Tag Archives: perspective
#435714 Universal Robots Introduces Its ...
Universal Robots, already the dominant force in collaborative robots, is flexing its muscles in an effort to further expand its reach in the cobots market. The Danish company is introducing today the UR16e, its strongest robotic arm yet, with a payload capability of 16 kilograms (35.3 lbs), reach of 900 millimeters, and repeatability of +/- 0.05 mm.
Universal says the new “heavy duty payload cobot” will allow customers to automate a broader range of processes, including packaging and palletizing, nut and screw driving, and high-payload and CNC machine tending.
In early 2015, Universal introduced the UR3, its smallest robot, which joined the UR5 and the flagship UR10, offering a payload capability of 3, 5, and 10 kg, respectively. Now the company is going in the other direction, announcing a bigger, stronger arm.
“With Universal joining its competitors in extending the reach and payload capacity of its cobots, a new standard of capability is forming,” Rian Whitton, a senior analyst at ABI Research, in London, tweeted.
Like its predecessors, the UR16e is part of Universal’s e-Series platform, which features 6 degrees of freedom and force/torque sensing on the tool flange. The UR family of cobots have stood out from the competition by being versatile in a variety of applications and, most important, easy to deploy and program. Universal didn’t release UR16e’s price, saying only that it is about 10 percent higher than that of the UR10e, which is about $50,000, depending on the configuration.
Jürgen von Hollen, president of Universal Robots, says the company decided to launch the UR16e after studying the market and talking to customers about their needs. “What came out of that process is we understood payload was a true barrier for a lot of customers,” he tells IEEE Spectrum. The 16 kg payload will be particularly useful for applications that require mounting specialized tools on the arm to perform tasks like screw driving and machine tending, he explains. Customers that could benefit from such applications include manufacturing, material handling, and automotive companies.
“We’ve added the payload, and that will open up that market for us,” von Hollen says.
The difference between Universal and Rethink
Universal has grown by leaps and bounds since its founding in 2008. By 2015, it had sold more than 5,000 robots; that number was close to 40,000 as of last year. During the same period, revenue more than doubled from about $100 million to $234 million. At a time when a string of robot makers have shuttered, including most notably Rethink Robotics, a cobots pioneer and Universal’s biggest rival, Universal finds itself in an enviable position, having amassed a commanding market share, estimated at between 50 to 60 percent.
About Rethink, von Hollen says the Boston-based company was a “good competitor,” helping disseminate the advantages and possibilities of cobots. “When Rethink basically ended it was more of a negative than a positive, from my perspective,” he says. In his view, a major difference between the two companies is that Rethink focused on delivering full-fledged applications to customers, whereas Universal focused on delivering a product to the market and letting the system integrators and sales partners deploy the robots to the customer base.
“We’ve always been very focused on delivering the product, whereas I think Rethink was much more focused on applications, very early on, and they added a level of complexity to their company that made it become very de-focused,” he says.
The collaborative robots market: massive growth
And yet, despite its success, Universal is still tiny when you compare it to the giants of industrial automation, which include companies like ABB, Fanuc, Yaskawa, and Kuka, with revenue in the billions of dollars. Although some of these companies have added cobots to their product portfolios—ABB’s YuMi, for example—that market represents a drop in the bucket when you consider global robot sales: The size of the cobots market was estimated at $700 million in 2018, whereas the global market for industrial robot systems (including software, peripherals, and system engineering) is close to $50 billion.
Von Hollen notes that cobots are expected to go through an impressive growth curve—nearly 50 percent year after year until 2025, when sales will reach between $9 to $12 billion. If Universal can maintain its dominance and capture a big slice of that market, it’ll add up to a nice sum. To get there, Universal is not alone: It is backed by U.S. electronics testing equipment maker Teradyne, which acquired Universal in 2015 for $285 million.
“The amount of resources we invest year over year matches the growth we had on sales,” von Hollen says. Universal currently has more than 650 employees, most based at its headquarters in Odense, Denmark, and the rest scattered in 27 offices in 18 countries. “No other company [in the cobots segment] is so focused on one product.”
[ Universal Robots ] Continue reading →
#435656 Will AI Be Fashion Forward—or a ...
The narrative that often accompanies most stories about artificial intelligence these days is how machines will disrupt any number of industries, from healthcare to transportation. It makes sense. After all, technology already drives many of the innovations in these sectors of the economy.
But sneakers and the red carpet? The definitively low-tech fashion industry would seem to be one of the last to turn over its creative direction to data scientists and machine learning algorithms.
