Tag Archives: planet

#433728 AI Is Kicking Space Exploration into ...

Artificial intelligence in space exploration is gathering momentum. Over the coming years, new missions look likely to be turbo-charged by AI as we voyage to comets, moons, and planets and explore the possibilities of mining asteroids.

“AI is already a game-changer that has made scientific research and exploration much more efficient. We are not just talking about a doubling but about a multiple of ten,” Leopold Summerer, Head of the Advanced Concepts and Studies Office at ESA, said in an interview with Singularity Hub.

Examples Abound
The history of AI and space exploration is older than many probably think. It has already played a significant role in research into our planet, the solar system, and the universe. As computer systems and software have developed, so have AI’s potential use cases.

The Earth Observer 1 (EO-1) satellite is a good example. Since its launch in the early 2000s, its onboard AI systems helped optimize analysis of and response to natural occurrences, like floods and volcanic eruptions. In some cases, the AI was able to tell EO-1 to start capturing images before the ground crew were even aware that the occurrence had taken place.

Other satellite and astronomy examples abound. Sky Image Cataloging and Analysis Tool (SKICAT) has assisted with the classification of objects discovered during the second Palomar Sky Survey, classifying thousands more objects caught in low resolution than a human would be able to. Similar AI systems have helped astronomers to identify 56 new possible gravitational lenses that play a crucial role in connection with research into dark matter.

AI’s ability to trawl through vast amounts of data and find correlations will become increasingly important in relation to getting the most out of the available data. ESA’s ENVISAT produces around 400 terabytes of new data every year—but will be dwarfed by the Square Kilometre Array, which will produce around the same amount of data that is currently on the internet in a day.

AI Readying For Mars
AI is also being used for trajectory and payload optimization. Both are important preliminary steps to NASA’s next rover mission to Mars, the Mars 2020 Rover, which is, slightly ironically, set to land on the red planet in early 2021.

An AI known as AEGIS is already on the red planet onboard NASA’s current rovers. The system can handle autonomous targeting of cameras and choose what to investigate. However, the next generation of AIs will be able to control vehicles, autonomously assist with study selection, and dynamically schedule and perform scientific tasks.

Throughout his career, John Leif Jørgensen from DTU Space in Denmark has designed equipment and systems that have been on board about 100 satellites—and counting. He is part of the team behind the Mars 2020 Rover’s autonomous scientific instrument PIXL, which makes extensive use of AI. Its purpose is to investigate whether there have been lifeforms like stromatolites on Mars.

“PIXL’s microscope is situated on the rover’s arm and needs to be placed 14 millimetres from what we want it to study. That happens thanks to several cameras placed on the rover. It may sound simple, but the handover process and finding out exactly where to place the arm can be likened to identifying a building from the street from a picture taken from the roof. This is something that AI is eminently suited for,” he said in an interview with Singularity Hub.

AI also helps PIXL operate autonomously throughout the night and continuously adjust as the environment changes—the temperature changes between day and night can be more than 100 degrees Celsius, meaning that the ground beneath the rover, the cameras, the robotic arm, and the rock being studied all keep changing distance.

“AI is at the core of all of this work, and helps almost double productivity,” Jørgensen said.

First Mars, Then Moons
Mars is likely far from the final destination for AIs in space. Jupiter’s moons have long fascinated scientists. Especially Europa, which could house a subsurface ocean, buried beneath an approximately 10 km thick ice crust. It is one of the most likely candidates for finding life elsewhere in the solar system.

While that mission may be some time in the future, NASA is currently planning to launch the James Webb Space Telescope into an orbit of around 1.5 million kilometers from Earth in 2020. Part of the mission will involve AI-empowered autonomous systems overseeing the full deployment of the telescope’s 705-kilo mirror.

The distances between Earth and Europa, or Earth and the James Webb telescope, means a delay in communications. That, in turn, makes it imperative for the crafts to be able to make their own decisions. Examples from the Mars Rover project show that communication between a rover and Earth can take 20 minutes because of the vast distance. A Europa mission would see much longer communication times.

