Tag Archives: piece
#436484 If Machines Want to Make Art, Will ...
Assuming that the emergence of consciousness in artificial minds is possible, those minds will feel the urge to create art. But will we be able to understand it? To answer this question, we need to consider two subquestions: when does the machine become an author of an artwork? And how can we form an understanding of the art that it makes?
Empathy, we argue, is the force behind our capacity to understand works of art. Think of what happens when you are confronted with an artwork. We maintain that, to understand the piece, you use your own conscious experience to ask what could possibly motivate you to make such an artwork yourself—and then you use that first-person perspective to try to come to a plausible explanation that allows you to relate to the artwork. Your interpretation of the work will be personal and could differ significantly from the artist’s own reasons, but if we share sufficient experiences and cultural references, it might be a plausible one, even for the artist. This is why we can relate so differently to a work of art after learning that it is a forgery or imitation: the artist’s intent to deceive or imitate is very different from the attempt to express something original. Gathering contextual information before jumping to conclusions about other people’s actions—in art, as in life—can enable us to relate better to their intentions.
But the artist and you share something far more important than cultural references: you share a similar kind of body and, with it, a similar kind of embodied perspective. Our subjective human experience stems, among many other things, from being born and slowly educated within a society of fellow humans, from fighting the inevitability of our own death, from cherishing memories, from the lonely curiosity of our own mind, from the omnipresence of the needs and quirks of our biological body, and from the way it dictates the space- and time-scales we can grasp. All conscious machines will have embodied experiences of their own, but in bodies that will be entirely alien to us.
We are able to empathize with nonhuman characters or intelligent machines in human-made fiction because they have been conceived by other human beings from the only subjective perspective accessible to us: “What would it be like for a human to behave as x?” In order to understand machinic art as such—and assuming that we stand a chance of even recognizing it in the first place—we would need a way to conceive a first-person experience of what it is like to be that machine. That is something we cannot do even for beings that are much closer to us. It might very well happen that we understand some actions or artifacts created by machines of their own volition as art, but in doing so we will inevitably anthropomorphize the machine’s intentions. Art made by a machine can be meaningfully interpreted in a way that is plausible only from the perspective of that machine, and any coherent anthropomorphized interpretation will be implausibly alien from the machine perspective. As such, it will be a misinterpretation of the artwork.
But what if we grant the machine privileged access to our ways of reasoning, to the peculiarities of our perception apparatus, to endless examples of human culture? Wouldn’t that enable the machine to make art that a human could understand? Our answer is yes, but this would also make the artworks human—not authentically machinic. All examples so far of “art made by machines” are actually just straightforward examples of human art made with computers, with the artists being the computer programmers. It might seem like a strange claim: how can the programmers be the authors of the artwork if, most of the time, they can’t control—or even anticipate—the actual materializations of the artwork? It turns out that this is a long-standing artistic practice.
Suppose that your local orchestra is playing Beethoven’s Symphony No 7 (1812). Even though Beethoven will not be directly responsible for any of the sounds produced there, you would still say that you are listening to Beethoven. Your experience might depend considerably on the interpretation of the performers, the acoustics of the room, the behavior of fellow audience members or your state of mind. Those and other aspects are the result of choices made by specific individuals or of accidents happening to them. But the author of the music? Ludwig van Beethoven. Let’s say that, as a somewhat odd choice for the program, John Cage’s Imaginary Landscape No 4 (March No 2) (1951) is also played, with 24 performers controlling 12 radios according to a musical score. In this case, the responsibility for the sounds being heard should be attributed to unsuspecting radio hosts, or even to electromagnetic fields. Yet, the shaping of sounds over time—the composition—should be credited to Cage. Each performance of this piece will vary immensely in its sonic materialization, but it will always be a performance of Imaginary Landscape No 4.
Why should we change these principles when artists use computers if, in these respects at least, computer art does not bring anything new to the table? The (human) artists might not be in direct control of the final materializations, or even be able to predict them but, despite that, they are the authors of the work. Various materializations of the same idea—in this case formalized as an algorithm—are instantiations of the same work manifesting different contextual conditions. In fact, a common use of computation in the arts is the production of variations of a process, and artists make extensive use of systems that are sensitive to initial conditions, external inputs, or pseudo-randomness to deliberately avoid repetition of outputs. Having a computer executing a procedure to build an artwork, even if using pseudo-random processes or machine-learning algorithms, is no different than throwing dice to arrange a piece of music, or to pursuing innumerable variations of the same formula. After all, the idea of machines that make art has an artistic tradition that long predates the current trend of artworks made by artificial intelligence.
