Tag Archives: people

#434767 7 Non-Obvious Trends Shaping the Future

When you think of trends that might be shaping the future, the first things that come to mind probably have something to do with technology: Robots taking over jobs. Artificial intelligence advancing and proliferating. 5G making everything faster, connected cities making everything easier, data making everything more targeted.

Technology is undoubtedly changing the way we live, and will continue to do so—probably at an accelerating rate—in the near and far future. But there are other trends impacting the course of our lives and societies, too. They’re less obvious, and some have nothing to do with technology.

For the past nine years, entrepreneur and author Rohit Bhargava has read hundreds of articles across all types of publications, tagged and categorized them by topic, funneled frequent topics into broader trends, analyzed those trends, narrowed them down to the most significant ones, and published a book about them as part of his ‘Non-Obvious’ series. He defines a trend as “a unique curated observation of the accelerating present.”

In an encore session at South by Southwest last week (his initial talk couldn’t fit hundreds of people who wanted to attend, so a re-do was scheduled), Bhargava shared details of his creative process, why it’s hard to think non-obviously, the most important trends of this year, and how to make sure they don’t get the best of you.

Thinking Differently
“Non-obvious thinking is seeing the world in a way other people don’t see it,” Bhargava said. “The secret is curating your ideas.” Curation collects ideas and presents them in a meaningful way; museum curators, for example, decide which works of art to include in an exhibit and how to present them.

For his own curation process, Bhargava uses what he calls the haystack method. Rather than searching for a needle in a haystack, he gathers ‘hay’ (ideas and stories) then uses them to locate and define a ‘needle’ (a trend). “If you spend enough time gathering information, you can put the needle into the middle of the haystack,” he said.

A big part of gathering information is looking for it in places you wouldn’t normally think to look. In his case, that means that on top of reading what everyone else reads—the New York Times, the Washington Post, the Economist—he also buys publications like Modern Farmer, Teen Vogue, and Ink magazine. “It’s like stepping into someone else’s world who’s not like me,” he said. “That’s impossible to do online because everything is personalized.”

Three common barriers make non-obvious thinking hard.

The first is unquestioned assumptions, which are facts or habits we think will never change. When James Dyson first invented the bagless vacuum, he wanted to sell the license to it, but no one believed people would want to spend more money up front on a vacuum then not have to buy bags. The success of Dyson’s business today shows how mistaken that assumption—that people wouldn’t adapt to a product that, at the end of the day, was far more sensible—turned out to be. “Making the wrong basic assumptions can doom you,” Bhargava said.

The second barrier to thinking differently is constant disruption. “Everything is changing as industries blend together,” Bhargava said. “The speed of change makes everyone want everything, all the time, and people expect the impossible.” We’ve come to expect every alternative to be presented to us in every moment, but in many cases this doesn’t serve us well; we’re surrounded by noise and have trouble discerning what’s valuable and authentic.

This ties into the third barrier, which Bhargava calls the believability crisis. “Constant sensationalism makes people skeptical about everything,” he said. With the advent of fake news and technology like deepfakes, we’re in a post-truth, post-fact era, and are in a constant battle to discern what’s real from what’s not.

2019 Trends
Bhargava’s efforts to see past these barriers and curate information yielded 15 trends he believes are currently shaping the future. He shared seven of them, along with thoughts on how to stay ahead of the curve.

Retro Trust
We tend to trust things we have a history with. “People like nostalgic experiences,” Bhargava said. With tech moving as fast as it is, old things are quickly getting replaced by shinier, newer, often more complex things. But not everyone’s jumping on board—and some who’ve been on board are choosing to jump off in favor of what worked for them in the past.

“We’re turning back to vinyl records and film cameras, deliberately downgrading to phones that only text and call,” Bhargava said. In a period of too much change too fast, people are craving familiarity and dependability. To capitalize on that sentiment, entrepreneurs should seek out opportunities for collaboration—how can you build a product that’s new, but feels reliable and familiar?

Muddled Masculinity
Women have increasingly taken on more leadership roles, advanced in the workplace, now own more homes than men, and have higher college graduation rates. That’s all great for us ladies—but not so great for men or, perhaps more generally, for the concept of masculinity.

