Tag Archives: planet
#437924 How a Software Map of the Entire Planet ...
i
“3D map data is the scaffolding of the 21st century.”
–Edward Miller, Founder, Scape Technologies, UK
Covered in cameras, sensors, and a distinctly spaceship looking laser system, Google’s autonomous vehicles were easy to spot when they first hit public roads in 2015. The key hardware ingredient is a spinning laser fixed to the roof, called lidar, which provides the car with a pair of eyes to see the world. Lidar works by sending out beams of light and measuring the time it takes to bounce off objects back to the source. By timing the light’s journey, these depth-sensing systems construct fully 3D maps of their surroundings.
3D maps like these are essentially software copies of the real world. They will be crucial to the development of a wide range of emerging technologies including autonomous driving, drone delivery, robotics, and a fast-approaching future filled with augmented reality.
Like other rapidly improving technologies, lidar is moving quickly through its development cycle. What was an expensive technology on the roof of a well-funded research project is now becoming cheaper, more capable, and readily available to consumers. At some point, lidar will come standard on most mobile devices and is now available to early-adopting owners of the iPhone 12 Pro.
Consumer lidar represents the inevitable shift from wealthy tech companies generating our world’s map data, to a more scalable crowd-sourced approach. To develop the repository for their Street View Maps product, Google reportedly spent $1-2 billion sending cars across continents photographing every street. Compare that to a live-mapping service like Waze, which uses crowd-sourced user data from its millions of users to generate accurate and real-time traffic conditions. Though these maps serve different functions, one is a static, expensive, unchanging map of the world while the other is dynamic, real-time, and constructed by users themselves.
Soon millions of people may be scanning everything from bedrooms to neighborhoods, resulting in 3D maps of significant quality. An online search for lidar room scans demonstrates just how richly textured these three-dimensional maps are compared to anything we’ve had before. With lidar and other depth-sensing systems, we now have the tools to create exact software copies of everywhere and everything on earth.
At some point, likely aided by crowdsourcing initiatives, these maps will become living breathing, real-time representations of the world. Some refer to this idea as a “digital twin” of the planet. In a feature cover story, Kevin Kelly, the cofounder of Wired magazine, calls this concept the “mirrorworld,” a one-to-one software map of everything.
So why is that such a big deal? Take augmented reality as an example.
Of all the emerging industries dependent on such a map, none are more invested in seeing this concept emerge than those within the AR landscape. Apple, for example, is not-so-secretly developing a pair of AR glasses, which they hope will deliver a mainstream turning point for the technology.
For Apple’s AR devices to work as anticipated, they will require virtual maps of the world, a concept AR insiders call the “AR cloud,” which is synonymous with the “mirrorworld” concept. These maps will be two things. First, they will be a tool that creators use to place AR content in very specific locations; like a world canvas to paint on. Second, they will help AR devices both locate and understand the world around them so they can render content in a believable way.
Imagine walking down a street wanting to check the trading hours of a local business. Instead of pulling out your phone to do a tedious search online, you conduct the equivalent of a visual google search simply by gazing at the store. Albeit a trivial example, the AR cloud represents an entirely non-trivial new way of managing how we organize the world’s information. Access to knowledge can be shifted away from the faraway monitors in our pocket, to its relevant real-world location.
Ultimately this describes a blurring of physical and digital infrastructure. Our public and private spaces will thus be comprised equally of both.
No example demonstrates this idea better than Pokémon Go. The game is straightforward enough; users capture virtual characters scattered around the real world. Today, the game relies on traditional GPS technology to place its characters, but GPS is accurate only to within a few meters of a location. For a car navigating on a highway or locating Pikachus in the world, that level of precision is sufficient. For drone deliveries, driverless cars, or placing a Pikachu in a specific location, say on a tree branch in a park, GPS isn’t accurate enough. As astonishing as it may seem, many experimental AR cloud concepts, even entirely mapped cities, are location specific down to the centimeter.
Niantic, the $4 billion publisher behind Pokémon Go, is aggressively working on developing a crowd-sourced approach to building better AR Cloud maps by encouraging their users to scan the world for them. Their recent acquisition of 6D.ai, a mapping software company developed by the University of Oxford’s Victor Prisacariu through his work at Oxford’s Active Vision Lab, indicates Niantic’s ambition to compete with the tech giants in this space.
With 6D.ai’s technology, Niantic is developing the in-house ability to generate their own 3D maps while gaining better semantic understanding of the world. By going beyond just knowing there’s a temporary collection of orange cones in a certain location, for example, the game may one day understand the meaning behind this; that a temporary construction zone means no Pokémon should spawn here to avoid drawing players to this location.
Niantic is not the only company working on this. Many of the big tech firms you would expect have entire teams focused on map data. Facebook, for example, recently acquired the UK-based Scape technologies, a computer vision startup mapping entire cities with centimeter precision.
As our digital maps of the world improve, expect a relentless and justified discussion of privacy concerns as well. How will society react to the idea of a real-time 3D map of their bedroom living on a Facebook or Amazon server? Those horrified by the use of facial recognition AI being used in public spaces are unlikely to find comfort in the idea of a machine-readable world subject to infinite monitoring.
