Tag Archives: piece
#436065 From Mainframes to PCs: What Robot ...
This is a guest post. The views expressed here are solely those of the author and do not represent positions of IEEE Spectrum or the IEEE.
Autonomous robots are coming around slowly. We already got autonomous vacuum cleaners, autonomous lawn mowers, toys that bleep and blink, and (maybe) soon autonomous cars. Yet, generation after generation, we keep waiting for the robots that we all know from movies and TV shows. Instead, businesses seem to get farther and farther away from the robots that are able to do a large variety of tasks using general-purpose, human anatomy-inspired hardware.
Although these are the droids we have been looking for, anything that came close, such as Willow Garage’s PR2 or Rethink Robotics’ Baxter has bitten the dust. With building a robotic company being particularly hard, compounding business risk with technological risk, the trend goes from selling robots to selling actual services like mowing your lawn, provide taxi rides, fulfilling retail orders, or picking strawberries by the pound. Unfortunately for fans of R2-D2 and C-3PO, these kind of business models emphasize specialized, room- or fridge-sized hardware that is optimized for one very specific task, but does not contribute to a general-purpose robotic platform.
We have actually seen something very similar in the personal computer (PC) industry. In the 1950s, even though computers could be as big as an entire room and were only available to a selected few, the public already had a good idea of what computers would look like. A long list of fictional computers started to populate mainstream entertainment during that time. In a 1962 New York Times article titled “Pocket Computer to Replace Shopping List,” visionary scientist John Mauchly stated that “there is no reason to suppose the average boy or girl cannot be master of a personal computer.”
In 1968, Douglas Engelbart gave us the “mother of all demos,” browsing hypertext on a graphical screen and a mouse, and other ideas that have become standard only decades later. Now that we have finally seen all of this, it might be helpful to examine what actually enabled the computing revolution to learn where robotics is really at and what we need to do next.
The parallels between computers and robots
In the 1970s, mainframes were about to be replaced by the emerging class of mini-computers, fridge-sized devices that cost less than US $25,000 ($165,000 in 2019 dollars). These computers did not use punch-cards, but could be programmed in Fortran and BASIC, dramatically expanding the ease with which potential applications could be created. Yet it was still unclear whether mini-computers could ever replace big mainframes in applications that require fast and efficient processing of large amounts of data, let alone enter every living room. This is very similar to the robotics industry right now, where large-scale factory robots (mainframes) that have existed since the 1960s are seeing competition from a growing industry of collaborative robots that can safely work next to humans and can easily be installed and programmed (minicomputers). As in the ’70s, applications for these devices that reach system prices comparable to that of a luxury car are quite limited, and it is hard to see how they could ever become a consumer product.
Yet, as in the computer industry, successful architectures are quickly being cloned, driving prices down, and entirely new approaches on how to construct or program robotic arms are sprouting left and right. Arm makers are joined by manufacturers of autonomous carts, robotic grippers, and sensors. These components can be combined, paving the way for standard general purpose platforms that follow the model of the IBM PC, which built a capable, open architecture relying as much on commodity parts as possible.
General purpose robotic systems have not been successful for similar reasons that general purpose, also known as “personal,” computers took decades to emerge. Mainframes were custom-built for each application, while typewriters got smarter and smarter, not really leaving room for general purpose computers in between. Indeed, given the cost of hardware and the relatively little abilities of today’s autonomous robots, it is almost always smarter to build a special purpose machine than trying to make a collaborative mobile manipulator smart.
A current example is e-commerce grocery fulfillment. The current trend is to reserve underutilized parts of a brick-and-mortar store for a micro-fulfillment center that stores goods in little crates with an automated retrieval system and a (human) picker. A number of startups like Alert Innovation, Fabric, Ocado Technology, TakeOff Technologies, and Tompkins Robotics, to just name a few, have raised hundreds of millions of venture capital recently to build mainframe equivalents of robotic fulfillment centers. This is in contrast with a robotic picker, which would drive through the aisles to restock and pick from shelves. Such a robotic store clerk would come much closer to our vision of a general purpose robot, but would require many copies of itself that crowd the aisles to churn out hundreds of orders per hour as a microwarehouse could. Although eventually more efficient, the margins in retail are already low and make it unlikely that this industry will produce the technological jump that we need to get friendly C-3POs manning the aisles.
Startups have raised hundreds of millions of venture capital recently to build mainframe equivalents of robotic fulfillment centers. This is in contrast with a robotic picker, which would drive through the aisles to restock and pick from shelves, and would come much closer to our vision of a general purpose robot.
Mainframes were also attacked from the bottom. Fascination with the new digital technology has led to a hobbyist movement to create microcomputers that were sold via mail order or at RadioShack. Initially, a large number of small businesses was selling tens, at most hundreds, of devices, usually as a kit and with wooden enclosures. This trend culminated into the “1977 Trinity” in the form of the Apple II, the Commodore PET, and the Tandy TRS-80, complete computers that were sold for prices around $2500 (TRS) to $5000 (Apple) in today’s dollars. The main application of these computers was their programmability (in BASIC), which would enable consumers to “learn to chart your biorhythms, balance your checking account, or even control your home environment,” according to an original Apple advertisement. Similarly, there exists a myriad of gadgets that explore different aspects of robotics such as mobility, manipulation, and entertainment.
As in the fledgling personal computing industry, the advertised functionality was at best a model of the real deal. A now-famous milestone in entertainment robotics was the original Sony’s Aibo, a robotic dog that was advertised to have many properties that a real dog has such as develop its own personality, play with a toy, and interact with its owner. Released in 1999, and re-launched in 2018, the platform has a solid following among hobbyists and academics who like its programmability, but probably only very few users who accept the device as a pet stand-in.
There also exist countless “build-your-own-robotic-arm” kits. One of the more successful examples is the uArm, which sells for around $800, and is advertised to perform pick and place, assembly, 3D printing, laser engraving, and many other things that sound like high value applications. Using compelling videos of the robot actually doing these things in a constrained environment has led to two successful crowd-funding campaigns, and have established the robot as a successful educational tool.
Finally, there exist platforms that allow hobbyist programmers to explore mobility to construct robots that patrol your house, deliver items, or provide their users with telepresence abilities. An example of that is the Misty II. Much like with the original Apple II, there remains a disconnect between the price of the hardware and the fidelity of the applications that were available.