“Female empowerment is causing confusion about what it means to be a man today,” Bhargava said. “Men don’t know what to do—should they say something? Would that make them an asshole? Should they keep quiet? Would that make them an asshole?”

By encouraging the non-conforming, we can help take some weight off the traditional gender roles, and their corresponding divisions and pressures.

Innovation Envy
Innovation has become an over-used word, to the point that it’s thrown onto ideas and actions that aren’t really innovative at all. “We innovate by looking at someone else and doing the same,” Bhargava said. If an employee brings a radical idea to someone in a leadership role, in many companies the leadership will say they need a case study before implementing the radical idea—but if it’s already been done, it’s not innovative. “With most innovation what ends up happening is not spectacular failure, but irrelevance,” Bhargava said.

He suggests that rather than being on the defensive, companies should play offense with innovation, and when it doesn’t work “fail as if no one’s watching” (often, no one will be).

Artificial Influence
Thanks to social media and other technologies, there are a growing number of fabricated things that, despite not being real, influence how we think. “15 percent of all Twitter accounts may be fake, and there are 60 million fake Facebook accounts,” Bhargava said. There are virtual influencers and even virtual performers.

“Don’t hide the artificial ingredients,” Bhargava advised. “Some people are going to pretend it’s all real. We have to be ethical.” The creators of fabrications meant to influence the way people think, or the products they buy, or the decisions they make, should make it crystal-clear that there aren’t living, breathing people behind the avatars.

Enterprise Empathy
Another reaction to the fast pace of change these days—and the fast pace of life, for that matter—is that empathy is regaining value and even becoming a driver of innovation. Companies are searching for ways to give people a sense of reassurance. The Tesco grocery brand in the UK has a “relaxed lane” for those who don’t want to feel rushed as they check out. Starbucks opened a “signing store” in Washington DC, and most of its regular customers have learned some sign language.

“Use empathy as a principle to help yourself stand out,” Bhargava said. Besides being a good business strategy, “made with empathy” will ideally promote, well, more empathy, a quality there’s often a shortage of.

Robot Renaissance
From automating factory jobs to flipping burgers to cleaning our floors, robots have firmly taken their place in our day-to-day lives—and they’re not going away anytime soon. “There are more situations with robots than ever before,” Bhargava said. “They’re exploring underwater. They’re concierges at hotels.”

The robot revolution feels intimidating. But Bhargava suggests embracing robots with more curiosity than concern. While they may replace some tasks we don’t want replaced, they’ll also be hugely helpful in multiple contexts, from elderly care to dangerous manual tasks.

Back-storytelling
Similar to retro trust and enterprise empathy, organizations have started to tell their brand’s story to gain customer loyalty. “Stories give us meaning, and meaning is what we need in order to be able to put the pieces together,” Bhargava said. “Stories give us a way of understanding the world.”

Finding the story behind your business, brand, or even yourself, and sharing it openly, can help you connect with people, be they customers, coworkers, or friends.

Tech’s Ripple Effects
While it may not overtly sound like it, most of the trends Bhargava identified for 2019 are tied to technology, and are in fact a sort of backlash against it. Tech has made us question who to trust, how to innovate, what’s real and what’s fake, how to make the best decisions, and even what it is that makes us human.

By being aware of these trends, sharing them, and having conversations about them, we’ll help shape the way tech continues to be built, and thus the way it impacts us down the road.

Image Credit: Rohit Bhargava by Brian Smale Continue reading

Posted in Human Robots

#434759 To Be Ethical, AI Must Become ...

As over-hyped as artificial intelligence is—everyone’s talking about it, few fully understand it, it might leave us all unemployed but also solve all the world’s problems—its list of accomplishments is growing. AI can now write realistic-sounding text, give a debating champ a run for his money, diagnose illnesses, and generate fake human faces—among much more.

After training these systems on massive datasets, their creators essentially just let them do their thing to arrive at certain conclusions or outcomes. The problem is that more often than not, even the creators don’t know exactly why they’ve arrived at those conclusions or outcomes. There’s no easy way to trace a machine learning system’s rationale, so to speak. The further we let AI go down this opaque path, the more likely we are to end up somewhere we don’t want to be—and may not be able to come back from.