Both missions, to varying degrees, illustrate one of the most significant challenges currently facing the use of AI in space exploration. There tends to be a direct correlation between how well AI systems perform and how much data they have been fed. The more, the better, as it were. But we simply don’t have very much data to feed such a system about what it’s likely to encounter on a mission to a place like Europa.

Computing power presents a second challenge. A strenuous, time-consuming approval process and the risk of radiation mean that your computer at home would likely be more powerful than anything going into space in the near future. A 200 GHz processor, 256 megabytes of ram, and 2 gigabytes of memory sounds a lot more like a Nokia 3210 (the one you could use as an ice hockey puck without it noticing) than an iPhone X—but it’s actually the ‘brain’ that will be onboard the next rover.

Private Companies Taking Off
Private companies are helping to push those limitations. CB Insights charts 57 startups in the space-space, covering areas as diverse as natural resources, consumer tourism, R&D, satellites, spacecraft design and launch, and data analytics.

David Chew works as an engineer for the Japanese satellite company Axelspace. He explained how private companies are pushing the speed of exploration and lowering costs.

“Many private space companies are taking advantage of fall-back systems and finding ways of using parts and systems that traditional companies have thought of as non-space-grade. By implementing fall-backs, and using AI, it is possible to integrate and use parts that lower costs without adding risk of failure,” he said in an interview with Singularity Hub.

Terraforming Our Future Home
Further into the future, moonshots like terraforming Mars await. Without AI, these kinds of projects to adapt other planets to Earth-like conditions would be impossible.

Autonomous crafts are already terraforming here on Earth. BioCarbon Engineering uses drones to plant up to 100,000 trees in a single day. Drones first survey and map an area, then an algorithm decides the optimal locations for the trees before a second wave of drones carry out the actual planting.

As is often the case with exponential technologies, there is a great potential for synergies and convergence. For example with AI and robotics, or quantum computing and machine learning. Why not send an AI-driven robot to Mars and use it as a telepresence for scientists on Earth? It could be argued that we are already in the early stages of doing just that by using VR and AR systems that take data from the Mars rovers and create a virtual landscape scientists can walk around in and make decisions on what the rovers should explore next.

One of the biggest benefits of AI in space exploration may not have that much to do with its actual functions. Chew believes that within as little as ten years, we could see the first mining of asteroids in the Kuiper Belt with the help of AI.

“I think one of the things that AI does to space exploration is that it opens up a whole range of new possible industries and services that have a more immediate effect on the lives of people on Earth,” he said. “It becomes a relatable industry that has a real effect on people’s daily lives. In a way, space exploration becomes part of people’s mindset, and the border between our planet and the solar system becomes less important.”

Image Credit: Taily / Shutterstock.com Continue reading

Posted in Human Robots

#433689 The Rise of Dataism: A Threat to Freedom ...

What would happen if we made all of our data public—everything from wearables monitoring our biometrics, all the way to smartphones monitoring our location, our social media activity, and even our internet search history?

Would such insights into our lives simply provide companies and politicians with greater power to invade our privacy and manipulate us by using our psychological profiles against us?

A burgeoning new philosophy called dataism doesn’t think so.

In fact, this trending ideology believes that liberating the flow of data is the supreme value of the universe, and that it could be the key to unleashing the greatest scientific revolution in the history of humanity.

What Is Dataism?
First mentioned by David Brooks in his 2013 New York Times article “The Philosophy of Data,” dataism is an ethical system that has been most heavily explored and popularized by renowned historian, Yuval Noah Harari.

In his 2016 book Homo Deus, Harari described dataism as a new form of religion that celebrates the growing importance of big data.

Its core belief centers around the idea that the universe gives greater value and support to systems, individuals, and societies that contribute most heavily and efficiently to data processing. In an interview with Wired, Harari stated, “Humans were special and important because up until now they were the most sophisticated data processing system in the universe, but this is no longer the case.”

Now, big data and machine learning are proving themselves more sophisticated, and dataists believe we should hand over as much information and power to these algorithms as possible, allowing the free flow of data to unlock innovation and progress unlike anything we’ve ever seen before.

Pros: Progress and Personal Growth
When you let data run freely, it’s bound to be mixed and matched in new ways that inevitably spark progress. And as we enter the exponential future where every person is constantly connected and sharing their data, the potential for such collaborative epiphanies becomes even greater.