For computers, this disconnect began to disappear with the invention of the first electronic spreadsheet software VisiCalc that spun out of Harvard in 1979 and prompted many people to buy an entire microcomputer just to run the program. VisiCalc was soon joined by WordStar, a word processing application, that sold for close to $2000 in today’s dollars. WordStar, too, would entice many people to buy the entire hardware just to use the software. The two programs are early examples of what became known as “killer application.”
With factory automation being mature, and robots with the price tag of a minicomputer being capable of driving around and autonomously carrying out many manipulation tasks, the robotics industry is somewhere where the PC industry was between 1973—the release of the Xerox Alto, the first computer with a graphical user interface, mouse, and special software—and 1979—when microcomputers in the under $5000 category began to take off.
Killer apps for robots
So what would it take for robotics to continue to advance like computers did? The market itself already has done a good job distilling what the possible killer apps are. VCs and customers alike push companies who have set out with lofty goals to reduce their offering to a simple value proposition. As a result, companies that started at opposite ends often converge to mirror images of each other that offer very similar autonomous carts, (bin) picking, palletizing, depalletizing, or sorting solutions. Each of these companies usually serves a single application to a single vertical—for example bin-picking clothes, transporting warehouse goods, or picking strawberries by the pound. They are trying to prove that their specific technology works without spreading themselves too thin.
Very few of these companies have really taken off. One example is Kiva Systems, which turned into the logistic robotics division of Amazon. Kiva and others are structured around sound value propositions that are grounded in well-known user needs. As these solutions are very specialized, however, it is unlikely that they result into any economies of scale of the same magnitude that early computer users who bought both a spreadsheet and a word processor application for their expensive minicomputer could enjoy. What would make these robotic solutions more interesting is when functionality becomes stackable. Instead of just being able to do bin picking, palletizing, and transportation with the same hardware, these three skills could be combined to model entire processes.
A skill that is yet little addressed by startups and is historically owned by the mainframe equivalent of robotics is assembly of simple mechatronic devices. The ability to assemble mechatronic parts is equivalent to other tasks such as changing a light bulb, changing the batteries in a remote control, or tending machines like a lever-based espresso machine. These tasks would involve the autonomous execution of complete workflows possible using a single machine, eventually leading to an explosion of industrial productivity across all sectors. For example, picking up an item from a bin, arranging it on the robot, moving it elsewhere, and placing it into a shelf or a machine is a process that equally applies to a manufacturing environment, a retail store, or someone’s kitchen.
Image: Robotic Materials Inc.
Autonomous, vision and force-based assembly of the
Siemens robot learning challenge.
Even though many of the above applications are becoming possible, it is still very hard to get a platform off the ground without added components that provide “killer app” value of their own. Interesting examples are Rethink Robotics or the Robot Operating System (ROS). Rethink Robotics’ Baxter and Sawyer robots pioneered a great user experience (like the 1973 Xerox Alto, really the first PC), but its applications were difficult to extend beyond simple pick-and-place and palletizing and depalletizing items.
ROS pioneered interprocess communication software that was adapted to robotic needs (multiple computers, different programming languages) and the idea of software modularity in robotics, but—in the absence of a common hardware platform—hasn’t yet delivered a single application, e.g. for navigation, path planning, or grasping, that performs beyond research-grade demonstration level and won’t get discarded once developers turn to production systems. At the same time, an increasing number of robotic devices, such as robot arms or 3D perception systems that offer intelligent functionality, provide other ways to wire them together that do not require an intermediary computer, while keeping close control over the real-time aspects of their hardware.
Image: Robotic Materials Inc.
Robotic Materials GPR-1 combines a MIR-100 autonomous cart with an UR-5 collaborative robotic arm, an onRobot force/torque sensor and Robotic Materials’ SmartHand to perform out-of-the-box mobile assembly, bin picking, palletizing, and depalletizing tasks.
At my company, Robotic Materials Inc., we have made strides to identify a few applications such as bin picking and assembly, making them configurable with a single click by combining machine learning and optimization with an intuitive user interface. Here, users can define object classes and how to grasp them using a web browser, which then appear as first-class objects in a robot-specific graphical programming language. We have also done this for assembly, allowing users to stack perception-based picking and force-based assembly primitives by simply dragging and dropping appropriate commands together.
While such an approach might answer the question of a killer app for robots priced in the “minicomputer” range, it is unclear how killer app-type value can be generated with robots in the less-than-$5000 category. A possible answer is two-fold: First, with low-cost arms, mobility platforms, and entertainment devices continuously improving, a confluence of technology readiness and user innovation, like with the Apple II and VisiCalc, will eventually happen. For example, there is not much innovation needed to turn Misty into a home security system; the uArm into a low-cost bin-picking system; or an Aibo-like device into a therapeutic system for the elderly or children with autism.
Second, robots and their components have to become dramatically cheaper. Indeed, computers have seen an exponential reduction in price accompanied by an exponential increase in computational power, thanks in great part to Moore’s Law. This development has helped robotics too, allowing us to reach breakthroughs in mobility and manipulation due to the ability to process massive amounts of image and depth data in real-time, and we can expect it to continue to do so.
Is there a Moore’s Law for robots?
One might ask, however, how a similar dynamics might be possible for robots as a whole, including all their motors and gears, and what a “Moore’s Law” would look like for the robotics industry. Here, it helps to remember that the perpetuation of Moore’s Law is not the reason, but the result of the PC revolution. Indeed, the first killer apps for bookkeeping, editing, and gaming were so good that they unleashed tremendous consumer demand, beating the benchmark on what was thought to be physically possible over and over again. (I vividly remember 56 kbps to be the absolute maximum data rate for copper phone lines until DSL appeared.)
That these economies of scale are also applicable to mechatronics is impressively demonstrated by the car industry. A good example is the 2020 Prius Prime, a highly computerized plug-in hybrid, that is available for one third of the cost of my company’s GPR-1 mobile manipulator while being orders of magnitude more complex, sporting an electrical motor, a combustion engine, and a myriad of sensors and computers. It is therefore very well conceivable to produce a mobile manipulator that retails at one tenth of the cost of a modern car, once robotics enjoy similar mass-market appeal. Given that these robots are part of the equation, actively lowering cost of production, this might happen as fast as never before in the history of industrialization.
It is therefore very well conceivable to produce a mobile manipulator that retails at one tenth of the cost of a modern car, once robotics enjoy similar mass-market appeal.