In a panel at the South by Southwest interactive festival last week titled “Ethics and AI: How to plan for the unpredictable,” experts in the field shared their thoughts on building more transparent, explainable, and accountable AI systems.

Not New, but Different
Ryan Welsh, founder and director of explainable AI startup Kyndi, pointed out that having knowledge-based systems perform advanced tasks isn’t new; he cited logistical, scheduling, and tax software as examples. What’s new is the learning component, our inability to trace how that learning occurs, and the ethical implications that could result.

“Now we have these systems that are learning from data, and we’re trying to understand why they’re arriving at certain outcomes,” Welsh said. “We’ve never actually had this broad society discussion about ethics in those scenarios.”

Rather than continuing to build AIs with opaque inner workings, engineers must start focusing on explainability, which Welsh broke down into three subcategories. Transparency and interpretability come first, and refer to being able to find the units of high influence in a machine learning network, as well as the weights of those units and how they map to specific data and outputs.

Then there’s provenance: knowing where something comes from. In an ideal scenario, for example, Open AI’s new text generator would be able to generate citations in its text that reference academic (and human-created) papers or studies.

Explainability itself is the highest and final bar and refers to a system’s ability to explain itself in natural language to the average user by being able to say, “I generated this output because x, y, z.”

“Humans are unique in our ability and our desire to ask why,” said Josh Marcuse, executive director of the Defense Innovation Board, which advises Department of Defense senior leaders on innovation. “The reason we want explanations from people is so we can understand their belief system and see if we agree with it and want to continue to work with them.”

Similarly, we need to have the ability to interrogate AIs.

Two Types of Thinking
Welsh explained that one big barrier standing in the way of explainability is the tension between the deep learning community and the symbolic AI community, which see themselves as two different paradigms and historically haven’t collaborated much.

Symbolic or classical AI focuses on concepts and rules, while deep learning is centered around perceptions. In human thought this is the difference between, for example, deciding to pass a soccer ball to a teammate who is open (you make the decision because conceptually you know that only open players can receive passes), and registering that the ball is at your feet when someone else passes it to you (you’re taking in information without making a decision about it).

“Symbolic AI has abstractions and representation based on logic that’s more humanly comprehensible,” Welsh said. To truly mimic human thinking, AI needs to be able to both perceive information and conceptualize it. An example of perception (deep learning) in an AI is recognizing numbers within an image, while conceptualization (symbolic learning) would give those numbers a hierarchical order and extract rules from the hierachy (4 is greater than 3, and 5 is greater than 4, therefore 5 is also greater than 3).

Explainability comes in when the system can say, “I saw a, b, and c, and based on that decided x, y, or z.” DeepMind and others have recently published papers emphasizing the need to fuse the two paradigms together.

Implications Across Industries
One of the most prominent fields where AI ethics will come into play, and where the transparency and accountability of AI systems will be crucial, is defense. Marcuse said, “We’re accountable beings, and we’re responsible for the choices we make. Bringing in tech or AI to a battlefield doesn’t strip away that meaning and accountability.”

In fact, he added, rather than worrying about how AI might degrade human values, people should be asking how the tech could be used to help us make better moral choices.

It’s also important not to conflate AI with autonomy—a worst-case scenario that springs to mind is an intelligent destructive machine on a rampage. But in fact, Marcuse said, in the defense space, “We have autonomous systems today that don’t rely on AI, and most of the AI systems we’re contemplating won’t be autonomous.”

The US Department of Defense released its 2018 artificial intelligence strategy last month. It includes developing a robust and transparent set of principles for defense AI, investing in research and development for AI that’s reliable and secure, continuing to fund research in explainability, advocating for a global set of military AI guidelines, and finding ways to use AI to reduce the risk of civilian casualties and other collateral damage.

Though these were designed with defense-specific aims in mind, Marcuse said, their implications extend across industries. “The defense community thinks of their problems as being unique, that no one deals with the stakes and complexity we deal with. That’s just wrong,” he said. Making high-stakes decisions with technology is widespread; safety-critical systems are key to aviation, medicine, and self-driving cars, to name a few.

Marcuse believes the Department of Defense can invest in AI safety in a way that has far-reaching benefits. “We all depend on technology to keep us alive and safe, and no one wants machines to harm us,” he said.