We can already see important increases in quality of life thanks to companies like Google. With Google Maps on your phone, your position is constantly updating on their servers. This information, combined with everyone else on the planet using a phone with Google Maps, allows your phone to inform you of traffic conditions. Based on the speed and location of nearby phones, Google can reroute you to less congested areas or help you avoid accidents. And since you trust that these algorithms have more data than you, you gladly hand over your power to them, following your GPS’s directions rather than your own.

We can do the same sort of thing with our bodies.

Imagine, for instance, a world where each person has biosensors in their bloodstreams—a not unlikely or distant possibility when considering diabetic people already wear insulin pumps that constantly monitor their blood sugar levels. And let’s assume this data was freely shared to the world.

Now imagine a virus like Zika or the Bird Flu breaks out. Thanks to this technology, the odd change in biodata coming from a particular region flags an artificial intelligence that feeds data to the CDC (Center for Disease Control and Prevention). Recognizing that a pandemic could be possible, AIs begin 3D printing vaccines on-demand, predicting the number of people who may be afflicted. When our personal AIs tell us the locations of the spreading epidemic and to take the vaccine it just delivered by drone to our homes, are we likely to follow its instructions? Almost certainly—and if so, it’s likely millions, if not billions, of lives will have been saved.

But to quickly create such vaccines, we’ll also need to liberate research.

Currently, universities and companies seeking to benefit humankind with medical solutions have to pay extensively to organize clinical trials and to find people who match their needs. But if all our biodata was freely aggregated, perhaps they could simply say “monitor all people living with cancer” to an AI, and thanks to the constant stream of data coming in from the world’s population, a machine learning program may easily be able to detect a pattern and create a cure.

As always in research, the more sample data you have, the higher the chance that such patterns will emerge. If data is flowing freely, then anyone in the world can suddenly decide they have a hunch they want to explore, and without having to spend months and months of time and money hunting down the data, they can simply test their hypothesis.

Whether garage tinkerers, at-home scientists, or PhD students—an abundance of free data allows for science to progress unhindered, each person able to operate without being slowed by lack of data. And any progress they make is immediately liberated, becoming free data shared with anyone else that may find a use for it.

Any individual with a curious passion would have the entire world’s data at their fingertips, empowering every one of us to become an expert in any subject that inspires us. Expertise we can then share back into the data stream—a positive feedback loop spearheading progress for the entirety of humanity’s knowledge.

Such exponential gains represent a dataism utopia.

Unfortunately, our current incentives and economy also show us the tragic failures of this model.

As Harari has pointed out, the rise of datism means that “humanism is now facing an existential challenge and the idea of ‘free will’ is under threat.”

Cons: Manipulation and Extortion
In 2017, The Economist declared that data was the most valuable resource on the planet—even more valuable than oil.

Perhaps this is because data is ‘priceless’: it represents understanding, and understanding represents control. And so, in the world of advertising and politics, having data on your consumers and voters gives you an incredible advantage.

This was evidenced by the Cambridge Analytica scandal, in which it’s believed that Donald Trump and the architects of Brexit leveraged users’ Facebook data to create psychological profiles that enabled them to manipulate the masses.

How powerful are these psychological models?

A team who built a model similar to that used by Cambridge Analytica said their model could understand someone as well as a coworker with access to only 10 Facebook likes. With 70 likes they could know them as well as a friend might, 150 likes to match their parents’ understanding, and at 300 likes they could even come to know someone better than their lovers. With more likes, they could even come to know someone better than that person knows themselves.

Proceeding With Caution
In a capitalist democracy, do we want businesses and politicians to know us better than we know ourselves?

In spite of the remarkable benefits that may result for our species by freely giving away our information, do we run the risk of that data being used to exploit and manipulate the masses towards a future without free will, where our daily lives are puppeteered by those who own our data?

It’s extremely possible.

And it’s for this reason that one of the most important conversations we’ll have as a species centers around data ownership: do we just give ownership of the data back to the users, allowing them to choose who to sell or freely give their data to? Or will that simply deter the entrepreneurial drive and cause all of the free services we use today, like Google Search and Facebook, to begin charging inaccessible prices? How much are we willing to pay for our freedom? And how much do we actually care?