There is one more driver that might make robots exponentially more capable: the cloud. Once a general purpose robot has learned or was programmed with a new skill, it could share it with every other robot. At some point, a grocer who buys a robot could assume that it already knows how to recognize and handle 99 percent of the retail items in the store. Likewise, a manufacturer can assume that the robot can handle and assemble every item available from McMaster-Carr and Misumi. Finally, families could expect a robot to know every kitchen item that Ikea and Pottery Barn is selling. Sounds like a labor intense problem, but probably more manageable than collecting footage for Google’s Street View using cars, tricycles, and snowmobiles, among other vehicles.
Strategies for robot startups
While we are waiting for these two trends—better and better applications and hardware with decreasing cost—to converge, we as a community have to keep exploring what the canonical robotic applications beyond mobility, bin picking, palletizing, depalletizing, and assembly are. We must also continue to solve the fundamental challenges that stand in the way of making these solutions truly general and robust.
For both questions, it might help to look at the strategies that have been critical in the development of the personal computer, which might equally well apply to robotics:
Start with a solution to a problem your customers have. Unfortunately, their problem is almost never that they need your sensor, widget, or piece of code, but something that already costs them money or negatively affects them in some other way. Example: There are many more people who had a problem calculating their taxes (and wanted to buy VisiCalc) than writing their own solution in BASIC.
Build as little of your own hardware as necessary. Your business model should be stronger than the margin you can make on the hardware. Why taking the risk? Example: Why build your own typewriter if you can write the best typewriting application that makes it worth buying a computer just for that?
If your goal is a platform, make sure it comes with a killer application, which alone justifies the platform cost. Example: Microcomputer companies came and went until the “1977 Trinity” intersected with the killer apps spreadsheet and word processors. Corollary: You can also get lucky.
Use an open architecture, which creates an ecosystem where others compete on creating better components and peripherals, while allowing others to integrate your solution into their vertical and stack it with other devices. Example: Both the Apple II and the IBM PC were completely open architectures, enabling many clones, thereby growing the user and developer base.
It’s worthwhile pursuing this. With most business processes already being digitized, general purpose robots will allow us to fill in gaps in mobility and manipulation, increasing productivity at levels only limited by the amount of resources and energy that are available, possibly creating a utopia in which creativity becomes the ultimate currency. Maybe we’ll even get R2-D2.
Nikolaus Correll is an associate professor of computer science at the University of Colorado at Boulder where he works on mobile manipulation and other robotics applications. He’s co-founder and CTO of Robotic Materials Inc., which is supported by the National Science Foundation and the National Institute of Standards and Technology via their Small Business Innovative Research (SBIR) programs. Continue reading →
#435775 Jaco Is a Low-Power Robot Arm That Hooks ...
We usually think of robots as taking the place of humans in various tasks, but robots of all kinds can also enhance human capabilities. This may be especially true for people with disabilities. And while the Cybathlon competition showed what's possible when cutting-edge research robotics is paired with expert humans, that competition isn't necessarily reflective of the kind of robotics available to most people today.
Kinova Robotics's Jaco arm is an assistive robotic arm designed to be mounted on an electric wheelchair. With six degrees of freedom plus a three-fingered gripper, the lightweight carbon fiber arm is frequently used in research because it's rugged and versatile. But from the start, Kinova created it to add autonomy to the lives of people with mobility constraints.
Earlier this year, Kinova shared the story of Mary Nelson, an 11-year-old girl with spinal muscular atrophy, who uses her Jaco arm to show her horse in competition. Spinal muscular atrophy is a neuromuscular disorder that impairs voluntary muscle movement, including muscles that help with respiration, and Mary depends on a power chair for mobility.
We wanted to learn more about how Kinova designs its Jaco arm, and what that means for folks like Mary, so we spoke with both Kinova and Mary's parents to find out how much of a difference a robot arm can make.
IEEE Spectrum: How did Mary interact with the world before having her arm, and what was involved in the decision to try a robot arm in general? And why then Kinova's arm specifically?
Ryan Nelson: Mary interacts with the world much like you and I do, she just uses different tools to do so. For example, she is 100 percent independent using her computer, iPad, and phone, and she prefers to use a mouse. However, she cannot move a standard mouse, so she connects her wheelchair to each device with Bluetooth to move the mouse pointer/cursor using her wheelchair joystick.
For years, we had a Manfrotto magic arm and super clamp attached to her wheelchair and she used that much like the robotic arm. We could put a baseball bat, paint brush, toys, etc. in the super clamp so that Mary could hold the object and interact as physically able children do. Mary has always wanted to be more independent, so we knew the robotic arm was something she must try. We had seen videos of the Kinova arm on YouTube and on their website, so we reached out to them to get a trial.
Can you tell us about the Jaco arm, and how the process of designing an assistive robot arm is different from the process of designing a conventional robot arm?
Nathaniel Swenson, Director of U.S. Operations — Assistive Technologies at Kinova: Jaco is our flagship robotic arm. Inspired by our CEO's uncle and its namesake, Jacques “Jaco” Forest, it was designed as assistive technology with power wheelchair users in mind.
The primary differences between Jaco and our other robots, such as the new Gen3, which was designed to meet the needs of academic and industry research teams, are speed and power consumption. Other robots such as the Gen3 can move faster and draw slightly more power because they aren't limited by the battery size of power wheelchairs. Depending on the use case, they might not interact directly with a human being in the research setting and can safely move more quickly. Jaco is designed to move at safe speeds and make direct contact with the end user and draw very little power directly from their wheelchair.
The most important consideration in the design process of an assistive robot is the safety of the end user. Jaco users operate their robots through their existing drive controls to assist them in daily activities such as eating, drinking, and opening doors and they don't have to worry about the robot draining their chair's batteries throughout the day. The elegant design that results from meeting the needs of our power chair users has benefited subsequent iterations, [of products] such as the Gen3, as well: Kinova's robots are lightweight, extremely efficient in their power consumption, and safe for direct human-robot interaction. This is not true of conventional industrial robots.
What was the learning process like for Mary? Does she feel like she's mastered the arm, or is it a continuous learning process?
Ryan Nelson: The learning process was super quick for Mary. However, she amazes us every day with the new things that she can do with the arm. Literally within minutes of installing the arm on her chair, Mary had it figured out and was shaking hands with the Kinova rep. The control of the arm is super intuitive and the Kinova reps say that SMA (Spinal Muscular Atrophy) children are perfect users because they are so smart—they pick it up right away. Mary has learned to do many fine motor tasks with the arm, from picking up small objects like a pencil or a ruler, to adjusting her glasses on her face, to doing science experiments.
