies converging to revolutionize real estate and construction. As floating cities and driverless cars spread out your living options, AI and VR are together cutting out the middleman.

Already, the global construction industry is projected to surpass $12.9 trillion in 2022, and the total value of the US housing market alone grew to $33.3 trillion last year. Both vital for our daily lives, these industries will continue to explode in value, posing countless possibilities for disruption.

In this blog, I’ll be discussing the following trends:

New prime real estate locations;
Disintermediation of the real estate broker and search;
Materials science and 3D printing in construction.

Let’s dive in!

Location Location Location
Until today, location has been the name of the game when it comes to hunting down the best real estate. But constraints on land often drive up costs while limiting options, and urbanization is only exacerbating the problem.

Beyond the world of virtual real estate, two primary mechanisms are driving the creation of new locations.

(1) Floating Cities

Offshore habitation hubs, floating cities have long been conceived as a solution to rising sea levels, skyrocketing urban populations, and threatened ecosystems. In success, they will soon unlock an abundance of prime real estate, whether for scenic living, commerce, education, or recreation.

One pioneering model is that of Oceanix City, designed by Danish architect Bjarke Ingels and a host of other domain experts. Intended to adapt organically over time, Oceanix would consist of a galaxy of mass-produced, hexagonal floating modules, built as satellite “cities” off coastal urban centers and sustained by renewable energies.

While individual 4.5-acre platforms would each sustain 300 people, these hexagonal modules are designed to link into 75-acre tessellations sustaining up to 10,000 residents. Each anchored to the ocean floor using biorock, Oceanix cities are slated to be closed-loop systems, as external resources are continuously supplied by automated drone networks.

Electric boats or flying cars might zoom you to work, city-embedded water capture technologies would provide your water, and while vertical and outdoor farming supply your family meal, share economies would dominate goods provision.

AERIAL: Located in calm, sheltered waters, near coastal megacities, OCEANIX City will be an adaptable, sustainable, scalable, and affordable solution for human life on the ocean. Image Credit: OCEANIX/BIG-Bjarke Ingels Group.
Joined by countless government officials whose islands risk submersion at the hands of sea level rise, the UN is now getting on board. And just this year, seasteading is exiting the realm of science fiction and testing practical waters.

As French Polynesia seeks out robust solutions to sea level rise, their government has now joined forces with the San Francisco-based Seasteading Institute. With a newly designated special economic zone and 100 acres of beachfront, this joint Floating Island Project could even see up to a dozen inhabitable structures by 2020. And what better to fund the $60 million project than the team’s upcoming ICO?

But aside from creating new locations, autonomous vehicles (AVs) and flying cars are turning previously low-demand land into the prime real estate of tomorrow.

(2) Autonomous Electric Vehicles and Flying Cars

Today, the value of a location is a function of its proximity to your workplace, your city’s central business district, the best schools, or your closest friends.

But what happens when driverless cars desensitize you to distance, or Hyperloop and flying cars decimate your commute time? Historically, every time new transit methods have hit the mainstream, tolerance for distance has opened up right alongside them, further catalyzing city spread.

And just as Hyperloop and the Boring Company aim to make your commute immaterial, autonomous vehicle (AV) ridesharing services will spread out cities in two ways: (1) by drastically reducing parking spaces needed (vertical parking decks = more prime real estate); and (2) by untethering you from the steering wheel. Want an extra two hours of sleep on the way to work? Schedule a sleeper AV and nap on your route to the office. Need a car-turned-mobile-office? No problem.

Meanwhile, aerial taxis (i.e. flying cars) will allow you to escape ground congestion entirely, delivering you from bedroom to boardroom at decimated time scales.

Already working with regulators, Uber Elevate has staked ambitious plans for its UberAIR airborne taxi project. By 2023, Uber anticipates rolling out flying drones in its two first pilot cities, Los Angeles and Dallas. Flying between rooftop skyports, drones would carry passengers at a height of 1,000 to 2,000 feet at speeds between 100 to 200 mph. And while costs per ride are anticipated to resemble those of an Uber Black based on mileage, prices are projected to soon drop to those of an UberX.