If recent history has taught us anything, it’s that humans are willing to give up more privacy than they like to think. Fifteen years ago, it would have been crazy to suggest we’d all allow ourselves to be tracked by our cars, phones, and daily check-ins to our favorite neighborhood locations; but now most of us see it as a worthwhile trade for optimized commutes and dating. As we continue navigating that fine line between exploitation and innovation into a more technological future, what other trade-offs might we be willing to make?

Image Credit: graphicINmotion / Shutterstock.com Continue reading

Posted in Human Robots

#433668 A Decade of Commercial Space ...

In many industries, a decade is barely enough time to cause dramatic change unless something disruptive comes along—a new technology, business model, or service design. The space industry has recently been enjoying all three.

But 10 years ago, none of those innovations were guaranteed. In fact, on Sept. 28, 2008, an entire company watched and hoped as their flagship product attempted a final launch after three failures. With cash running low, this was the last shot. Over 21,000 kilograms of kerosene and liquid oxygen ignited and powered two booster stages off the launchpad.

This first official picture of the Soviet satellite Sputnik I was issued in Moscow Oct. 9, 1957. The satellite measured 1 foot, 11 inches and weighed 184 pounds. The Space Age began as the Soviet Union launched Sputnik, the first man-made satellite, into orbit, on Oct. 4, 1957.AP Photo/TASS
When that Falcon 1 rocket successfully reached orbit and the company secured a subsequent contract with NASA, SpaceX had survived its ‘startup dip’. That milestone, the first privately developed liquid-fueled rocket to reach orbit, ignited a new space industry that is changing our world, on this planet and beyond. What has happened in the intervening years, and what does it mean going forward?

While scientists are busy developing new technologies that address the countless technical problems of space, there is another segment of researchers, including myself, studying the business angle and the operations issues facing this new industry. In a recent paper, my colleague Christopher Tang and I investigate the questions firms need to answer in order to create a sustainable space industry and make it possible for humans to establish extraterrestrial bases, mine asteroids and extend space travel—all while governments play an increasingly smaller role in funding space enterprises. We believe these business solutions may hold the less-glamorous key to unlocking the galaxy.

The New Global Space Industry
When the Soviet Union launched their Sputnik program, putting a satellite in orbit in 1957, they kicked off a race to space fueled by international competition and Cold War fears. The Soviet Union and the United States played the primary roles, stringing together a series of “firsts” for the record books. The first chapter of the space race culminated with Neil Armstrong and Buzz Aldrin’s historic Apollo 11 moon landing which required massive public investment, on the order of US$25.4 billion, almost $200 billion in today’s dollars.

Competition characterized this early portion of space history. Eventually, that evolved into collaboration, with the International Space Station being a stellar example, as governments worked toward shared goals. Now, we’ve entered a new phase—openness—with private, commercial companies leading the way.

The industry for spacecraft and satellite launches is becoming more commercialized, due, in part, to shrinking government budgets. According to a report from the investment firm Space Angels, a record 120 venture capital firms invested over $3.9 billion in private space enterprises last year. The space industry is also becoming global, no longer dominated by the Cold War rivals, the United States and USSR.

In 2018 to date, there have been 72 orbital launches, an average of two per week, from launch pads in China, Russia, India, Japan, French Guinea, New Zealand, and the US.

The uptick in orbital launches of actual rockets as well as spacecraft launches, which includes satellites and probes launched from space, coincides with this openness over the past decade.

More governments, firms and even amateurs engage in various spacecraft launches than ever before. With more entities involved, innovation has flourished. As Roberson notes in Digital Trends, “Private, commercial spaceflight. Even lunar exploration, mining, and colonization—it’s suddenly all on the table, making the race for space today more vital than it has felt in years.”