Photo: The Nelson Family
Mary uses a headset microphone to amplify her voice, and she will use the arm and finger to adjust the microphone in front of her mouth after she is done eating (also a task she mastered quickly with the arm). Additionally, Mary will use the arms to reach down and adjust her feet or leg by grabbing them with the arm and moving them to a more comfortable position. All of these examples are things she never really asked us to do, but something she needed and just did on her own, with the help of the arm.
What is the most common feedback that you get from new users of the arm? How about from experienced users who have been using the arm for a while?
Nathaniel Swenson: New users always tell us how excited they are to see what they can accomplish with their new Jaco. From day one, they are able to do things that they have longed to do without assistance from a caregiver: take a drink of water or coffee, scratch an itch, push the button to open an “accessible” door or elevator, or even feed their baby with a bottle.
The most common feedback I hear from experienced users is that Jaco has changed their life. Our experienced users like Mary are rock stars: everywhere they go, people get excited to see what they'll do next. The difference between a new user and an experienced user could be as little as two weeks. People who operate power wheelchairs every day are already expert drivers and we just add a new “gear” to their chair: robot mode. It's fun to see how quickly new users master the intuitive Jaco control modes.
What changes would you like to see in the next generation of Jaco arm?
Ryan Nelson: Titanium fingers! Make it lift heavier objects, hold heavier items like a baseball bat, machine gun, flame thrower, etc., and Mary literally said this last night: “I wish the arm moved fast enough to play the piano.”
Nathaniel Swenson: I love the idea of titanium fingers! Jaco's fingers are made from a flexible polymer and designed to avoid harm. This allows the fingers to bend or dislocate, rather than break, but it also means they are not as durable as a material like titanium. Increased payload, the ability to manipulate heavier objects, requires increased power consumption. We've struck a careful balance between providing enough strength to accomplish most medically necessary Activities of Daily Living and efficient use of the power chair's batteries.
We take Isaac Asimov's Laws of Robotics pretty seriously. When we start to combine machine guns, flame throwers, and artificial intelligence with robots, I get very nervous!
I wish the arm moved fast enough to play the piano, too! I am also a musician and I share Mary's dream of an assistive robot that would enable her to make music. In the meantime, while we work on that, please enjoy this beautiful violin piece by Manami Ito and her one-of-a-kind violin prosthesis:
To what extent could more autonomy for the arm be helpful for users? What would be involved in implementing that?
Nathaniel Swenson: Artificial intelligence, machine learning, and deep learning will introduce greater autonomy in future iterations of assistive robots. This will enable them to perform more complex tasks that aren't currently possible, and enable them to accomplish routine tasks more quickly and with less input than the current manual control requires.
For assistive robots, implementation of greater autonomy involves a focus on end-user safety and improvements in the robot's awareness of its environment. Autonomous robots that work in close proximity with humans need vision. They must be able to see to avoid collisions and they use haptic feedback to tell the robot how much force is being exerted on objects. All of these technologies exist, but the largest obstacle to bringing them to the assistive technology market is to prove to the health insurance companies who will fund them that they are both safe and medically necessary. Continue reading →
#435742 This ‘Useless’ Social Robot ...
The recent high profile failures of some home social robots (and the companies behind them) have made it even more challenging than it was before to develop robots in that space. And it was challenging enough to begin with—making a robot that can autonomous interact with random humans in their homes over a long period of time for a price that people can afford is extraordinarily difficult. However, the massive amount of initial interest in robots like Jibo, Kuri, Vector, and Buddy prove that people do want these things, or at least think they do, and while that’s the case, there’s incentive for other companies to give social home robots a try.
One of those companies is Zoetic, founded in 2107 by Mita Yun and Jitu Das, both ex-Googlers. Their robot, Kiki, is more or less exactly what you’d expect from a social home robot: It’s cute, white, roundish, has big eyes, promises that it will be your “robot sidekick,” and is not cheap: It’s on Kicksterter for $800. Kiki is among what appears to be a sort of tentative second wave of social home robots, where designers have (presumably) had a chance to take everything that they learned from the social home robot pioneers and use it to make things better this time around.
Kiki’s Kickstarter video is, again, more or less exactly what you’d expect from a social home robot crowdfunding campaign:
We won’t get into all of the details on Kiki in this article (the Kickstarter page has tons of information), but a few distinguishing features:
Each Kiki will develop its own personality over time through its daily interactions with its owner, other people, and other Kikis.
Interacting with Kiki is more abstract than with most robots—it can understand some specific words and phrases, and will occasionally use a few specific words or two, but otherwise it’s mostly listening to your tone of voice and responding with sounds rather than speech.
Kiki doesn’t move on its own, but it can operate for up to two hours away from its charging dock.
Depending on how your treat Kiki, it can get depressed or neurotic. It also needs to be fed, which you can do by drawing different kinds of food in the app.
Everything Kiki does runs on-board the robot. It has Wi-Fi connectivity for updates, but doesn’t rely on the cloud for anything in real-time, meaning that your data stays on the robot and that the robot will continue to function even if its remote service shuts down.
It’s hard to say whether features like these are unique enough to help Kiki be successful where other social home robots haven’t been, so we spoke with Zoetic co-founder Mita Yun and asked her why she believes that Kiki is going to be the social home robot that makes it.
IEEE Spectrum: What’s your background?
Mita Yun: I was an only child growing up, and so I always wanted something like Doraemon or Totoro. Something that when you come home it’s there to greet you, not just because it’s programmed to do that but because it’s actually actively happy to see you, and only you. I was so interested in this that I went to study robotics at CMU and then after I graduated I joined Google and worked there for five years. I tended to go for the more risky and more fun projects, but they always got cancelled—the first project I joined was called Android at Home, and then I joined Google Glass, and then I joined a team called Robots for Kids. That project was building educational robots, and then I just realized that when we’re adding technology to something, to a product, we’re actually taking the life away somehow, and the kids were more connected with stuffed animals compared to the educational robots we were building. That project was also cancelled, and in 2017, I left with a coworker of mine (Jitu Das) to bring this dream into reality. And now we’re building Kiki.