However, big brands, e-commerce giants, and numerous startups are betting that AI can ingest data and spit out Chanel. Maybe it’s not surprising, given that fashion is partly about buzz and trends—and there’s nothing more buzzy and trendy in the world of tech today than AI.
In its annual survey of the $3 trillion fashion industry, consulting firm McKinsey predicted that while AI didn’t hit a “critical mass” in 2018, it would increasingly influence the business of everything from design to manufacturing.
“Fashion as an industry really has been so slow to understand its potential roles interwoven with technology. And, to be perfectly honest, the technology doesn’t take fashion seriously.” This comment comes from Zowie Broach, head of fashion at London’s Royal College of Arts, who as a self-described “old fashioned” designer has embraced the disruptive nature of technology—with some caveats.
Co-founder in the late 1990s of the avant-garde fashion label Boudicca, Broach has always seen tech as a tool for designers, even setting up a website for the company circa 1998, way before an online presence became, well, fashionable.
Broach told Singularity Hub that while she is generally optimistic about the future of technology in fashion—the designer has avidly been consuming old sci-fi novels over the last few years—there are still a lot of difficult questions to answer about the interface of algorithms, art, and apparel.
For instance, can AI do what the great designers of the past have done? Fashion was “about designing, it was about a narrative, it was about meaning, it was about expression,” according to Broach.
AI that designs products based on data gleaned from human behavior can potentially tap into the Pavlovian response in consumers in order to make money, Broach noted. But is that channeling creativity, or just digitally dabbling in basic human brain chemistry?
She is concerned about people retaining control of the process, whether we’re talking about their data or their designs. But being empowered with the insights machines could provide into, for example, the geographical nuances of fashion between Dubai, Moscow, and Toronto is thrilling.
“What is it that we want the future to be from a fashion, an identity, and design perspective?” she asked.
Off on the Right Foot
Silicon Valley and some of the biggest brands in the industry offer a few answers about where AI and fashion are headed (though not at the sort of depths that address Broach’s broader questions of aesthetics and ethics).
Take what is arguably the biggest brand in fashion, at least by market cap but probably not by the measure of appearances on Oscar night: Nike. The $100 billion shoe company just gobbled up an AI startup called Celect to bolster its data analytics and optimize its inventory. In other words, Nike hopes it will be able to figure out what’s hot and what’s not in a particular location to stock its stores more efficiently.
The company is going even further with Nike Fit, a foot-scanning platform using a smartphone camera that applies AI techniques from fields like computer vision and machine learning to find the best fit for each person’s foot. The algorithms then identify and recommend the appropriately sized and shaped shoe in different styles.
No doubt the next step will be to 3D print personalized and on-demand sneakers at any store.
San Francisco-based startup ThirdLove is trying to bring a similar approach to bra sizes. Its 20-member data team, Fortune reported, has developed the Fit Finder quiz that uses machine learning algorithms to help pick just the right garment for every body type.
Data scientists are also a big part of the team at Stitch Fix, a former San Francisco startup that went public in 2017 and today sports a market cap of more than $2 billion. The online “personal styling” company uses hundreds of algorithms to not only make recommendations to customers, but to help design new styles and even manage the subscription-based supply chain.
Future of Fashion
E-commerce giant Amazon has thrown its own considerable resources into developing AI applications for retail fashion—with mixed results.
One notable attempt involved a “styling assistant” that came with the company’s Echo Look camera that helped people catalog and manage their wardrobes, evening helping pick out each day’s attire. The company more recently revisited the direct consumer side of AI with an app called StyleSnap, which matches clothes and accessories uploaded to the site with the retailer’s vast inventory and recommends similar styles.
Behind the curtains, Amazon is going even further. A team of researchers in Israel have developed algorithms that can deduce whether a particular look is stylish based on a few labeled images. Another group at the company’s San Francisco research center was working on tech that could generate new designs of items based on images of a particular style the algorithms trained on.
“I will say that the accumulation of many new technologies across the industry could manifest in a highly specialized style assistant, far better than the examples we’ve seen today. However, the most likely thing is that the least sexy of the machine learning work will become the most impactful, and the public may never hear about it.”
That prediction is from an online interview with Leanne Luce, a fashion technology blogger and product manager at Google who recently wrote a book called, succinctly enough, Artificial Intelligence and Fashion.
Data Meets Design
Academics are also sticking their beakers into AI and fashion. Researchers at the University of California, San Diego, and Adobe Research have previously demonstrated that neural networks, a type of AI designed to mimic some aspects of the human brain, can be trained to generate (i.e., design) new product images to match a buyer’s preference, much like the team at Amazon.
