Tag Archives: phone

#437345 Moore’s Law Lives: Intel Says Chips ...

If you weren’t already convinced the digital world is taking over, you probably are now.

To keep the economy on life support as people stay home to stem the viral tide, we’ve been forced to digitize interactions at scale (for better and worse). Work, school, events, shopping, food, politics. The companies at the center of the digital universe are now powerhouses of the modern era—worth trillions and nearly impossible to avoid in daily life.

Six decades ago, this world didn’t exist.

A humble microchip in the early 1960s would have boasted a handful of transistors. Now, your laptop or smartphone runs on a chip with billions of transistors. As first described by Moore’s Law, this is possible because the number of transistors on a chip doubled with extreme predictability every two years for decades.

But now progress is faltering as the size of transistors approaches physical limits, and the money and time it takes to squeeze a few more onto a chip are growing. There’ve been many predictions that Moore’s Law is, finally, ending. But, perhaps also predictably, the company whose founder coined Moore’s Law begs to differ.

In a keynote presentation at this year’s Hot Chips conference, Intel’s chief architect, Raja Koduri, laid out a roadmap to increase transistor density—that is, the number of transistors you can fit on a chip—by a factor of 50.

“We firmly believe there is a lot more transistor density to come,” Koduri said. “The vision will play out over time—maybe a decade or more—but it will play out.”

Why the optimism?

Calling the end of Moore’s Law is a bit of a tradition. As Peter Lee, vice president at Microsoft Research, quipped to The Economist a few years ago, “The number of people predicting the death of Moore’s Law doubles every two years.” To date, prophets of doom have been premature, and though the pace is slowing, the industry continues to dodge death with creative engineering.

Koduri believes the trend will continue this decade and outlined the upcoming chip innovations Intel thinks can drive more gains in computing power.

Keeping It Traditional
First, engineers can further shrink today’s transistors. Fin field effect transistors (or FinFET) first hit the scene in the 2010s and have since pushed chip features past 14 and 10 nanometers (or nodes, as such size checkpoints are called). Korduri said FinFET will again triple chip density before it’s exhausted.

The Next Generation
FinFET will hand the torch off to nanowire transistors (also known as gate-all-around transistors).

Here’s how they’ll work. A transistor is made up of three basic components: the source, where current is introduced, the gate and channel, where current selectively flows, and the drain. The gate is like a light switch. It controls how much current flows through the channel. A transistor is “on” when the gate allows current to flow, and it’s off when no current flows. The smaller transistors get, the harder it is to control that current.

FinFET maintained fine control of current by surrounding the channel with a gate on three sides. Nanowire designs kick that up a notch by surrounding the channel with a gate on four sides (hence, gate-all-around). They’ve been in the works for years and are expected around 2025. Koduri said first-generation nanowire transistors will be followed by stacked nanowire transistors, and together, they’ll quadruple transistor density.

Building Up
Growing transistor density won’t only be about shrinking transistors, but also going 3D.

This is akin to how skyscrapers increase a city’s population density by adding more usable space on the same patch of land. Along those lines, Intel recently launched its Foveros chip design. Instead of laying a chip’s various “neighborhoods” next to each other in a 2D silicon sprawl, they’ve stacked them on top of each other like a layer cake. Chip stacking isn’t entirely new, but it’s advancing and being applied to general purpose CPUs, like the chips in your phone and laptop.

Koduri said 3D chip stacking will quadruple transistor density.

A Self-Fulfilling Prophecy
The technologies Koduri outlines are an evolution of the same general technology in use today. That is, we don’t need quantum computing or nanotube transistors to augment or replace silicon chips yet. Rather, as it’s done many times over the years, the chip industry will get creative with the design of its core product to realize gains for another decade.

Last year, veteran chip engineer Jim Keller, who at the time was Intel’s head of silicon engineering but has since left the company, told MIT Technology Review there are over a 100 variables driving Moore’s Law (including 3D architectures and new transistor designs). From the standpoint of pure performance, it’s also about how efficiently software uses all those transistors. Keller suggested that with some clever software tweaks “we could get chips that are a hundred times faster in 10 years.”