“Jibo was Alexa plus cuteness equals $800, and I feel like that equation doesn’t work for most people, and that eventually killed the company. So, for Kiki, we are actually building something very different. We’re building something that’s completely useless”
—Mita Yun, Zoetic
You started working on Kiki in 2017, when things were already getting challenging for Jibo—why did you decide to start developing a social home robot at that point?
I thought Jibo was great. It had a special magical way of moving, and it was such a new idea that you could have this robot with embodiment and it can actually be your assistant. The problem with Jibo, in my opinion, was that it took too long to fulfill the orders. It took them three to four years to actually manufacture, because it was a very complex piece of hardware, and then during that period of time Alexa and Google Home came out, and they started selling these voice systems for $30 and then you have Jibo for $800. Jibo was Alexa plus cuteness equals $800, and I feel like that equation doesn’t work for most people, and that eventually killed the company. So, for Kiki, we are actually building something very different. We’re building something that’s completely useless.
Can you elaborate on “completely useless?”
I feel like people are initially connected with robots because they remind them of a character. And it’s the closest we can get to a character other than an organic character like an animal. So we’re connected to a character like when we have a robot in a mall that’s roaming around, even if it looks really ugly, like if it doesn’t have eyes, people still take selfies with it. Why? Because they think it’s a character. And humans are just hardwired to love characters and love stories. With Kiki, we just wanted to build a character that’s alive, we don’t want to have a character do anything super useful.
I understand why other robotics companies are adding Alexa integration to their robots, and I think that’s great. But the dream I had, and the understanding I have about robotics technology, is that for a consumer robot especially, it is very very difficult for the robot to justify its price through usefulness. And then there’s also research showing that the more useless something is, the easier it is to have an emotional connection, so that’s why we want to keep Kiki very useless.
What kind of character are you creating with Kiki?
The whole design principle around Kiki is we want to make it a very vulnerable character. In terms of its status at home, it’s not going to be higher or equal status as the owner, but slightly lower status than the human, and it’s vulnerable and needs you to take care of it in order to grow up into a good personality robot.
We don’t let Kiki speak full English sentences, because whenever it does that, people are going to think it’s at least as intelligent as a baby, which is impossible for robots at this point. And we also don’t let it move around, because when you have it move around, people are going to think “I’m going to call Kiki’s name, and then Kiki is will come to me.” But that is actually very difficult to build. And then also we don’t have any voice integration so it doesn’t tell you about the stock market price and so on.
Photo: Zoetic
Kiki is designed to be “vulnerable,” and it needs you to take care of it so it can “grow up into a good personality robot,” according to its creators.
That sounds similar to what Mayfield did with Kuri, emphasizing an emotional connection rather than specific functionality.
It is very similar, but one of the key differences from Kuri, I think, is that Kuri started with a Kobuki base, and then it’s wrapped into a cute shell, and they added sounds. So Kuri started with utility in mind—navigation is an important part of Kuri, so they started with that challenge. For Kiki, we started with the eyes. The entire thing started with the character itself.
How will you be able to convince your customers to spend $800 on a robot that you’ve described as “useless” in some ways?
Because it’s useless, it’s actually easier to convince people, because it provides you with an emotional connection. I think Kiki is not a utility-driven product, so the adoption cycle is different. For a functional product, it’s very easy to pick up, because you can justify it by saying “I’m going to pay this much and then my life can become this much more efficient.” But it’s also very easy to be replaced and forgotten. For an emotional-driven product, it’s slower to pick up, but once people actually pick it up, they’re going to be hooked—they get be connected with it, and they’re willing to invest more into taking care of the robot so it will grow up to be smarter.
Maintaining value over time has been another challenge for social home robots. How will you make sure that people don’t get bored with Kiki after a few weeks?
Of course Kiki has limits in what it can do. We can combine the eyes, the facial expression, the motors, and lights and sounds, but is it going to be constantly entertaining? So we think of this as, imagine if a human is actually puppeteering Kiki—can Kiki stay interesting if a human is puppeteering it and interacting with the owner? So I think what makes a robot interesting is not just in the physical expressions, but the part in between that and the robot conveying its intentions and emotions.
For example, if you come into the room and then Kiki decides it will turn the other direction, ignore you, and then you feel like, huh, why did the robot do that to me? Did I do something wrong? And then maybe you will come up to it and you will try to figure out why it did that. So, even though Kiki can only express in four different dimensions, it can still make things very interesting, and then when its strategies change, it makes it feel like a new experience.
There’s also an explore and exploit process going on. Kiki wants to make you smile, and it will try different things. It could try to chase its tail, and if you smile, Kiki learns that this works and will exploit it. But maybe after doing it three times, you no longer find it funny, because you’re bored of it, and then Kiki will observe your reactions and be motivated to explore a new strategy.
Photo: Zoetic
Kiki’s creators are hoping that, with an emotionally engaging robot, it will be easier for people to get attached to it and willing to spend time taking care of it.
A particular risk with crowdfunding a robot like this is setting expectations unreasonably high. The emphasis on personality and emotional engagement with Kiki seems like it may be very difficult for the robot to live up to in practice.
I think we invested more than most robotics companies into really building out Kiki’s personality, because that is the single most important thing to us. For Jibo a lot of the focus was in the assistant, and for Kuri, it’s more in the movement. For Kiki, it’s very much in the personality.
I feel like when most people talk about personality, they’re mainly talking about expression. With Kiki, it’s not just in the expression itself, not just in the voice or the eyes or the output layer, it’s in the layer in between—when Kiki receives input, how will it make decisions about what to do? We actually don’t think the personality of Kiki is categorizable, which is why I feel like Kiki has a deeper implementation of how personalities should work. And you’re right, Kiki doesn’t really understand why you’re feeling a certain way, it just reads your facial expressions. It’s maybe not your best friend, but maybe closer to your little guinea pig robot.
Photo: Zoetic
The team behind Kiki paid particular attention to its eyes, and designed the robot to always face the person that it is interacting with.
Is that where you’d put Kiki on the scale of human to pet?
Kiki is definitely not human, we want to keep it very far away from human. And it’s also not a dog or cat. When we were designing Kiki, we took inspiration from mammals because humans are deeply connected to mammals since we’re mammals ourselves. And specifically we’re connected to predator animals. With prey animals, their eyes are usually on the sides of their heads, because they need to see different angles. A predator animal needs to hunt, they need to focus. Cats and dogs are predator animals. So with Kiki, that’s why we made sure the eyes are on one side of the face and the head can actuate independently from the body and the body can turn so it’s always facing the person that it’s paying attention to.