The ability to build high-precision maps of the world could reshape the way we engage with our planet and promises to be one of the biggest technology developments of the next decade. While these maps may stay hidden as behind-the-scenes infrastructure powering much flashier technologies that capture the world’s attention, they will soon prop up large portions of our technological future.
Keep that in mind when a car with no driver is sharing your road.
Image credit: sergio souza / Pexels Continue reading
#437809 Q&A: The Masterminds Behind ...
Illustration: iStockphoto
Getting a car to drive itself is undoubtedly the most ambitious commercial application of artificial intelligence (AI). The research project was kicked into life by the 2004 DARPA Urban Challenge and then taken up as a business proposition, first by Alphabet, and later by the big automakers.
The industry-wide effort vacuumed up many of the world’s best roboticists and set rival companies on a multibillion-dollar acquisitions spree. It also launched a cycle of hype that paraded ever more ambitious deadlines—the most famous of which, made by Alphabet’s Sergei Brin in 2012, was that full self-driving technology would be ready by 2017. Those deadlines have all been missed.
Much of the exhilaration was inspired by the seeming miracles that a new kind of AI—deep learning—was achieving in playing games, recognizing faces, and transliterating voices. Deep learning excels at tasks involving pattern recognition—a particular challenge for older, rule-based AI techniques. However, it now seems that deep learning will not soon master the other intellectual challenges of driving, such as anticipating what human beings might do.
Among the roboticists who have been involved from the start are Gill Pratt, the chief executive officer of Toyota Research Institute (TRI) , formerly a program manager at the Defense Advanced Research Projects Agency (DARPA); and Wolfram Burgard, vice president of automated driving technology for TRI and president of the IEEE Robotics and Automation Society. The duo spoke with IEEE Spectrum’s Philip Ross at TRI’s offices in Palo Alto, Calif.
This interview has been condensed and edited for clarity.
IEEE Spectrum: How does AI handle the various parts of the self-driving problem?
Photo: Toyota
Gill Pratt
Gill Pratt: There are three different systems that you need in a self-driving car: It starts with perception, then goes to prediction, and then goes to planning.
The one that by far is the most problematic is prediction. It’s not prediction of other automated cars, because if all cars were automated, this problem would be much more simple. How do you predict what a human being is going to do? That’s difficult for deep learning to learn right now.
Spectrum: Can you offset the weakness in prediction with stupendous perception?
Photo: Toyota Research Institute for Burgard
Wolfram Burgard
Wolfram Burgard: Yes, that is what car companies basically do. A camera provides semantics, lidar provides distance, radar provides velocities. But all this comes with problems, because sometimes you look at the world from different positions—that’s called parallax. Sometimes you don’t know which range estimate that pixel belongs to. That might make the decision complicated as to whether that is a person painted onto the side of a truck or whether this is an actual person.
With deep learning there is this promise that if you throw enough data at these networks, it’s going to work—finally. But it turns out that the amount of data that you need for self-driving cars is far larger than we expected.
Spectrum: When do deep learning’s limitations become apparent?
Pratt: The way to think about deep learning is that it’s really high-performance pattern matching. You have input and output as training pairs; you say this image should lead to that result; and you just do that again and again, for hundreds of thousands, millions of times.
Here’s the logical fallacy that I think most people have fallen prey to with deep learning. A lot of what we do with our brains can be thought of as pattern matching: “Oh, I see this stop sign, so I should stop.” But it doesn’t mean all of intelligence can be done through pattern matching.
“I asked myself, if all of those cars had automated drive, how good would they have to be to tolerate the number of crashes that would still occur?”
—Gill Pratt, Toyota Research Institute
For instance, when I’m driving and I see a mother holding the hand of a child on a corner and trying to cross the street, I am pretty sure she’s not going to cross at a red light and jaywalk. I know from my experience being a human being that mothers and children don’t act that way. On the other hand, say there are two teenagers—with blue hair, skateboards, and a disaffected look. Are they going to jaywalk? I look at that, you look at that, and instantly the probability in your mind that they’ll jaywalk is much higher than for the mother holding the hand of the child. It’s not that you’ve seen 100,000 cases of young kids—it’s that you understand what it is to be either a teenager or a mother holding a child’s hand.
You can try to fake that kind of intelligence. If you specifically train a neural network on data like that, you could pattern-match that. But you’d have to know to do it.
Spectrum: So you’re saying that when you substitute pattern recognition for reasoning, the marginal return on the investment falls off pretty fast?
Pratt: That’s absolutely right. Unfortunately, we don’t have the ability to make an AI that thinks yet, so we don’t know what to do. We keep trying to use the deep-learning hammer to hammer more nails—we say, well, let’s just pour more data in, and more data.
Spectrum: Couldn’t you train the deep-learning system to recognize teenagers and to assign the category a high propensity for jaywalking?
Burgard: People have been doing that. But it turns out that these heuristics you come up with are extremely hard to tweak. Also, sometimes the heuristics are contradictory, which makes it extremely hard to design these expert systems based on rules. This is where the strength of the deep-learning methods lies, because somehow they encode a way to see a pattern where, for example, here’s a feature and over there is another feature; it’s about the sheer number of parameters you have available.