But whether Intel’s vision pans out as planned is far from certain.

Intel’s faced challenges recently, taking five years instead of two to move its chips from 14 nanometers to 10 nanometers. After a delay of six months for its 7-nanometer chips, it’s now a year behind schedule and lagging other makers who already offer 7-nanometer chips. This is a key point. Yes, chipmakers continue making progress, but it’s getting harder, more expensive, and timelines are stretching.

The question isn’t if Intel and competitors can cram more transistors onto a chip—which, Intel rival TSMC agrees is clearly possible—it’s how long will it take and at what cost?

That said, demand for more computing power isn’t going anywhere.

Amazon, Microsoft, Alphabet, Apple, and Facebook now make up a whopping 20 percent of the stock market’s total value. By that metric, tech is the most dominant industry in at least 70 years. And new technologies—from artificial intelligence and virtual reality to a proliferation of Internet of Things devices and self-driving cars—will demand better chips.

There’s ample motivation to push computing to its bitter limits and beyond. As is often said, Moore’s Law is a self-fulfilling prophecy, and likely whatever comes after it will be too.

Image credit: Laura Ockel / Unsplash Continue reading

Posted in Human Robots

#437337 6G Will Be 100 Times Faster Than ...

Though 5G—a next-generation speed upgrade to wireless networks—is scarcely up and running (and still nonexistent in many places) researchers are already working on what comes next. It lacks an official name, but they’re calling it 6G for the sake of simplicity (and hey, it’s tradition). 6G promises to be up to 100 times faster than 5G—fast enough to download 142 hours of Netflix in a second—but researchers are still trying to figure out exactly how to make such ultra-speedy connections happen.

A new chip, described in a paper in Nature Photonics by a team from Osaka University and Nanyang Technological University in Singapore, may give us a glimpse of our 6G future. The team was able to transmit data at a rate of 11 gigabits per second, topping 5G’s theoretical maximum speed of 10 gigabits per second and fast enough to stream 4K high-def video in real time. They believe the technology has room to grow, and with more development, might hit those blistering 6G speeds.

NTU final year PhD student Abhishek Kumar, Assoc Prof Ranjan Singh and postdoc Dr Yihao Yang. Dr Singh is holding the photonic topological insulator chip made from silicon, which can transmit terahertz waves at ultrahigh speeds. Credit: NTU Singapore
But first, some details about 5G and its predecessors so we can differentiate them from 6G.

Electromagnetic waves are characterized by a wavelength and a frequency; the wavelength is the distance a cycle of the wave covers (peak to peak or trough to trough, for example), and the frequency is the number of waves that pass a given point in one second. Cellphones use miniature radios to pick up electromagnetic signals and convert those signals into the sights and sounds on your phone.

4G wireless networks run on millimeter waves on the low- and mid-band spectrum, defined as a frequency of a little less (low-band) and a little more (mid-band) than one gigahertz (or one billion cycles per second). 5G kicked that up several notches by adding even higher frequency millimeter waves of up to 300 gigahertz, or 300 billion cycles per second. Data transmitted at those higher frequencies tends to be information-dense—like video—because they’re much faster.

The 6G chip kicks 5G up several more notches. It can transmit waves at more than three times the frequency of 5G: one terahertz, or a trillion cycles per second. The team says this yields a data rate of 11 gigabits per second. While that’s faster than the fastest 5G will get, it’s only the beginning for 6G. One wireless communications expert even estimates 6G networks could handle rates up to 8,000 gigabits per second; they’ll also have much lower latency and higher bandwidth than 5G.