Worldwide launches into space. Orbital launches include manned and unmanned spaceships launched into orbital flight from Earth. Spacecraft launches include all vehicles such as spaceships, satellites and probes launched from Earth or space. Wooten, J. and C. Tang (2018) Operations in space, Decision Sciences; Space Launch Report (Kyle 2017); Spacecraft Encyclopedia (Lafleur 2017), CC BY-ND

One can see this vitality plainly in the news. On Sept. 21, Japan announced that two of its unmanned rovers, dubbed Minerva-II-1, had landed on a small, distant asteroid. For perspective, the scale of this landing is similar to hitting a 6-centimeter target from 20,000 kilometers away. And earlier this year, people around the world watched in awe as SpaceX’s Falcon Heavy rocket successfully launched and, more impressively, returned its two boosters to a landing pad in a synchronized ballet of epic proportions.

Challenges and Opportunities
Amidst the growth of capital, firms, and knowledge, both researchers and practitioners must figure out how entities should manage their daily operations, organize their supply chain, and develop sustainable operations in space. This is complicated by the hurdles space poses: distance, gravity, inhospitable environments, and information scarcity.

One of the greatest challenges involves actually getting the things people want in space, into space. Manufacturing everything on Earth and then launching it with rockets is expensive and restrictive. A company called Made In Space is taking a different approach by maintaining an additive manufacturing facility on the International Space Station and 3D printing right in space. Tools, spare parts, and medical devices for the crew can all be created on demand. The benefits include more flexibility and better inventory management on the space station. In addition, certain products can be produced better in space than on Earth, such as pure optical fiber.

How should companies determine the value of manufacturing in space? Where should capacity be built and how should it be scaled up? The figure below breaks up the origin and destination of goods between Earth and space and arranges products into quadrants. Humans have mastered the lower left quadrant, made on Earth—for use on Earth. Moving clockwise from there, each quadrant introduces new challenges, for which we have less and less expertise.

A framework of Earth-space operations. Wooten, J. and C. Tang (2018) Operations in Space, Decision Sciences, CC BY-ND
I first became interested in this particular problem as I listened to a panel of robotics experts discuss building a colony on Mars (in our third quadrant). You can’t build the structures on Earth and easily send them to Mars, so you must manufacture there. But putting human builders in that extreme environment is equally problematic. Essentially, an entirely new mode of production using robots and automation in an advance envoy may be required.

Resources in Space
You might wonder where one gets the materials for manufacturing in space, but there is actually an abundance of resources: Metals for manufacturing can be found within asteroids, water for rocket fuel is frozen as ice on planets and moons, and rare elements like helium-3 for energy are embedded in the crust of the moon. If we brought that particular isotope back to Earth, we could eliminate our dependence on fossil fuels.

As demonstrated by the recent Minerva-II-1 asteroid landing, people are acquiring the technical know-how to locate and navigate to these materials. But extraction and transport are open questions.

How do these cases change the economics in the space industry? Already, companies like Planetary Resources, Moon Express, Deep Space Industries, and Asterank are organizing to address these opportunities. And scholars are beginning to outline how to navigate questions of property rights, exploitation and partnerships.

Threats From Space Junk
A computer-generated image of objects in Earth orbit that are currently being tracked. Approximately 95 percent of the objects in this illustration are orbital debris – not functional satellites. The dots represent the current location of each item. The orbital debris dots are scaled according to the image size of the graphic to optimize their visibility and are not scaled to Earth. NASA
The movie “Gravity” opens with a Russian satellite exploding, which sets off a chain reaction of destruction thanks to debris hitting a space shuttle, the Hubble telescope, and part of the International Space Station. The sequence, while not perfectly plausible as written, is a very real phenomenon. In fact, in 2013, a Russian satellite disintegrated when it was hit with fragments from a Chinese satellite that exploded in 2007. Known as the Kessler effect, the danger from the 500,000-plus pieces of space debris has already gotten some attention in public policy circles. How should one prevent, reduce or mitigate this risk? Quantifying the environmental impact of the space industry and addressing sustainable operations is still to come.

NASA scientist Mark Matney is seen through a fist-sized hole in a 3-inch thick piece of aluminum at Johnson Space Center’s orbital debris program lab. The hole was created by a thumb-size piece of material hitting the metal at very high speed simulating possible damage from space junk. AP Photo/Pat Sullivan
What’s Next?
It’s true that space is becoming just another place to do business. There are companies that will handle the logistics of getting your destined-for-space module on board a rocket; there are companies that will fly those rockets to the International Space Station; and there are others that can make a replacement part once there.