Meanwhile, scientists at Hong Kong Polytechnic University are working with China’s answer to Amazon, Alibaba, on developing a FashionAI Dataset to help machines better understand fashion. The effort will focus on how algorithms approach certain building blocks of design, what are called “key points” such as neckline and waistline, and “fashion attributes” like collar types and skirt styles.
The man largely behind the university’s research team is Calvin Wong, a professor and associate head of Hong Kong Polytechnic University’s Institute of Textiles and Clothing. His group has also developed an “intelligent fabric defect detection system” called WiseEye for quality control, reducing the chance of producing substandard fabric by 90 percent.
Wong and company also recently inked an agreement with RCA to establish an AI-powered design laboratory, though the details of that venture have yet to be worked out, according to Broach.
One hope is that such collaborations will not just get at the technological challenges of using machines in creative endeavors like fashion, but will also address the more personal relationships humans have with their machines.
“I think who we are, and how we use AI in fashion, as our identity, is not a superficial skin. It’s very, very important for how we define our future,” Broach said.
Image Credit: Inspirationfeed / Unsplash Continue reading →
#435648 Surprisingly Speedy Soft Robot Survives ...
Soft robots are getting more and more popular for some very good reasons. Their relative simplicity is one. Their relative low cost is another. And for their simplicity and low cost, they’re generally able to perform very impressively, leveraging the unique features inherent to their design and construction to move themselves and interact with their environment. The other significant reason why soft robots are so appealing is that they’re durable. Without the constraints of rigid parts, they can withstand the sort of abuse that would make any roboticist cringe.
In the current issue of Science Robotics, a group of researchers from Tsinghua University in China and University of California, Berkeley, present a new kind of soft robot that’s both higher performance and much more robust than just about anything we’ve seen before. The deceptively simple robot looks like a bent strip of paper, but it’s able to move at 20 body lengths per second and survive being stomped on by a human wearing tennis shoes. Take that, cockroaches.
This prototype robot measures just 3 centimeters by 1.5 cm. It takes a scanning electron microscope to actually see what the robot is made of—a thermoplastic layer is sandwiched by palladium-gold electrodes, bonded with adhesive silicone to a structural plastic at the bottom. When an AC voltage (as low as 8 volts but typically about 60 volts) is run through the electrodes, the thermoplastic extends and contracts, causing the robot’s back to flex and the little “foot” to shuffle. A complete step cycle takes just 50 milliseconds, yielding a 200 hertz gait. And technically, the robot “runs,” since it does have a brief aerial phase.
Image: Science Robotics
Photos from a high-speed camera show the robot’s gait (A to D) as it contracts and expands its body.
To put the robot’s top speed of 20 body lengths per second in perspective, have a look at this nifty chart, which shows where other animals relative running speeds of some animals and robots versus body mass:
Image: Science Robotics
This chart shows the relative running speeds of some mammals (purple area), arthropods (orange area), and soft robots (blue area) versus body mass. For both mammals and arthropods, relative speeds show a strong negative scaling law with respect to the body mass: speeds increase as body masses decrease. However, for soft robots, the relationship appears to be the opposite: speeds decrease as the body mass decrease. For the little soft robots created by the researchers from Tsinghua University and UC Berkeley (red stars), the scaling law is similar to that of living animals: Higher speed was attained as the body mass decreased.
If you were wondering, like we were, just what that number 39 is on that chart (top left corner), it’s a species of tiny mite that was discovered underneath a rock in California in 1916. The mite is just under 1 mm in size, but it can run at 0.8 kilometer per hour, which is 322 body lengths per second, making it by far (like, by a factor of two at least) the fastest land animal on Earth relative to size. If a human was to run that fast relative to our size, we’d be traveling at a little bit over 2,000 kilometers per hour. It’s not a coincidence that pretty much everything in the upper left of the chart is an insect—speed scales favorably with decreasing mass, since actuators have a proportionally larger effect.
Other notable robots on the chart with impressive speed to mass ratios are number 27, which is this magnetically driven quadruped robot from UMD, and number 86, UC Berkeley’s X2-VelociRoACH.
Anyway, back to this robot. Some other cool things about it:
You can step on it, squishing it flat with a load about 1 million times its own body weight, and it’ll keep on crawling, albeit only half as fast.
Even climbing a slope of 15 degrees, it can still manage to move at 1 body length per second.
It carries peanuts! With a payload of six times its own weight, it moves a sixth as fast, but still, it’s not like you need your peanuts delivered all that quickly anyway, do you?