But the true economic feat boils down to this: if I were to commute 50 to 100 kilometers, I could get two or three times the house for the same price. (Not to mention the extra living space offered up by my now-unneeded garage.)

All of a sudden, virtual reality, broadband, AVs, or high-speed vehicles are going to change where we live and where we work. So rather than living in a crowded, dense urban core for access to jobs and entertainment, our future of personalized, autonomous, low-cost transport opens the luxury of rural areas to all without compromising the benefits of a short commute.

Once these drivers multiply your real estate options, how will you select your next home?

Disintermediation: Say Bye to Your Broker
In a future of continuous and personalized preference-tracking, why hire a human agent who knows less about your needs and desires than a personal AI?

Just as disintermediation is cutting out bankers and insurance agents, so too is it closing in on real estate brokers. Over the next decade, as AI becomes your agent, VR will serve as your medium.

To paint a more vivid picture of how this will look, over 98 percent of your home search will be conducted from the comfort of your couch through next-generation VR headgear.

Once you’ve verbalized your primary desires for home location, finishings, size, etc. to your personal AI, it will offer you top picks, tour-able 24/7, with optional assistance by a virtual guide and constantly updated data. As a seller, this means potential buyers from two miles, or two continents, away.

Throughout each immersive VR tour, advanced eye-tracking software and a permissioned machine learning algorithm follow your gaze, further learn your likes and dislikes, and intelligently recommend other homes or commercial residences to visit.

Curious as to what the living room might look like with a fresh coat of blue paint and a white carpet? No problem! VR programs will be able to modify rendered environments instantly, changing countless variables, from furniture materials to even the sun’s orientation. Keen to input your own furniture into a VR-rendered home? Advanced AIs could one day compile all your existing furniture, electronics, clothing, decorations, and even books, virtually organizing them across any accommodating new space.

As 3D scanning technologies make extraordinary headway, VR renditions will only grow cheaper and higher resolution. One company called Immersive Media (disclosure: I’m an investor and advisor) has a platform for 360-degree video capture and distribution, and is already exploring real estate 360-degree video.

Smaller firms like Studio 216, Vieweet, Arch Virtual, ArX Solutions, and Rubicon Media can similarly capture and render models of various properties for clients and investors to view and explore. In essence, VR real estate platforms will allow you to explore any home for sale, do the remodel, and determine if it truly is the house of your dreams.

Once you’re ready to make a bid, your AI will even help estimate a bid, process and submit your offer. Real estate companies like Zillow, Trulia, Move, Redfin, ZipRealty (acquired by Realogy in 2014) and many others have already invested millions in machine learning applications to make search, valuation, consulting, and property management easier, faster, and much more accurate.

But what happens if the home you desire most means starting from scratch with new construction?

New Methods and Materials for Construction
For thousands of years, we’ve been constrained by the construction materials of nature. We built bricks from naturally abundant clay and shale, used tree limbs as our rooftops and beams, and mastered incredible structures in ancient Rome with the use of cement.

But construction is now on the cusp of a materials science revolution. Today, I’d like to focus on three key materials:

Upcycled Materials

Imagine if you could turn the world’s greatest waste products into their most essential building blocks. Thanks to UCLA researchers at CO2NCRETE, we can already do this with carbon emissions.

Today, concrete produces about five percent of all greenhouse gas (GHG) emissions. But what if concrete could instead conserve greenhouse emissions? CO2NCRETE engineers capture carbon from smokestacks and combine it with lime to create a new type of cement. The lab’s 3D printers then shape the upcycled concrete to build entirely new structures. Once conquered at scale, upcycled concrete will turn a former polluter into a future conserver.

Or what if we wanted to print new residences from local soil at hand? Marking an extraordinary convergence between robotics and 3D printing, the Institute of Advanced Architecture of Catalonia (IAAC) is already working on a solution.