What comes next? In one sense, it’s anybody’s guess, but all signs point to this new industry forging ahead. A new breakthrough could alter the speed, but the course seems set: exploring farther away from home, whether that’s the moon, asteroids, or Mars. It’s hard to believe that 10 years ago, SpaceX launches were yet to be successful. Today, a vibrant private sector consists of scores of companies working on everything from commercial spacecraft and rocket propulsion to space mining and food production. The next step is working to solidify the business practices and mature the industry.

Standing in a large hall at the University of Pittsburgh as part of the White House Frontiers Conference, I see the future. Wrapped around my head are state-of-the-art virtual reality goggles. I’m looking at the surface of Mars. Every detail is immediate and crisp. This is not just a video game or an aimless exercise. The scientific community has poured resources into such efforts because exploration is preceded by information. And who knows, maybe 10 years from now, someone will be standing on the actual surface of Mars.

Image Credit: SpaceX

Joel Wooten, Assistant Professor of Management Science, University of South Carolina

This article is republished from The Conversation under a Creative Commons license. Read the original article. Continue reading

Posted in Human Robots

#433655 First-Ever Grad Program in Space Mining ...

Maybe they could call it the School of Space Rock: A new program being offered at the Colorado School of Mines (CSM) will educate post-graduate students on the nuts and bolts of extracting and using valuable materials such as rare metals and frozen water from space rocks like asteroids or the moon.

Officially called Space Resources, the graduate-level program is reputedly the first of its kind in the world to offer a course in the emerging field of space mining. Heading the program is Angel Abbud-Madrid, director of the Center for Space Resources at Mines, a well-known engineering school located in Golden, Colorado, where Molson Coors taps Rocky Mountain spring water for its earthly brews.

The first semester for the new discipline began last month. While Abbud-Madrid didn’t immediately respond to an interview request, Singularity Hub did talk to Chris Lewicki, president and CEO of Planetary Resources, a space mining company whose founders include Peter Diamandis, Singularity University co-founder.

A former NASA engineer who worked on multiple Mars missions, Lewicki says the Space Resources program at CSM, with its multidisciplinary focus on science, economics, and policy, will help students be light years ahead of their peers in the nascent field of space mining.

“I think it’s very significant that they’ve started this program,” he said. “Having students with that kind of background exposure just allows them to be productive on day one instead of having to kind of fill in a lot of things for them.”

Who would be attracted to apply for such a program? There are many professionals who could be served by a post-baccalaureate certificate, master’s degree, or even Ph.D. in Space Resources, according to Lewicki. Certainly aerospace engineers and planetary scientists would be among the faces in the classroom.

“I think it’s [also] people who have an interest in what I would call maybe space robotics,” he said. Lewicki is referring not only to the classic example of robotic arms like the Canadarm2, which lends a hand to astronauts aboard the International Space Station, but other types of autonomous platforms.

One example might be Planetary Resources’ own Arkyd-6, a small, autonomous satellite called a CubeSat launched earlier this year to test different technologies that might be used for deep-space exploration of resources. The proof-of-concept was as much a test for the technology—such as the first space-based use of a mid-wave infrared imager to detect water resources—as it was for being able to work in space on a shoestring budget.

“We really proved that doing one of these billion-dollar science missions to deep space can be done for a lot less if you have a very focused goal, and if you kind of cut a lot of corners and then put some commercial approaches into those things,” Lewicki said.

A Trillion-Dollar Industry
Why space mining? There are at least a trillion reasons.

Astrophysicist Neil deGrasse Tyson famously said that the first trillionaire will be the “person who exploits the natural resources on asteroids.” That’s because asteroids—rocky remnants from the formation of our solar system more than four billion years ago—harbor precious metals, ranging from platinum and gold to iron and nickel.

For instance, one future target of exploration by NASA—an asteroid dubbed 16 Psyche, orbiting the sun in the asteroid belt between Mars and Jupiter—is worth an estimated $10,000 quadrillion. It’s a number so mind-bogglingly big that it would crash the global economy, if someone ever figured out how to tow it back to Earth without literally crashing it into the planet.