I feel like Kiki is probably does more than a plant. It does more than a fish, because a fish doesn’t look you in the eyes. It’s not as smart as a cat or a dog, so I would just put it in this guinea pig kind of category.
What have you found so far when running user studies with Kiki?
When we were first designing Kiki we went through a whole series of prototypes. One of the earlier prototypes of Kiki looked like a CRT, like a very old monitor, and when we were testing that with people they didn’t even want to touch it. Kiki’s design inspiration actually came from an airplane, with a very angular, futuristic look, but based on user feedback we made it more round and more friendly to the touch. The lights were another feature request from the users, which adds another layer of expressivity to Kiki, and they wanted to see multiple Kikis working together with different personalities. Users also wanted different looks for Kiki, to make it look like a deer or a unicorn, for example, and we actually did take that into consideration because it doesn’t look like any particular mammal. In the future, you’ll be able to have different ears to make it look like completely different animals.
There has been a lot of user feedback that we didn’t implement—I believe we should observe the users reactions and feedback but not listen to their advice. The users shouldn’t be our product designers, because if you test Kiki with 10 users, eight of them will tell you they want Alexa in it. But we’re never going to add Alexa integration to Kiki because that’s not what it’s meant to do.
While it’s far too early to tell whether Kiki will be a long-term success, the Kickstarter campaign is currently over 95 percent funded with 8 days to go, and 34 robots are still available for a May 2020 delivery.
[ Kickstarter ] Continue reading →
#435726 This Is the Most Powerful Robot Arm Ever ...
Last month, engineers at NASA’s Jet Propulsion Laboratory wrapped up the installation of the Mars 2020 rover’s 2.1-meter-long robot arm. This is the most powerful arm ever installed on a Mars rover. Even though the Mars 2020 rover shares much of its design with Curiosity, the new arm was redesigned to be able to do much more complex science, drilling into rocks to collect samples that can be stored for later recovery.
JPL is well known for developing robots that do amazing work in incredibly distant and hostile environments. The Opportunity Mars rover, to name just one example, had a 90-day planned mission but remained operational for 5,498 days in a robot unfriendly place full of dust and wild temperature swings where even the most basic maintenance or repair is utterly impossible. (Its twin rover, Spirit, operated for 2,269 days.)
To learn more about the process behind designing robotic systems that are capable of feats like these, we talked with Matt Robinson, one of the engineers who designed the Mars 2020 rover’s new robot arm.
The Mars 2020 rover (which will be officially named through a public contest which opens this fall) is scheduled to launch in July of 2020, landing in Jezero Crater on February 18, 2021. The overall design is similar to the Mars Science Laboratory (MSL) rover, named Curiosity, which has been exploring Gale Crater on Mars since August 2012, except Mars 2020 will be a bit bigger and capable of doing even more amazing science. It will outweigh Curiosity by about 150 kilograms, but it’s otherwise about the same size, and uses the same type of radioisotope thermoelectric generator for power. Upgraded aluminum wheels will be more durable than Curiosity’s wheels, which have suffered significant wear. Mars 2020 will land on Mars in the same way that Curiosity did, with a mildly insane descent to the surface from a rocket-powered hovering “skycrane.”
Photo: NASA/JPL-Caltech
Last month, engineers at NASA's Jet Propulsion Laboratory install the main robotic arm on the Mars 2020 rover. Measuring 2.1 meters long, the arm will allow the rover to work as a human geologist would: by holding and using science tools with its turret.
Mars 2020 really steps it up when it comes to science. The most interesting new capability (besides serving as the base station for a highly experimental autonomous helicopter) is that the rover will be able to take surface samples of rock and soil, put them into tubes, seal the tubes up, and then cache the tubes on the surface for later retrieval (and potentially return to Earth for analysis). Collecting the samples is the job of a drill on the end of the robot arm that can be equipped with a variety of interchangeable bits, but the arm holds a number of other instruments as well. A “turret” can swap between the drill, a mineral identification sensor suite called SHERLOC, and an X-ray spectrometer and camera called PIXL. Fundamentally, most of Mars 2020’s science work is going to depend on the arm and the hardware that it carries, both in terms of close-up surface investigations and collecting samples for caching.
Matt Robinson is the Deputy Delivery Manager for the Sample Caching System on the Mars 2020 rover, which covers the robotic arm itself, the drill at the end of the arm, and the sample caching system within the body of the rover that manages the samples. Robinson has been at JPL since 2001, and he’s worked on the Mars Phoenix Lander mission as the robotic arm flight software developer and robotic arm test and operations engineer, as well as on Curiosity as the robotic arm test and operations lead engineer.
We spoke with Robinson about how the Mars 2020 arm was designed, and what it’s like to be building robots for exploring other planets.
IEEE Spectrum: How’d you end up working on robots at JPL?
Matt Robinson: When I was a grad student, my focus was on vision-based robotics research, so the kinds of things they do at JPL, or that we do at JPL now, were right within my wheelhouse. One of my advisors in grad school had a former student who was out here at JPL, so that’s how I made the contact. But I was very excited to come to JPL—as a young grad student working in robotics, space robotics was where it’s at.
For a robotics engineer, working in space is kind of the gold standard. You’re working in a challenging environment and you have to be prepared for any time of eventuality that may occur. And when you send your robot out to space, there’s no getting it back.
Once the rover arrives on Mars and you receive pictures back from it operating, there’s no greater feeling. You’ve built something that is now working 200+ million miles away. It’s an awesome experience! I have to pinch myself sometimes with the job I do. Working at JPL on space robotics is the holy grail for a roboticist.
What’s different about designing an arm for a rover that will operate on Mars?
We spent over five years designing, manufacturing, assembling, and testing the arm. Scientists have defined the high-level goals for what the mission has to do—acquire core samples and process them for return, carry science instruments on the arm to help determine what rocks to sample, and so on. We, as engineers, define the next level of requirements that support those goals.
When you’re building a robotic arm for another planet, you want to design something that is robust to the environment as well as robust from fault-protection standpoint. On Mars, we’re talking about an environment where the temperature can vary 100 degrees Celsius over the course of the day, so it’s very challenging thermally. With force sensing for instance, that’s a major problem. Force sensors aren’t typically designed to operate or even survive in temperature ranges that we’re talking about. So a lot of effort has to go into force sensor design and testing.