Terahertz waves fall between infrared waves and microwaves on the electromagnetic spectrum. Generating and transmitting them is difficult and expensive, requiring special lasers, and even then the frequency range is limited. The team used a new material to transmit terahertz waves, called photonic topological insulators (PTIs). PTIs can conduct light waves on their surface and edges rather than having them run through the material, and allow light to be redirected around corners without disturbing its flow.

The chip is made completely of silicon and has rows of triangular holes. The team’s research showed the chip was able to transmit terahertz waves error-free.

Nanyang Technological University associate professor Ranjan Singh, who led the project, said, “Terahertz technology […] can potentially boost intra-chip and inter-chip communication to support artificial intelligence and cloud-based technologies, such as interconnected self-driving cars, which will need to transmit data quickly to other nearby cars and infrastructure to navigate better and also to avoid accidents.”

Besides being used for AI and self-driving cars (and, of course, downloading hundreds of hours of video in seconds), 6G would also make a big difference for data centers, IoT devices, and long-range communications, among other applications.

Given that 5G networks are still in the process of being set up, though, 6G won’t be coming on the scene anytime soon; a recent whitepaper on 6G from Japanese company NTTDoCoMo estimates we’ll see it in 2030, pointing out that wireless connection tech generations have thus far been spaced about 10 years apart; we got 3G in the early 2000s, 4G in 2010, and 5G in 2020.

In the meantime, as 6G continues to develop, we’re still looking forward to the widespread adoption of 5G.

Image Credit: Hans Braxmeier from Pixabay Continue reading

Posted in Human Robots

#437276 Cars Will Soon Be Able to Sense and ...

Imagine you’re on your daily commute to work, driving along a crowded highway while trying to resist looking at your phone. You’re already a little stressed out because you didn’t sleep well, woke up late, and have an important meeting in a couple hours, but you just don’t feel like your best self.

Suddenly another car cuts you off, coming way too close to your front bumper as it changes lanes. Your already-simmering emotions leap into overdrive, and you lay on the horn and shout curses no one can hear.

Except someone—or, rather, something—can hear: your car. Hearing your angry words, aggressive tone, and raised voice, and seeing your furrowed brow, the onboard computer goes into “soothe” mode, as it’s been programmed to do when it detects that you’re angry. It plays relaxing music at just the right volume, releases a puff of light lavender-scented essential oil, and maybe even says some meditative quotes to calm you down.

What do you think—creepy? Helpful? Awesome? Weird? Would you actually calm down, or get even more angry that a car is telling you what to do?

Scenarios like this (maybe without the lavender oil part) may not be imaginary for much longer, especially if companies working to integrate emotion-reading artificial intelligence into new cars have their way. And it wouldn’t just be a matter of your car soothing you when you’re upset—depending what sort of regulations are enacted, the car’s sensors, camera, and microphone could collect all kinds of data about you and sell it to third parties.

Computers and Feelings
Just as AI systems can be trained to tell the difference between a picture of a dog and one of a cat, they can learn to differentiate between an angry tone of voice or facial expression and a happy one. In fact, there’s a whole branch of machine intelligence devoted to creating systems that can recognize and react to human emotions; it’s called affective computing.

Emotion-reading AIs learn what different emotions look and sound like from large sets of labeled data; “smile = happy,” “tears = sad,” “shouting = angry,” and so on. The most sophisticated systems can likely even pick up on the micro-expressions that flash across our faces before we consciously have a chance to control them, as detailed by Daniel Goleman in his groundbreaking book Emotional Intelligence.

Affective computing company Affectiva, a spinoff from MIT Media Lab, says its algorithms are trained on 5,313,751 face videos (videos of people’s faces as they do an activity, have a conversation, or react to stimuli) representing about 2 billion facial frames. Fascinatingly, Affectiva claims its software can even account for cultural differences in emotional expression (for example, it’s more normalized in Western cultures to be very emotionally expressive, whereas Asian cultures tend to favor stoicism and politeness), as well as gender differences.