Our separation of the components of a self-driving AI eases the development and even the learning of the AI systems. Some companies even think about using deep learning to do the job fully, from end to end, not having any structure at all—basically, directly mapping perceptions to actions.
Pratt: There are companies that have tried it; Nvidia certainly tried it. In general, it’s been found not to work very well. So people divide the problem into blocks, where we understand what each block does, and we try to make each block work well. Some of the blocks end up more like the expert system we talked about, where we actually code things, and other blocks end up more like machine learning.
Spectrum: So, what’s next—what new technique is in the offing?
Pratt: If I knew the answer, we’d do it. [Laughter]
Spectrum: You said that if all cars on the road were automated, the problem would be easy. Why not “geofence” the heck out of the self-driving problem, and have areas where only self-driving cars are allowed?
Pratt: That means putting in constraints on the operational design domain. This includes the geography—where the car should be automated; it includes the weather, it includes the level of traffic, it includes speed. If the car is going slow enough to avoid colliding without risking a rear-end collision, that makes the problem much easier. Street trolleys operate with traffic still in some parts of the world, and that seems to work out just fine. People learn that this vehicle may stop at unexpected times. My suspicion is, that is where we’ll see Level 4 autonomy in cities. It’s going to be in the lower speeds.
“We are now in the age of deep learning, and we don’t know what will come after.”
—Wolfram Burgard, Toyota Research Institute
That’s a sweet spot in the operational design domain, without a doubt. There’s another one at high speed on a highway, because access to highways is so limited. But unfortunately there is still the occasional debris that suddenly crosses the road, and the weather gets bad. The classic example is when somebody irresponsibly ties a mattress to the top of a car and it falls off; what are you going to do? And the answer is that terrible things happen—even for humans.
Spectrum: Learning by doing worked for the first cars, the first planes, the first steam boilers, and even the first nuclear reactors. We ran risks then; why not now?
Pratt: It has to do with the times. During the era where cars took off, all kinds of accidents happened, women died in childbirth, all sorts of diseases ran rampant; the expected characteristic of life was that bad things happened. Expectations have changed. Now the chance of dying in some freak accident is quite low because of all the learning that’s gone on, the OSHA [Occupational Safety and Health Administration] rules, UL code for electrical appliances, all the building standards, medicine.
Furthermore—and we think this is very important—we believe that empathy for a human being at the wheel is a significant factor in public acceptance when there is a crash. We don’t know this for sure—it’s a speculation on our part. I’ve driven, I’ve had close calls; that could have been me that made that mistake and had that wreck. I think people are more tolerant when somebody else makes mistakes, and there’s an awful crash. In the case of an automated car, we worry that that empathy won’t be there.
Photo: Toyota
Toyota is using this
Platform 4 automated driving test vehicle, based on the Lexus LS, to develop Level-4 self-driving capabilities for its “Chauffeur” project.
Spectrum: Toyota is building a system called Guardian to back up the driver, and a more futuristic system called Chauffeur, to replace the driver. How can Chauffeur ever succeed? It has to be better than a human plus Guardian!
Pratt: In the discussions we’ve had with others in this field, we’ve talked about that a lot. What is the standard? Is it a person in a basic car? Or is it a person with a car that has active safety systems in it? And what will people think is good enough?
These systems will never be perfect—there will always be some accidents, and no matter how hard we try there will still be occasions where there will be some fatalities. At what threshold are people willing to say that’s okay?
Spectrum: You were among the first top researchers to warn against hyping self-driving technology. What did you see that so many other players did not?
Pratt: First, in my own case, during my time at DARPA I worked on robotics, not cars. So I was somewhat of an outsider. I was looking at it from a fresh perspective, and that helps a lot.
Second, [when I joined Toyota in 2015] I was joining a company that is very careful—even though we have made some giant leaps—with the Prius hybrid drive system as an example. Even so, in general, the philosophy at Toyota is kaizen—making the cars incrementally better every single day. That care meant that I was tasked with thinking very deeply about this thing before making prognostications.
And the final part: It was a new job for me. The first night after I signed the contract I felt this incredible responsibility. I couldn’t sleep that whole night, so I started to multiply out the numbers, all using a factor of 10. How many cars do we have on the road? Cars on average last 10 years, though ours last 20, but let’s call it 10. They travel on an order of 10,000 miles per year. Multiply all that out and you get 10 to the 10th miles per year for our fleet on Planet Earth, a really big number. I asked myself, if all of those cars had automated drive, how good would they have to be to tolerate the number of crashes that would still occur? And the answer was so incredibly good that I knew it would take a long time. That was five years ago.
Burgard: We are now in the age of deep learning, and we don’t know what will come after. We are still making progress with existing techniques, and they look very promising. But the gradient is not as steep as it was a few years ago.
Pratt: There isn’t anything that’s telling us that it can’t be done; I should be very clear on that. Just because we don’t know how to do it doesn’t mean it can’t be done. Continue reading