And then there’s a do-no-harm aspect—you’re sending this piece of hardware 200 million miles away, and you can’t get it back, so you want to make sure your hardware and software are robust and cannot do any harm to the system. It’s definitely a change in mindset from a terrestrial robot, where if you make a mistake, you can repair it.
“Once the rover arrives on Mars and you receive pictures back from it, there’s no greater feeling . . . I have to pinch myself sometimes with the job I do.”
—Matt Robinson, NASA JPL
How do you decide how much redundancy is enough?
That’s always a big question. It comes down to a couple of things, typically: mass and volume. You have a certain amount of mass that’s allocated to the robotic arm and we have a volume that it has to fit within, so those are often the drivers of the amount of redundancy that you can fit. We also have a lot of experience with sending arms to other planets, and at the beginning of projects, we establish a number of requirements that the design has to meet, and that’s where the redundancy is captured.
How much is the design of the arm driven by this need for redundancy, as opposed to trying to pack in all of the instrumentation that you want to have on there to do as much science as possible?
The requirements were driven by a couple of things. We knew roughly how big the instruments on the end of the arm were going to be, so the arm design is partially driven by that, because as the instruments get bigger and heavier, the arm has to get bigger and stronger. We have our coring drill at the end of the arm, and coring requires a certain level of force, so the arm has to be strong enough to do that. Those all became requirements that drove the design of the arm. On top of that, there was also that this arm also has to operate within the Martian environment, so you have things like the temperature changes and thermal expansion—you have to design for that as well. It’s a combination of both, really.
You were a test engineer for the arm used on the MSL rover. What did you learn from Spirit and Opportunity that informed the design of the arm on Curiosity?
Spirit and Opportunity did not have any force-sensing on the robotic arm. We had contact sensors that were good enough. Spirit and Opportunity’s arms were used to place instruments, that’s all it had to do, primarily. When you’re talking about actually acquiring samples, it’s not a matter of just placing the tool—you also have to apply forces to the environment. And once you start doing that, you really need a force sensor to protect you, and also to determine how much load to apply. So that was a big theme, a big difference between MSL and Spirit and Opportunity.
The size grew a lot too. If you look at Spirit and Opportunity, they’re the size of a riding lawnmower. Curiosity and the Mars 2020 rovers are the size of a small car. The Spirit and Opportunity arm was under a meter long, and the 2020 arm is twice that, and it has to apply forces that are much higher than the Spirit and Opportunity arm. From Curiosity to 2020, the payload of the arm grew by 50 percent, but the mass of the arm did not grow a whole lot, because our mass budget was kind of tight. We had to design an arm that was stronger, that had more capability, without adding more mass. That was a big challenge. We were fairly efficient on Curiosity, but on 2020, we sharpened the pencil even more.
Photo: NASA/JPL-Caltech
Three generations of Mars rovers developed at NASA’s Jet Propulsion Laboratory. Front and center: Sojourner rover, which landed on Mars in 1997 as part of the Mars Pathfinder Project. Left: Mars Exploration Rover Project rover (Spirit and Opportunity), which landed on Mars in 2004. Right: Mars Science Laboratory rover (Curiosity), which landed on Mars in August 2012.
MSL used its arm to drill into rocks like Mars 2020 will—how has the experience of operating MSL on Mars changed your thinking on how to make that work?
On MSL, the force sensor was used primarily for fault protection, just to protect the arm from being overloaded. [When drilling] we used a stiffness model of the arm to apply the force. The force sensor was only used in case you overloaded, and that’s very different from doing active force control, where you’re actually using the force sensor in a control loop.
On Mars 2020, we’re taking it to the next step, using the force sensor to actually actively control the level of force, both for pushing on the ground and for doing bit exchange. That’s a key point because fault protection to prevent damage usually has larger error bars. When you’re trying to actually push on the environment to apply force, and you’re doing active force control, the force sensor has to be significantly more accurate.
So a big thing that we learned on MSL—it was the first time we’d actually flown a force sensor, and we learned a lot about how to design and test force sensors to be used on the surface of Mars.
How do you effectively test the Mars 2020 arm on Earth?
That’s a good question. The arm was designed to operate on either Earth or Mars. It’s strong enough to do both. We also have a stiffness model of the arm which includes allows us to compensate for differences in gravity. For testing, we make two copies of the robotic arm. We have our copy that we’re going to fly to Mars, which is what we call our flight model, and we have our engineering model. They’re effectively duplicates of each other. The engineering arm stays on earth, so even once we’ve sent the flight model to Mars, we can continue to test. And if something were to happen, if say a drill bit got stuck in the ground on Mars, we could try to replicate those conditions on Earth with our engineering model arm, and use that to test out different scenarios to overcome the problem.
How much autonomy will the arm have?
We have different models of autonomy. We have pretty high levels flight software and, for instance, we have a command that just says “dock,” that moves the arm does all the force control to the dock the arm with the carousel. For surface interaction, we have stereo cameras on the rover, and those cameras allow us to generate 3D terrain models. Using those 3D terrain models, scientists can select a target on that surface, and then we can position the arm on the target.
Scientists like to select the particular sample targets, because they have very specific types of rocks they’re looking for to sample from. On 2020, we’re providing the ability for the next level of autonomy for the rover to drive up to an area and at least do the initial surveying of that area, so the scientists can select the specific target. So the way that that would happen is, if there’s an area off in the distance that the scientists find potentially interesting, the rover will autonomously drive up to it, and deploy the arm and take all the pictures so that we can generate those 3D terrain models and then the next day the scientists can pick the specific target they want. It’s really cool.
JPL is famous for making robots that operate for far longer than NASA necessarily plans for. What’s it like designing hardware and software for a system that will (hopefully) become part of that legacy?
The way that I look at it is, when you’re building an arm that’s going to go to another planet, all the things that could go wrong… You have to build something that’s robust and that can survive all that. It’s not that we’re trying to overdesign arms so that they’ll end up lasting much, much longer, it’s that, given all the things that you can encounter within a fairly unknown environment, and the level of robustness of the design you have to apply, it just so happens we end up with designs that end up lasting a lot longer than they do. Which is great, but we’re not held to that, although we’re very excited when we see them last that long. Without any calibration, without any maintenance, exactly, it’s amazing. They show their wear over time, but they still operate, it’s super exciting, it’s very inspirational to see.
[ Mars 2020 Rover ] Continue reading →
#435522 Harvard’s Smart Exo-Shorts Talk to the ...