But Why?
As reported in Motherboard, companies like Affectiva, Cerence, Xperi, and Eyeris have plans in the works to partner with automakers and install emotion-reading AI systems in new cars. Regulations passed last year in Europe and a bill just introduced this month in the US senate are helping make the idea of “driver monitoring” less weird, mainly by emphasizing the safety benefits of preemptive warning systems for tired or distracted drivers (remember that part in the beginning about sneaking glances at your phone? Yeah, that).

Drowsiness and distraction can’t really be called emotions, though—so why are they being lumped under an umbrella that has a lot of other implications, including what many may consider an eerily Big Brother-esque violation of privacy?

Our emotions, in fact, are among the most private things about us, since we are the only ones who know their true nature. We’ve developed the ability to hide and disguise our emotions, and this can be a useful skill at work, in relationships, and in scenarios that require negotiation or putting on a game face.

And I don’t know about you, but I’ve had more than one good cry in my car. It’s kind of the perfect place for it; private, secluded, soundproof.

Putting systems into cars that can recognize and collect data about our emotions under the guise of preventing accidents due to the state of mind of being distracted or the physical state of being sleepy, then, seems a bit like a bait and switch.

A Highway to Privacy Invasion?
European regulations will help keep driver data from being used for any purpose other than ensuring a safer ride. But the US is lagging behind on the privacy front, with car companies largely free from any enforceable laws that would keep them from using driver data as they please.

Affectiva lists the following as use cases for occupant monitoring in cars: personalizing content recommendations, providing alternate route recommendations, adapting environmental conditions like lighting and heating, and understanding user frustration with virtual assistants and designing those assistants to be emotion-aware so that they’re less frustrating.

Our phones already do the first two (though, granted, we’re not supposed to look at them while we drive—but most cars now let you use bluetooth to display your phone’s content on the dashboard), and the third is simply a matter of reaching a hand out to turn a dial or press a button. The last seems like a solution for a problem that wouldn’t exist without said… solution.

Despite how unnecessary and unsettling it may seem, though, emotion-reading AI isn’t going away, in cars or other products and services where it might provide value.

Besides automotive AI, Affectiva also makes software for clients in the advertising space. With consent, the built-in camera on users’ laptops records them while they watch ads, gauging their emotional response, what kind of marketing is most likely to engage them, and how likely they are to buy a given product. Emotion-recognition tech is also being used or considered for use in mental health applications, call centers, fraud monitoring, and education, among others.

In a 2015 TED talk, Affectiva co-founder Rana El-Kaliouby told her audience that we’re living in a world increasingly devoid of emotion, and her goal was to bring emotions back into our digital experiences. Soon they’ll be in our cars, too; whether the benefits will outweigh the costs remains to be seen.

Image Credit: Free-Photos from Pixabay Continue reading

Posted in Human Robots

#436977 The Top 100 AI Startups Out There Now, ...

New drug therapies for a range of chronic diseases. Defenses against various cyber attacks. Technologies to make cities work smarter. Weather and wildfire forecasts that boost safety and reduce risk. And commercial efforts to monetize so-called deepfakes.

What do all these disparate efforts have in common? They’re some of the solutions that the world’s most promising artificial intelligence startups are pursuing.

Data research firm CB Insights released its much-anticipated fourth annual list of the top 100 AI startups earlier this month. The New York-based company has become one of the go-to sources for emerging technology trends, especially in the startup scene.

About 10 years ago, it developed its own algorithm to assess the health of private companies using publicly-available information and non-traditional signals (think social media sentiment, for example) thanks to more than $1 million in grants from the National Science Foundation.

It uses that algorithm-generated data from what it calls a company’s Mosaic score—pulling together information on market trends, money, and momentum—along with other details ranging from patent activity to the latest news analysis to identify the best of the best.

“Our final list of companies is a mix of startups at various stages of R&D and product commercialization,” said Deepashri Varadharajanis, a lead analyst at CB Insights, during a recent presentation on the most prominent trends among the 2020 AI 100 startups.