Machinic art is a term that we believe should be reserved for art made by an artificial mind’s own volition, not for that based on (or directed towards) an anthropocentric view of art. From a human point of view, machinic artworks will still be procedural, algorithmic, and computational. They will be generative, because they will be autonomous from a human artist. And they might be interactive, with humans or other systems. But they will not be the result of a human deferring decisions to a machine, because the first of those—the decision to make art—needs to be the result of a machine’s volition, intentions, and decisions. Only then will we no longer have human art made with computers, but proper machinic art.
The problem is not whether machines will or will not develop a sense of self that leads to an eagerness to create art. The problem is that if—or when—they do, they will have such a different Umwelt that we will be completely unable to relate to it from our own subjective, embodied perspective. Machinic art will always lie beyond our ability to understand it because the boundaries of our comprehension—in art, as in life—are those of the human experience.
This article was originally published at Aeon and has been republished under Creative Commons.
Image Credit: Rene Böhmer / Unsplash Continue reading
#436403 Why Your 5G Phone Connection Could Mean ...
Will getting full bars on your 5G connection mean getting caught out by sudden weather changes?
The question may strike you as hypothetical, nonsensical even, but it is at the core of ongoing disputes between meteorologists and telecommunications companies. Everyone else, including you and I, are caught in the middle, wanting both 5G’s faster connection speeds and precise information about our increasingly unpredictable weather. So why can’t we have both?
Perhaps we can, but because of the way 5G networks function, it may take some special technology—specifically, artificial intelligence.
The Bandwidth Worries
Around the world, the first 5G networks are already being rolled out. The networks use a variety of frequencies to transmit data to and from devices at speeds up to 100 times faster than existing 4G networks.
One of the bandwidths used is between 24.25 and 24.45 gigahertz (GHz). In a recent FCC auction, telecommunications companies paid a combined $2 billion for the 5G usage rights for this spectrum in the US.
However, meteorologists are concerned that transmissions near the lower end of that range can interfere with their ability to accurately measure water vapor in the atmosphere. Wired reported that acting chief of the National Oceanic and Atmospheric Administration (NOAA), Neil Jacobs, told the US House Subcommittee on the Environment that 5G interference could substantially cut the amount of weather data satellites can gather. As a result, forecast accuracy could drop by as much as 30 percent.
Among the consequences could be less time to prepare for hurricanes, and it may become harder to predict storms’ paths. Due to the interconnectedness of weather patterns, measurement issues in one location can affect other areas too. Lack of accurate atmospheric data from the US could, for example, lead to less accurate forecasts for weather patterns over Europe.
The Numbers Game
Water vapor emits a faint signal at 23.8 GHz. Weather satellites measure the signals, and the data is used to gauge atmospheric humidity levels. Meteorologists have expressed concern that 5G signals in the same range can disturb those readings. The issue is that it would be nigh on impossible to tell whether a signal is water vapor or an errant 5G signal.
Furthermore, 5G disturbances in other frequency bands could make forecasting even more difficult. Rain and snow emit frequencies around 36-37 GHz. 50.2-50.4 GHz is used to measure atmospheric temperatures, and 86-92 GHz clouds and ice. All of the above are under consideration for international 5G signals. Some have warned that the wider consequences could set weather forecasts back to the 1980s.
Telecommunications companies and interest organizations have argued back, saying that weather sensors aren’t as susceptible to interference as meteorologists fear. Furthermore, 5G devices and signals will produce much less interference with weather forecasts than organizations like NOAA predict. Since very little scientific research has been carried out to examine the claims of either party, we seem stuck in a ‘wait and see’ situation.
To offset some of the possible effects, the two groups have tried to reach a consensus on a noise buffer between the 5G transmissions and water-vapor signals. It could be likened to limiting the noise from busy roads or loud sound systems to avoid bothering neighboring buildings.
The World Meteorological Organization was looking to establish a -55 decibel watts buffer. In Europe, regulators are locked in on a -42 decibel watts buffer for 5G base stations. For comparison, the US Federal Communications Commission has advocated for a -20 decibel watts buffer, which would, in reality, allow more than 150 times more noise than the European proposal.