Living Off the Land
Space mining isn’t just about getting rich. Many argue that humanity’s ability to extract resources in space, especially water that can be refined into rocket fuel, will be a key technology to extend our reach beyond near-Earth space.

The presence of frozen water around the frigid polar regions of the moon, for example, represents an invaluable source to power future deep-space missions. Splitting H20 into its component elements of hydrogen and oxygen would provide a nearly inexhaustible source of rocket fuel. Today, it costs $10,000 to put a pound of payload in Earth orbit, according to NASA.

Until more advanced rocket technology is developed, the moon looks to be the best bet for serving as the launching pad to Mars and beyond.

Moon Versus Asteroid
However, Lewicki notes that despite the moon’s proximity and our more intimate familiarity with its pockmarked surface, that doesn’t mean a lunar mission to extract resources is any easier than a multi-year journey to a fast-moving asteroid.

For one thing, fighting gravity to and from the moon is no easy feat, as the moon has a significantly stronger gravitational field than an asteroid. Another challenge is that the frozen water is located in permanently shadowed lunar craters, meaning space miners can’t rely on solar-powered equipment, but on some sort of external energy source.

And then there’s the fact that moon craters might just be the coldest places in the solar system. NASA’s Lunar Reconnaissance Orbiter found temperatures plummeted as low as 26 Kelvin, or more than minus 400 degrees Fahrenheit. In comparison, the coldest temperatures on Earth have been recorded near the South Pole in Antarctica—about minus 148 degrees F.

“We don’t operate machines in that kind of thermal environment,” Lewicki said of the extreme temperatures detected in the permanent dark regions of the moon. “Antarctica would be a balmy desert island compared to a lunar polar crater.”

Of course, no one knows quite what awaits us in the asteroid belt. Answers may soon be forthcoming. Last week, the Japan Aerospace Exploration Agency landed two small, hopping rovers on an asteroid called Ryugu. Meanwhile, NASA hopes to retrieve a sample from the near-Earth asteroid Bennu when its OSIRIS-REx mission makes contact at the end of this year.

No Bucks, No Buck Rogers
Visionaries like Elon Musk and Jeff Bezos talk about colonies on Mars, with millions of people living and working in space. The reality is that there’s probably a reason Buck Rogers was set in the 25th century: It’s going to take a lot of money and a lot of time to realize those sci-fi visions.

Or, as Lewicki put it: “No bucks, no Buck Rogers.”

The cost of operating in outer space can be prohibitive. Planetary Resources itself is grappling with raising additional funding, with reports this year about layoffs and even a possible auction of company assets.

Still, Lewicki is confident that despite economic and technical challenges, humanity will someday exceed even the boldest dreamers—skyscrapers on the moon, interplanetary trips to Mars—as judged against today’s engineering marvels.

“What we’re doing is going to be very hard, very painful, and almost certainly worth it,” he said. “Who would have thought that there would be a job for a space miner that you could go to school for, even just five or ten years ago. Things move quickly.”

Image Credit: M-SUR / Shutterstock.com Continue reading

Posted in Human Robots

#433506 MIT’s New Robot Taught Itself to Pick ...

Back in 2016, somewhere in a Google-owned warehouse, more than a dozen robotic arms sat for hours quietly grasping objects of various shapes and sizes. For hours on end, they taught themselves how to pick up and hold the items appropriately—mimicking the way a baby gradually learns to use its hands.

Now, scientists from MIT have made a new breakthrough in machine learning: their new system can not only teach itself to see and identify objects, but also understand how best to manipulate them.

This means that, armed with the new machine learning routine referred to as “dense object nets (DON),” the robot would be capable of picking up an object that it’s never seen before, or in an unfamiliar orientation, without resorting to trial and error—exactly as a human would.

The deceptively simple ability to dexterously manipulate objects with our hands is a huge part of why humans are the dominant species on the planet. We take it for granted. Hardware innovations like the Shadow Dexterous Hand have enabled robots to softly grip and manipulate delicate objects for many years, but the software required to control these precision-engineered machines in a range of circumstances has proved harder to develop.