About 10 companies on the list are among the world’s most valuable AI startups. For instance, there’s San Francisco-based Faire, which has raised at least $266 million since it was founded just three years ago. The company offers a wholesale marketplace that uses machine learning to match local retailers with goods that are predicted to sell well in their specific location.

Image courtesy of CB Insights
Funding for AI in Healthcare
Another startup valued at more than $1 billion, referred to as a unicorn in venture capital speak, is Butterfly Network, a company on the East Coast that has figured out a way to turn a smartphone phone into an ultrasound machine. Backed by $350 million in private investments, Butterfly Network uses AI to power the platform’s diagnostics. A more modestly funded San Francisco startup called Eko is doing something similar for stethoscopes.

In fact, there are more than a dozen AI healthcare startups on this year’s AI 100 list, representing the most companies of any industry on the list. In total, investors poured about $4 billion into AI healthcare startups last year, according to CB Insights, out of a record $26.6 billion raised by all private AI companies in 2019. Since 2014, more than 4,300 AI startups in 80 countries have raised about $83 billion.

One of the most intensive areas remains drug discovery, where companies unleash algorithms to screen potential drug candidates at an unprecedented speed and breadth that was impossible just a few years ago. It has led to the discovery of a new antibiotic to fight superbugs. There’s even a chance AI could help fight the coronavirus pandemic.

There are several AI drug discovery startups among the AI 100: San Francisco-based Atomwise claims its deep convolutional neural network, AtomNet, screens more than 100 million compounds each day. Cyclica is an AI drug discovery company in Toronto that just announced it would apply its platform to identify and develop novel cannabinoid-inspired drugs for neuropsychiatric conditions such as bipolar disorder and anxiety.

And then there’s OWKIN out of New York City, a startup that uses a type of machine learning called federated learning. Backed by Google, the company’s AI platform helps train algorithms without sharing the necessary patient data required to provide the sort of valuable insights researchers need for designing new drugs or even selecting the right populations for clinical trials.

Keeping Cyber Networks Healthy
Privacy and data security are the focus of a number of AI cybersecurity startups, as hackers attempt to leverage artificial intelligence to launch sophisticated attacks while also trying to fool the AI-powered systems rapidly coming online.

“I think this is an interesting field because it’s a bit of a cat and mouse game,” noted Varadharajanis. “As your cyber defenses get smarter, your cyber attacks get even smarter, and so it’s a constant game of who’s going to match the other in terms of tech capabilities.”

Few AI cybersecurity startups match Silicon Valley-based SentinelOne in terms of private capital. The company has raised more than $400 million, with a valuation of $1.1 billion following a $200 million Series E earlier this year. The company’s platform automates what’s called endpoint security, referring to laptops, phones, and other devices at the “end” of a centralized network.

Fellow AI 100 cybersecurity companies include Blue Hexagon, which protects the “edge” of the network against malware, and Abnormal Security, which stops targeted email attacks, both out of San Francisco. Just down the coast in Los Angeles is Obsidian Security, a startup offering cybersecurity for cloud services.

Deepfakes Get a Friendly Makeover
Deepfakes of videos and other types of AI-manipulated media where faces or voices are synthesized in order to fool viewers or listeners has been a different type of ongoing cybersecurity risk. However, some firms are swapping malicious intent for benign marketing and entertainment purposes.

Now anyone can be a supermodel thanks to Superpersonal, a London-based AI startup that has figured out a way to seamlessly swap a user’s face onto a fashionista modeling the latest threads on the catwalk. The most obvious use case is for shoppers to see how they will look in a particular outfit before taking the plunge on a plunging neckline.

Another British company called Synthesia helps users create videos where a talking head will deliver a customized speech or even talk in a different language. The startup’s claim to fame was releasing a campaign video for the NGO Malaria Must Die showing soccer star David Becham speak in nine different languages.