How AI Could Help
Much of the conversation about 5G’s possible influence on future weather predictions is centered around mobile phones. However, the phones are far from the only systems that will be receiving and transmitting signals on 5G. Self-driving cars and the Internet of Things are two other technologies that could soon be heavily reliant on faster wireless signals.
Densely populated areas are likely going to be the biggest emitters of 5G signals, leading to a suggestion to only gather water-vapor data over oceans.
Another option is to develop artificial intelligence (AI) approaches to clean or process weather data. AI is playing an increasing role in weather forecasting. For example, in 2016 IBM bought The Weather Company for $2 billion. The goal was to combine the two companies’ models and data in IBM’s Watson to create more accurate forecasts. AI would also be able to predict increases or drops in business revenues due to weather changes. Monsanto has also been investing in AI for forecasting, in this case to provide agriculturally-related weather predictions.
Smartphones may also provide a piece of the weather forecasting puzzle. Studies have shown how data from thousands of smartphones can help to increase the accuracy of storm predictions, as well as the force of storms.
“Weather stations cost a lot of money,” Cliff Mass, an atmospheric scientist at the University of Washington in Seattle, told Inside Science, adding, “If there are already 20 million smartphones, you might as well take advantage of the observation system that’s already in place.”
Smartphones may not be the solution when it comes to finding new ways of gathering the atmospheric data on water vapor that 5G could disrupt. But it does go to show that some technologies open new doors, while at the same time, others shut them.
Image Credit: Image by Free-Photos from Pixabay Continue reading
#436190 What Is the Uncanny Valley?
Have you ever encountered a lifelike humanoid robot or a realistic computer-generated face that seem a bit off or unsettling, though you can’t quite explain why?
Take for instance AVA, one of the “digital humans” created by New Zealand tech startup Soul Machines as an on-screen avatar for Autodesk. Watching a lifelike digital being such as AVA can be both fascinating and disconcerting. AVA expresses empathy through her demeanor and movements: slightly raised brows, a tilt of the head, a nod.
By meticulously rendering every lash and line in its avatars, Soul Machines aimed to create a digital human that is virtually undistinguishable from a real one. But to many, rather than looking natural, AVA actually looks creepy. There’s something about it being almost human but not quite that can make people uneasy.
Like AVA, many other ultra-realistic avatars, androids, and animated characters appear stuck in a disturbing in-between world: They are so lifelike and yet they are not “right.” This void of strangeness is known as the uncanny valley.
Uncanny Valley: Definition and History
The uncanny valley is a concept first introduced in the 1970s by Masahiro Mori, then a professor at the Tokyo Institute of Technology. The term describes Mori’s observation that as robots appear more humanlike, they become more appealing—but only up to a certain point. Upon reaching the uncanny valley, our affinity descends into a feeling of strangeness, a sense of unease, and a tendency to be scared or freaked out.
Image: Masahiro Mori
The uncanny valley as depicted in Masahiro Mori’s original graph: As a robot’s human likeness [horizontal axis] increases, our affinity towards the robot [vertical axis] increases too, but only up to a certain point. For some lifelike robots, our response to them plunges, and they appear repulsive or creepy. That’s the uncanny valley.
In his seminal essay for Japanese journal Energy, Mori wrote:
I have noticed that, in climbing toward the goal of making robots appear human, our affinity for them increases until we come to a valley, which I call the uncanny valley.
Later in the essay, Mori describes the uncanny valley by using an example—the first prosthetic hands:
One might say that the prosthetic hand has achieved a degree of resemblance to the human form, perhaps on a par with false teeth. However, when we realize the hand, which at first site looked real, is in fact artificial, we experience an eerie sensation. For example, we could be startled during a handshake by its limp boneless grip together with its texture and coldness. When this happens, we lose our sense of affinity, and the hand becomes uncanny.
In an interview with IEEE Spectrum, Mori explained how he came up with the idea for the uncanny valley:
“Since I was a child, I have never liked looking at wax figures. They looked somewhat creepy to me. At that time, electronic prosthetic hands were being developed, and they triggered in me the same kind of sensation. These experiences had made me start thinking about robots in general, which led me to write that essay. The uncanny valley was my intuition. It was one of my ideas.”
Uncanny Valley Examples
To better illustrate how the uncanny valley works, here are some examples of the phenomenon. Prepare to be freaked out.