Image: Science Robotics
The researchers also put together a prototype with two legs instead of one, which was able to demonstrate a potentially faster galloping gait by spending more time in the air. They suggest that robots like these could be used for “environmental exploration, structural inspection, information reconnaissance, and disaster relief,” which are the sorts of things that you suggest that your robot could be used for when you really have no idea what it could be used for. But this work is certainly impressive, with speed and robustness that are largely unmatched by other soft robots. An untethered version seems possible due to the relatively low voltages required to drive the robot, and if they can put some peanut-sized sensors on there as well, practical applications might actually be forthcoming sometime soon.
“Insect-scale Fast Moving and Ultrarobust Soft Robot,” by Yichuan Wu, Justin K. Yim, Jiaming Liang, Zhichun Shao, Mingjing Qi, Junwen Zhong, Zihao Luo, Xiaojun Yan, Min Zhang, Xiaohao Wang, Ronald S. Fearing, Robert J. Full, and Liwei Lin from Tsinghua University and UC Berkeley, is published in Science Robotics. Continue reading →
#435522 Harvard’s Smart Exo-Shorts Talk to the ...
Exosuits don’t generally scream “fashionable” or “svelte.” Take the mind-controlled robotic exoskeleton that allowed a paraplegic man to kick off the World Cup back in 2014. Is it cool? Hell yeah. Is it practical? Not so much.
Yapping about wearability might seem childish when the technology already helps people with impaired mobility move around dexterously. But the lesson of the ill-fated Google Glassholes, which includes an awkward dorky head tilt and an assuming voice command, clearly shows that wearable computer assistants can’t just work technologically—they have to look natural and allow the user to behave like as usual. They have to, in a sense, disappear.
To Dr. Jose Pons at the Legs + Walking Ability Lab in Chicago, exosuits need three main selling points to make it in the real world. One, they have to physically interact with their wearer and seamlessly deliver assistance when needed. Two, they should cognitively interact with the host to guide and control the robot at all times. Finally, they need to feel like a second skin—move with the user without adding too much extra mass or reducing mobility.
This week, a US-Korean collaboration delivered the whole shebang in a Lululemon-style skin-hugging package combined with a retro waist pack. The portable exosuit, weighing only 11 pounds, looks like a pair of spandex shorts but can support the wearer’s hip movement when needed. Unlike their predecessors, the shorts are embedded with sensors that let them know when the wearer is walking versus running by analyzing gait.
Switching between the two movement modes may not seem like much, but what naturally comes to our brains doesn’t translate directly to smart exosuits. “Walking and running have fundamentally different biomechanics, which makes developing devices that assist both gaits challenging,” the team said. Their algorithm, computed in the cloud, allows the wearer to easily switch between both, with the shorts providing appropriate hip support that makes the movement experience seamless.
To Pons, who was not involved in the research but wrote a perspective piece, the study is an exciting step towards future exosuits that will eventually disappear under the skin—that is, implanted neural interfaces to control robotic assistance or activate the user’s own muscles.
“It is realistic to think that we will witness, in the next several years…robust human-robot interfaces to command wearable robotics based on…the neural code of movement in humans,” he said.
A “Smart” Exosuit Hack
There are a few ways you can hack a human body to move with an exosuit. One is using implanted electrodes inside the brain or muscles to decipher movement intent. With heavy practice, a neural implant can help paralyzed people walk again or dexterously move external robotic arms. But because the technique requires surgery, it’s not an immediate sell for people who experience low mobility because of aging or low muscle tone.
The other approach is to look to biophysics. Rather than decoding neural signals that control movement, here the idea is to measure gait and other physical positions in space to decipher intent. As you can probably guess, accurately deciphering user intent isn’t easy, especially when the wearable tries to accommodate multiple gaits. But the gains are many: there’s no surgery involved, and the wearable is low in energy consumption.
Double Trouble
The authors decided to tackle an everyday situation. You’re walking to catch the train to work, realize you’re late, and immediately start sprinting.
That seemingly easy conversion hides a complex switch in biomechanics. When you walk, your legs act like an inverted pendulum that swing towards a dedicated center in a predictable way. When you run, however, the legs move more like a spring-loaded system, and the joints involved in the motion differ from a casual stroll. Engineering an assistive wearable for each is relatively simple; making one for both is exceedingly hard.
Led by Dr. Conor Walsh at Harvard University, the team started with an intuitive idea: assisted walking and running requires specialized “actuation” profiles tailored to both. When the user is moving in a way that doesn’t require assistance, the wearable needs to be out of the way so that it doesn’t restrict mobility. A quick analysis found that assisting hip extension has the largest impact, because it’s important to both gaits and doesn’t add mass to the lower legs.
Building on that insight, the team made a waist belt connected to two thigh wraps, similar to a climbing harness. Two electrical motors embedded inside the device connect the waist belt to other components through a pulley system to help the hip joints move. The whole contraption weighed about 11 lbs and didn’t obstruct natural movement.