There’s also a Seattle-based company, Wellsaid Labs, which uses AI to produce voice-over narration where users can choose from a library of digital voices with human pitch, emphasis, and intonation. Because every narrator sounds just a little bit smarter with a British accent.

AI Helps Make Smart Cities Smarter
Speaking of smarter: A handful of AI 100 startups are helping create the smart city of the future, where a digital web of sensors, devices, and cloud-based analytics ensure that nobody is ever stuck in traffic again or without an umbrella at the wrong time. At least that’s the dream.

A couple of them are directly connected to Google subsidiary Sidewalk Labs, which focuses on tech solutions to improve urban design. A company called Replica was spun out just last year. It’s sort of SimCity for urban planning. The San Francisco startup uses location data from mobile phones to understand how people behave and travel throughout a typical day in the city. Those insights can then help city governments, for example, make better decisions about infrastructure development.

Denver-area startup AMP Robotics gets into the nitty gritty details of recycling by training robots on how to recycle trash, since humans have largely failed to do the job. The U.S. Environmental Protection Agency estimates that only about 30 percent of waste is recycled.

Some people might complain that weather forecasters don’t even do that well when trying to predict the weather. An Israeli AI startup, ClimaCell, claims it can forecast rain block by block. While the company taps the usual satellite and ground-based sources to create weather models, it has developed algorithms to analyze how precipitation and other conditions affect signals in cellular networks. By analyzing changes in microwave signals between cellular towers, the platform can predict the type and intensity of the precipitation down to street level.

And those are just some of the highlights of what some of the world’s most promising AI startups are doing.

“You have companies optimizing mining operations, warehouse logistics, insurance, workflows, and even working on bringing AI solutions to designing printed circuit boards,” Varadharajanis said. “So a lot of creative ways in which companies are applying AI to solve different issues in different industries.”

Image Credit: Butterfly Network Continue reading

Posted in Human Robots

#436507 The Weird, the Wacky, the Just Plain ...

As you know if you’ve ever been to, heard of, or read about the annual Consumer Electronics Show in Vegas, there’s no shortage of tech in any form: gadgets, gizmos, and concepts abound. You probably couldn’t see them all in a month even if you spent all day every day trying.

Given the sheer scale of the show, the number of exhibitors, and the inherent subjectivity of bestowing superlatives, it’s hard to pick out the coolest tech from CES. But I’m going to do it anyway; in no particular order, here are some of the products and concepts that I personally found most intriguing at this year’s event.

e-Novia’s Haptic Gloves
Italian startup e-Novia’s Weart glove uses a ‘sensing core’ to record tactile sensations and an ‘actuation core’ to reproduce those sensations onto the wearer’s skin. Haptic gloves will bring touch to VR and AR experiences, making them that much more life-like. The tech could also be applied to digitization of materials and in gaming and entertainment.

e-Novia’s modular haptic glove
I expected a full glove, but in fact there were two rings that attached to my fingers. Weart co-founder Giovanni Spagnoletti explained that they’re taking a modular approach, so as to better tailor the technology to different experiences. He then walked me through a virtual reality experience that was a sort of simulated science experiment: I had to lift a glass beaker, place it on a stove, pour in an ingredient, open a safe to access some dry ice, add that, and so on. As I went through the steps, I felt the beaker heat up and cool off at the expected times, and felt the liquid moving inside, as well as the pressure of my fingertips against the numbered buttons on the safe.

A virtual (but tactile) science experiment
There was a slight delay between my taking an action and feeling the corresponding tactile sensation, but on the whole, the haptic glove definitely made the experience more realistic—and more fun. Slightly less fun but definitely more significant, Spagnoletti told me Weart is working with a medical group to bring tactile sensations to VR training for surgeons.