1. Telenoid
Photo: Hiroshi Ishiguro/Osaka University/ATR
Taking the top spot in the “creepiest” rankings of IEEE Spectrum’s Robots Guide, Telenoid is a robotic communication device designed by Japanese roboticist Hiroshi Ishiguro. Its bald head, lifeless face, and lack of limbs make it seem more alien than human.
2. Diego-san
Photo: Andrew Oh/Javier Movellan/Calit2
Engineers and roboticists at the University of California San Diego’s Machine Perception Lab developed this robot baby to help parents better communicate with their infants. At 1.2 meters (4 feet) tall and weighing 30 kilograms (66 pounds), Diego-san is a big baby—bigger than an average 1-year-old child.
“Even though the facial expression is sophisticated and intuitive in this infant robot, I still perceive a false smile when I’m expecting the baby to appear happy,” says Angela Tinwell, a senior lecturer at the University of Bolton in the U.K. and author of The Uncanny Valley in Games and Animation. “This, along with a lack of detail in the eyes and forehead, can make the baby appear vacant and creepy, so I would want to avoid those ‘dead eyes’ rather than interacting with Diego-san.”
3. Geminoid HI
Photo: Osaka University/ATR/Kokoro
Another one of Ishiguro’s creations, Geminoid HI is his android replica. He even took hair from his own scalp to put onto his robot twin. Ishiguro says he created Geminoid HI to better understand what it means to be human.
4. Sophia
Photo: Mikhail Tereshchenko/TASS/Getty Images
Designed by David Hanson of Hanson Robotics, Sophia is one of the most famous humanoid robots. Like Soul Machines’ AVA, Sophia displays a range of emotional expressions and is equipped with natural language processing capabilities.
5. Anthropomorphized felines
The uncanny valley doesn’t only happen with robots that adopt a human form. The 2019 live-action versions of the animated film The Lion King and the musical Cats brought the uncanny valley to the forefront of pop culture. To some fans, the photorealistic computer animations of talking lions and singing cats that mimic human movements were just creepy.
Are you feeling that eerie sensation yet?
Uncanny Valley: Science or Pseudoscience?
Despite our continued fascination with the uncanny valley, its validity as a scientific concept is highly debated. The uncanny valley wasn’t actually proposed as a scientific concept, yet has often been criticized in that light.
Mori himself said in his IEEE Spectrum interview that he didn’t explore the concept from a rigorous scientific perspective but as more of a guideline for robot designers:
Pointing out the existence of the uncanny valley was more of a piece of advice from me to people who design robots rather than a scientific statement.
Karl MacDorman, an associate professor of human-computer interaction at Indiana University who has long studied the uncanny valley, interprets the classic graph not as expressing Mori’s theory but as a heuristic for learning the concept and organizing observations.
“I believe his theory is instead expressed by his examples, which show that a mismatch in the human likeness of appearance and touch or appearance and motion can elicit a feeling of eeriness,” MacDorman says. “In my own experiments, I have consistently reproduced this effect within and across sense modalities. For example, a mismatch in the human realism of the features of a face heightens eeriness; a robot with a human voice or a human with a robotic voice is eerie.”
How to Avoid the Uncanny Valley
Unless you intend to create creepy characters or evoke a feeling of unease, you can follow certain design principles to avoid the uncanny valley. “The effect can be reduced by not creating robots or computer-animated characters that combine features on different sides of a boundary—for example, human and nonhuman, living and nonliving, or real and artificial,” MacDorman says.
To make a robot or avatar more realistic and move it beyond the valley, Tinwell says to ensure that a character’s facial expressions match its emotive tones of speech, and that its body movements are responsive and reflect its hypothetical emotional state. Special attention must also be paid to facial elements such as the forehead, eyes, and mouth, which depict the complexities of emotion and thought. “The mouth must be modeled and animated correctly so the character doesn’t appear aggressive or portray a ‘false smile’ when they should be genuinely happy,” she says.
For Christoph Bartneck, an associate professor at the University of Canterbury in New Zealand, the goal is not to avoid the uncanny valley, but to avoid bad character animations or behaviors, stressing the importance of matching the appearance of a robot with its ability. “We’re trained to spot even the slightest divergence from ‘normal’ human movements or behavior,” he says. “Hence, we often fail in creating highly realistic, humanlike characters.”
But he warns that the uncanny valley appears to be more of an uncanny cliff. “We find the likability to increase and then crash once robots become humanlike,” he says. “But we have never observed them ever coming out of the valley. You fall off and that’s it.” Continue reading