This was not for want of trying. The Amazon Robotics Challenge offers millions of dollars in prizes (and potentially far more in contracts, as their $775m acquisition of Kiva Systems shows) for the best dexterous robot able to pick and package items in their warehouses. The lucrative dream of a fully-automated delivery system is missing this crucial ability.

Meanwhile, the Robocup@home challenge—an offshoot of the popular Robocup tournament for soccer-playing robots—aims to make everyone’s dream of having a robot butler a reality. The competition involves teams drilling their robots through simple household tasks that require social interaction or object manipulation, like helping to carry the shopping, sorting items onto a shelf, or guiding tourists around a museum.

Yet all of these endeavors have proved difficult; the tasks often have to be simplified to enable the robot to complete them at all. New or unexpected elements, such as those encountered in real life, more often than not throw the system entirely. Programming the robot’s every move in explicit detail is not a scalable solution: this can work in the highly-controlled world of the assembly line, but not in everyday life.

Computer vision is improving all the time. Neural networks, including those you train every time you prove that you’re not a robot with CAPTCHA, are getting better at sorting objects into categories, and identifying them based on sparse or incomplete data, such as when they are occluded, or in different lighting.

But many of these systems require enormous amounts of input data, which is impractical, slow to generate, and often needs to be laboriously categorized by humans. There are entirely new jobs that require people to label, categorize, and sift large bodies of data ready for supervised machine learning. This can make machine learning undemocratic. If you’re Google, you can make thousands of unwitting volunteers label your images for you with CAPTCHA. If you’re IBM, you can hire people to manually label that data. If you’re an individual or startup trying something new, however, you will struggle to access the vast troves of labeled data available to the bigger players.

This is why new systems that can potentially train themselves over time or that allow robots to deal with situations they’ve never seen before without mountains of labelled data are a holy grail in artificial intelligence. The work done by MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) is part of a new wave of “self-supervised” machine learning systems—little of the data used was labeled by humans.

The robot first inspects the new object from multiple angles, building up a 3D picture of the object with its own coordinate system. This then allows the robotic arm to identify a particular feature on the object—such as a handle, or the tongue of a shoe—from various different angles, based on its relative distance to other grid points.

This is the real innovation: the new means of representing objects to grasp as mapped-out 3D objects, with grid points and subsections of their own. Rather than using a computer vision algorithm to identify a door handle, and then activating a door handle grasping subroutine, the DON system treats all objects by making these spatial maps before classifying or manipulating them, enabling it to deal with a greater range of objects than in other approaches.

“Many approaches to manipulation can’t identify specific parts of an object across the many orientations that object may encounter,” said PhD student Lucas Manuelli, who wrote a new paper about the system with lead author and fellow student Pete Florence, alongside MIT professor Russ Tedrake. “For example, existing algorithms would be unable to grasp a mug by its handle, especially if the mug could be in multiple orientations, like upright, or on its side.”

Class-specific descriptors, which can be applied to the object features, can allow the robot arm to identify a mug, find the handle, and pick the mug up appropriately. Object-specific descriptors allow the robot arm to select a particular mug from a group of similar items. I’m already dreaming of a robot butler reliably picking my favourite mug when it serves me coffee in the morning.

Google’s robot arm-y was an attempt to develop a general grasping algorithm: one that could identify, categorize, and appropriately grip as many items as possible. This requires a great deal of training time and data, which is why Google parallelized their project by having 14 robot arms feed data into a single neural network brain: even then, the algorithm may fail with highly specific tasks. Specialist grasping algorithms might require less training if they’re limited to specific objects, but then your software is useless for general tasks.

As the roboticists noted, their system, with its ability to identify parts of an object rather than just a single object, is better suited to specific tasks, such as “grasp the racquet by the handle,” than Amazon Robotics Challenge robots, which identify whole objects by segmenting an image.

This work is small-scale at present. It has been tested with a few classes of objects, including shoes, hats, and mugs. Yet the use of these dense object nets as a way for robots to represent and manipulate new objects may well be another step towards the ultimate goal of generalized automation: a robot capable of performing every task a person can. If that point is reached, the question that will remain is how to cope with being obsolete.

Image Credit: Tom Buehler/CSAIL Continue reading

Posted in Human Robots