In a major feat for low-cost construction in remote zones, IAAC has found a way to convert almost any soil into a building material with three times the tensile strength of industrial clay. Offering myriad benefits, including natural insulation, low GHG emissions, fire protection, air circulation, and thermal mediation, IAAC’s new 3D printed native soil can build houses on-site for as little as $1,000.

Nanomaterials

Nano- and micro-materials are ushering in a new era of smart, super-strong, and self-charging buildings. While carbon nanotubes dramatically increase the strength-to-weight ratio of skyscrapers, revolutionizing their structural flexibility, nanomaterials don’t stop here.

Several research teams are pioneering silicon nanoparticles to capture everyday light flowing through our windows. Little solar cells at the edges of windows then harvest this energy for ready use. Researchers at the US National Renewable Energy Lab have developed similar smart windows. Turning into solar panels when bathed in sunlight, these thermochromic windows will power our buildings, changing color as they do.

Self-Healing Infrastructure

The American Society of Civil Engineers estimates that the US needs to spend roughly $4.5 trillion to fix nationwide roads, bridges, dams, and common infrastructure by 2025. But what if infrastructure could fix itself?

Enter self-healing concrete. Engineers at Delft University have developed bio-concrete that can repair its own cracks. As head researcher Henk Jonkers explains, “What makes this limestone-producing bacteria so special is that they are able to survive in concrete for more than 200 years and come into play when the concrete is damaged. […] If cracks appear as a result of pressure on the concrete, the concrete will heal these cracks itself.”

But bio-concrete is only the beginning of self-healing technologies. As futurist architecture firms start printing plastic and carbon-fiber houses like the stunner seen below (using Branch Technologies’ 3D printing technology), engineers have begun tackling self-healing plastic.

And in a bid to go smart, burgeoning construction projects have started embedding sensors for preemptive detection. Beyond materials and sensors, however, construction methods are fast colliding into robotics and 3D printing.

While some startups and research institutes have leveraged robot swarm construction (namely, Harvard’s robotic termite-like swarm of programmed constructors), others have taken to large-scale autonomous robots.

One such example involves Fastbrick Robotics. After multiple iterations, the company’s Hadrian X end-to-end bricklaying robot can now autonomously build a fully livable, 180-square meter home in under 3 days. Using a laser-guided robotic attachment, the all-in-one brick-loaded truck simply drives to a construction site and directs blocks through its robotic arm in accordance with a 3D model.

Layhead. Image Credit: Fastbrick Robotics.
Meeting verified building standards, Hadrian and similar solutions hold massive promise in the long term, deployable across post-conflict refugee sites and regions recovering from natural catastrophes.

Imagine the implications. Eliminating human safety concerns and unlocking any environment, autonomous builder robots could collaboratively build massive structures in space or deep underwater habitats.

Final Thoughts
Where, how, and what we live in form a vital pillar of our everyday lives. The concept of “home” is unlikely to disappear anytime soon. At the same time, real estate and construction are two of the biggest playgrounds for technological convergence, each on the verge of revolutionary disruption.

As underlying shifts in transportation, land reclamation, and the definition of “space” (real vs. virtual) take hold, the real estate market is about to explode in value, spreading out urban centers on unprecedented scales and unlocking vast new prime “property.”

Meanwhile, converging advancements in AI and VR are fundamentally disrupting the way we design, build, and explore new residences. Just as mirror worlds create immersive, virtual real estate economies, VR tours and AI agents are absorbing both sides of the coin to entirely obliterate the middleman.

And as materials science breakthroughs meet new modes of construction, the only limits to tomorrow’s structures are those of our own imagination.

Join Me
Abundance-Digital Online Community: Stay ahead of technological advancements and turn your passion into action. Abundance Digital is now part of Singularity University. Learn more.

Image Credit: OCEANIX/BIG-Bjarke Ingels Group. Continue reading

Posted in Human Robots