Exosuits don’t generally scream “fashionable” or “svelte.” Take the mind-controlled robotic exoskeleton that allowed a paraplegic man to kick off the World Cup back in 2014. Is it cool? Hell yeah. Is it practical? Not so much.
Yapping about wearability might seem childish when the technology already helps people with impaired mobility move around dexterously. But the lesson of the ill-fated Google Glassholes, which includes an awkward dorky head tilt and an assuming voice command, clearly shows that wearable computer assistants can’t just work technologically—they have to look natural and allow the user to behave like as usual. They have to, in a sense, disappear.
To Dr. Jose Pons at the Legs + Walking Ability Lab in Chicago, exosuits need three main selling points to make it in the real world. One, they have to physically interact with their wearer and seamlessly deliver assistance when needed. Two, they should cognitively interact with the host to guide and control the robot at all times. Finally, they need to feel like a second skin—move with the user without adding too much extra mass or reducing mobility.
This week, a US-Korean collaboration delivered the whole shebang in a Lululemon-style skin-hugging package combined with a retro waist pack. The portable exosuit, weighing only 11 pounds, looks like a pair of spandex shorts but can support the wearer’s hip movement when needed. Unlike their predecessors, the shorts are embedded with sensors that let them know when the wearer is walking versus running by analyzing gait.
Switching between the two movement modes may not seem like much, but what naturally comes to our brains doesn’t translate directly to smart exosuits. “Walking and running have fundamentally different biomechanics, which makes developing devices that assist both gaits challenging,” the team said. Their algorithm, computed in the cloud, allows the wearer to easily switch between both, with the shorts providing appropriate hip support that makes the movement experience seamless.
To Pons, who was not involved in the research but wrote a perspective piece, the study is an exciting step towards future exosuits that will eventually disappear under the skin—that is, implanted neural interfaces to control robotic assistance or activate the user’s own muscles.
“It is realistic to think that we will witness, in the next several years…robust human-robot interfaces to command wearable robotics based on…the neural code of movement in humans,” he said.
A “Smart” Exosuit Hack
There are a few ways you can hack a human body to move with an exosuit. One is using implanted electrodes inside the brain or muscles to decipher movement intent. With heavy practice, a neural implant can help paralyzed people walk again or dexterously move external robotic arms. But because the technique requires surgery, it’s not an immediate sell for people who experience low mobility because of aging or low muscle tone.
The other approach is to look to biophysics. Rather than decoding neural signals that control movement, here the idea is to measure gait and other physical positions in space to decipher intent. As you can probably guess, accurately deciphering user intent isn’t easy, especially when the wearable tries to accommodate multiple gaits. But the gains are many: there’s no surgery involved, and the wearable is low in energy consumption.
Double Trouble
The authors decided to tackle an everyday situation. You’re walking to catch the train to work, realize you’re late, and immediately start sprinting.
That seemingly easy conversion hides a complex switch in biomechanics. When you walk, your legs act like an inverted pendulum that swing towards a dedicated center in a predictable way. When you run, however, the legs move more like a spring-loaded system, and the joints involved in the motion differ from a casual stroll. Engineering an assistive wearable for each is relatively simple; making one for both is exceedingly hard.
Led by Dr. Conor Walsh at Harvard University, the team started with an intuitive idea: assisted walking and running requires specialized “actuation” profiles tailored to both. When the user is moving in a way that doesn’t require assistance, the wearable needs to be out of the way so that it doesn’t restrict mobility. A quick analysis found that assisting hip extension has the largest impact, because it’s important to both gaits and doesn’t add mass to the lower legs.
Building on that insight, the team made a waist belt connected to two thigh wraps, similar to a climbing harness. Two electrical motors embedded inside the device connect the waist belt to other components through a pulley system to help the hip joints move. The whole contraption weighed about 11 lbs and didn’t obstruct natural movement.
Next, the team programmed two separate supporting profiles for walking and running. The goal was to reduce the “metabolic cost” for both movements, so that the wearer expends as little energy as needed. To switch between the two programs, they used a cloud-based classification algorithm to measure changes in energy fluctuation to figure out what mode—running or walking—the user is in.
Smart Booster
Initial trials on treadmills were highly positive. Six male volunteers with similar age and build donned the exosuit and either ran or walked on the treadmill at varying inclines. The algorithm performed perfectly at distinguishing between the two gaits in all conditions, even at steep angles.
An outdoor test with eight volunteers also proved the algorithm nearly perfect. Even on uneven terrain, only two steps out of all test trials were misclassified. In an additional trial on mud or snow, the algorithm performed just as well.
“The system allows the wearer to use their preferred gait for each speed,” the team said.
Software excellence translated to performance. A test found that the exosuit reduced the energy for walking by over nine percent and running by four percent. It may not sound like much, but the range of improvement is meaningful in athletic performance. Putting things into perspective, the team said, the metabolic rate reduction during walking is similar to taking 16 pounds off at the waist.
The Wearable Exosuit Revolution
The study’s lightweight exoshorts are hardly the only players in town. Back in 2017, SRI International’s spin-off, Superflex, engineered an Aura suit to support mobility in the elderly. The Aura used a different mechanism: rather than a pulley system, it incorporated a type of smart material that contracts in a manner similar to human muscles when zapped with electricity.
Embedded with a myriad of sensors for motion, accelerometers and gyroscopes, Aura’s smartness came from mini-computers that measure how fast the wearer is moving and track the user’s posture. The data were integrated and processed locally inside hexagon-shaped computing pods near the thighs and upper back. The pods also acted as the control center for sending electrical zaps to give the wearer a boost when needed.
Around the same time, a collaboration between Harvard’s Wyss Institute and ReWalk Robotics introduced a fabric-based wearable robot to assist a wearer’s legs for balance and movement. Meanwhile, a Swiss team coated normal fabric with electroactive material to weave soft, pliable artificial “muscles” that move with the skin.
Although health support is the current goal, the military is obviously interested in similar technologies to enhance soldiers’ physicality. Superflex’s Aura, for example, was originally inspired by technology born from DARPA’s Warrior Web Program, which aimed to reduce a soldier’s mechanical load.
That said, military gear has had a long history of trickling down to consumer use. Similar to the way camouflage, cargo pants, and GORE-TEX trickled down into the consumer ecosphere, it’s not hard to imagine your local Target eventually stocking intelligent exowear.
Image and Video Credit: Wyss Institute at Harvard University. Continue reading →