Next, the team programmed two separate supporting profiles for walking and running. The goal was to reduce the “metabolic cost” for both movements, so that the wearer expends as little energy as needed. To switch between the two programs, they used a cloud-based classification algorithm to measure changes in energy fluctuation to figure out what mode—running or walking—the user is in.
Smart Booster
Initial trials on treadmills were highly positive. Six male volunteers with similar age and build donned the exosuit and either ran or walked on the treadmill at varying inclines. The algorithm performed perfectly at distinguishing between the two gaits in all conditions, even at steep angles.
An outdoor test with eight volunteers also proved the algorithm nearly perfect. Even on uneven terrain, only two steps out of all test trials were misclassified. In an additional trial on mud or snow, the algorithm performed just as well.
“The system allows the wearer to use their preferred gait for each speed,” the team said.
Software excellence translated to performance. A test found that the exosuit reduced the energy for walking by over nine percent and running by four percent. It may not sound like much, but the range of improvement is meaningful in athletic performance. Putting things into perspective, the team said, the metabolic rate reduction during walking is similar to taking 16 pounds off at the waist.
The Wearable Exosuit Revolution
The study’s lightweight exoshorts are hardly the only players in town. Back in 2017, SRI International’s spin-off, Superflex, engineered an Aura suit to support mobility in the elderly. The Aura used a different mechanism: rather than a pulley system, it incorporated a type of smart material that contracts in a manner similar to human muscles when zapped with electricity.
Embedded with a myriad of sensors for motion, accelerometers and gyroscopes, Aura’s smartness came from mini-computers that measure how fast the wearer is moving and track the user’s posture. The data were integrated and processed locally inside hexagon-shaped computing pods near the thighs and upper back. The pods also acted as the control center for sending electrical zaps to give the wearer a boost when needed.
Around the same time, a collaboration between Harvard’s Wyss Institute and ReWalk Robotics introduced a fabric-based wearable robot to assist a wearer’s legs for balance and movement. Meanwhile, a Swiss team coated normal fabric with electroactive material to weave soft, pliable artificial “muscles” that move with the skin.
Although health support is the current goal, the military is obviously interested in similar technologies to enhance soldiers’ physicality. Superflex’s Aura, for example, was originally inspired by technology born from DARPA’s Warrior Web Program, which aimed to reduce a soldier’s mechanical load.
That said, military gear has had a long history of trickling down to consumer use. Similar to the way camouflage, cargo pants, and GORE-TEX trickled down into the consumer ecosphere, it’s not hard to imagine your local Target eventually stocking intelligent exowear.
Image and Video Credit: Wyss Institute at Harvard University. Continue reading →
#435505 This Week’s Awesome Stories From ...
AUGMENTED REALITY
This Is the Computer You’ll Wear on Your Face in 10 Years
Mark Sullivan | Fast Company
“[Snap’s new Spectacles 3] foreshadow a device that many of us may wear as our primary personal computing device in about 10 years. Based on what I’ve learned by talking AR with technologists in companies big and small, here is what such a device might look like and do.”
ROBOTICS
These Robo-Shorts Are the Precursor to a True Robotic Exoskeleton
Devin Coldewey | TechCrunch
“The whole idea, then, is to leave behind the idea of an exosuit as a big mechanical thing for heavy industry or work, and bring in the idea that one could help an elderly person stand up from a chair, or someone recovering from an accident walk farther without fatigue.”
ENVIRONMENT
Artificial Tree Promises to Suck Up as Much Air Pollution as a Small Forest
Luke Dormehl | Digital Trends
“The company has developed an artificial tree that it claims is capable of sucking up the equivalent amount of air pollution as 368 living trees. That’s not only a saving on growing time, but also on the space needed to accommodate them.”
FUTURE
The Anthropocene Is a Joke
Peter Brannen | The Atlantic
“Unless we fast learn how to endure on this planet, and on a scale far beyond anything we’ve yet proved ourselves capable of, the detritus of civilization will be quickly devoured by the maw of deep time.”
ARTIFICIAL INTELLIGENCE
DeepMind’s Losses and the Future of Artificial Intelligence
Gary Marcus | Wired
“Still, the rising magnitude of DeepMind’s losses is worth considering: $154 million in 2016, $341 million in 2017, $572 million in 2018. In my view, there are three central questions: Is DeepMind on the right track scientifically? Are investments of this magnitude sound from Alphabet’s perspective? And how will the losses affect AI in general?”
Image Credit: Tithi Luadthong / Shutterstock.com Continue reading →