Sarcos Robotics’ Exoskeleton
That tire may as well be a feather
Sarcos Robotics unveiled its Guardian XO full-body exoskeleton, which it says can safely lift up to 200 pounds across an extended work session. What’s cool about this particular exoskeleton is that it’s not just a prototype; the company announced a partnership with Delta airlines, which will be trialing the technology for aircraft maintenance, engine repair, and luggage handling. In a demo, I watched a petite female volunteer strap into the exoskeleton and easily lift a 50-pound weight with one hand, and a Sarcos employee lift and attach a heavy component of a propeller; she explained that the strength-augmenting function of the exoskeleton can easily be switched on or off—and the wearer’s hands released—to facilitate multi-step tasks.

Hyundai’s Flying Taxi
Where to?
Hyundai and Uber partnered to unveil an air taxi concept. With a 49-foot wingspan, 4 lift rotors, and 4 tilt rotors, the aircraft would be manned by a pilot and could carry 4 passengers at speeds up to 180 miles per hour. The companies say you’ll be able to ride across your city in one of these by 2030—we’ll see if the regulatory environment, public opinion, and other factors outside of technological capability let that happen.

Mercedes’ Avatar Concept Car
Welcome to the future
As evident from its name, Mercedes’ sweet new Vision AVTR concept car was inspired by the movie Avatar; director James Cameron helped design it. The all-electric car has no steering wheel, transparent doors, seats made of vegan leather, and 33 reptilian-scale-like flaps on the back; its design is meant to connect the driver with both the car and the surrounding environment in a natural, seamless way.

Next-generation scrolling
Offered the chance to ‘drive’ the car, I jumped on it. Placing my hand on the center console started the engine, and within seconds it had synced to my heartbeat, which reverberated through the car. The whole dashboard, from driver door to passenger door, is one big LED display. It showed a virtual landscape I could select by holding up my hand: as I moved my hand from left to right, different images were projected onto my open palm. Closing my hand on an image selected it, and suddenly it looked like I was in the middle of a lush green mountain range. Applying slight forward pressure on the center console made the car advance in the virtual landscape; it was essentially like playing a really cool video game.

Mercedes is aiming to have a carbon-neutral production fleet by 2039, and to reduce the amount of energy it uses during production by 40 percent by 2030. It’s unclear when—or whether—the man-machine-nature connecting features of the Vision AVTR will start showing up in production, but I for one will be on the lookout.

Waverly Labs’ In-Ear Translator
Waverly Labs unveiled its Ambassador translator earlier this year and has it on display at the show. It’s worn on the ear and uses a far-field microphone array with speech recognition to translate real-time conversations in 20 different languages. Besides in-ear audio, translations can also appear as text on an app or be broadcast live in a conference environment.

It’s kind of like a giant talking earring
I stopped by the booth and tested out the translator with Waverly senior software engineer Georgiy Konovalov. We each hooked on an earpiece, and first, he spoke to me in Russian. After a delay of a couple seconds, I heard his words in—slightly robotic, but fully comprehensible—English. Then we switched: I spoke to him in Spanish, my words popped up on his phone screen in Cyrillic, and he translated them back to English for me out loud.

On the whole, the demo was pretty cool. If you’ve ever been lost in a foreign country whose language you don’t speak, imagine how handy a gadget like this would come in. Let’s just hope that once they’re more widespread, these products don’t end up discouraging people from learning languages.

Not to be outdone, Google also announced updates to its Translate product, which is being deployed at information desks in JFK airport’s international terminal, in sports stadiums in Qatar, and by some large hotel chains.

Stratuscent’s Digital Nose
AI is making steady progress towards achieving human-like vision and hearing—but there’s been less work done on mimicking our sense of smell (maybe because it’s less useful in everyday applications). Stratuscent’s digital nose, which it says is based on NASA patents, uses chemical receptors and AI to identify both simple chemicals and complex scents. The company is aiming to create the world’s first comprehensive database of everyday scents, which it says it will use to make “intelligent decisions” for customers. What kind of decisions remains to be seen—and smelled.

Banner Image Credit: The Mercedes Vision AVTR concept car. Photo by Vanessa Bates Ramirez Continue reading

Posted in Human Robots