A Creation Superior to Its Creator
That said, we’ve come to expect technology to meet our needs in just the way we want, all the time—servers must never be down, GPS had better not take us on a longer route, Google must always produce the answer we’re looking for.

With AI, though, our expectations of perfection may be less reasonable.

“Right now we’re holding machines to superhuman standards,” Marcuse said. “We expect them to be perfect and infallible.” Take self-driving cars. They’re conceived of, built by, and programmed by people, and people as a whole generally aren’t great drivers—just look at traffic accident death rates to confirm that. But the few times self-driving cars have had fatal accidents, there’s been an ensuing uproar and backlash against the industry, as well as talk of implementing more restrictive regulations.

This can be extrapolated to ethics more generally. We as humans have the ability to explain our decisions, but many of us aren’t very good at doing so. As Marcuse put it, “People are emotional, they confabulate, they lie, they’re full of unconscious motivations. They don’t pass the explainability test.”

Why, then, should explainability be the standard for AI?

Even if humans aren’t good at explaining our choices, at least we can try, and we can answer questions that probe at our decision-making process. A deep learning system can’t do this yet, so working towards being able to identify which input data the systems are triggering on to make decisions—even if the decisions and the process aren’t perfect—is the direction we need to head.

Image Credit: a-image / Shutterstock.com Continue reading

Posted in Human Robots

#434753 Top Takeaways From The Economist ...

Over the past few years, the word ‘innovation’ has degenerated into something of a buzzword. In fact, according to Vijay Vaitheeswaran, US business editor at The Economist, it’s one of the most abused words in the English language.

The word is over-used precisely because we’re living in a great age of invention. But the pace at which those inventions are changing our lives is fast, new, and scary.

So what strategies do companies need to adopt to make sure technology leads to growth that’s not only profitable, but positive? How can business and government best collaborate? Can policymakers regulate the market without suppressing innovation? Which technologies will impact us most, and how soon?

At The Economist Innovation Summit in Chicago last week, entrepreneurs, thought leaders, policymakers, and academics shared their insights on the current state of exponential technologies, and the steps companies and individuals should be taking to ensure a tech-positive future. Here’s their expert take on the tech and trends shaping the future.

Blockchain
There’s been a lot of hype around blockchain; apparently it can be used for everything from distributing aid to refugees to voting. However, it’s too often conflated with cryptocurrencies like Bitcoin, and we haven’t heard of many use cases. Where does the technology currently stand?

Julie Sweet, chief executive of Accenture North America, emphasized that the technology is still in its infancy. “Everything we see today are pilots,” she said. The most promising of these pilots are taking place across three different areas: supply chain, identity, and financial services.

When you buy something from outside the US, Sweet explained, it goes through about 80 different parties. 70 percent of the relevant data is replicated and is prone to error, with paper-based documents often to blame. Blockchain is providing a secure way to eliminate paper in supply chains, upping accuracy and cutting costs in the process.

One of the most prominent use cases in the US is Walmart—the company has mandated that all suppliers in its leafy greens segment be on a blockchain, and its food safety has improved as a result.

Beth Devin, head of Citi Ventures’ innovation network, added “Blockchain is an infrastructure technology. It can be leveraged in a lot of ways. There’s so much opportunity to create new types of assets and securities that aren’t accessible to people today. But there’s a lot to figure out around governance.”

Open Source Technology
Are the days of proprietary technology numbered? More and more companies and individuals are making their source code publicly available, and its benefits are thus more widespread than ever before. But what are the limitations and challenges of open source tech, and where might it go in the near future?

Bob Lord, senior VP of cognitive applications at IBM, is a believer. “Open-sourcing technology helps innovation occur, and it’s a fundamental basis for creating great technology solutions for the world,” he said. However, the biggest challenge for open source right now is that companies are taking out more than they’re contributing back to the open-source world. Lord pointed out that IBM has a rule about how many lines of code employees take out relative to how many lines they put in.

Another challenge area is open governance; blockchain by its very nature should be transparent and decentralized, with multiple parties making decisions and being held accountable. “We have to embrace open governance at the same time that we’re contributing,” Lord said. He advocated for a hybrid-cloud environment where people can access public and private data and bring it together.

Augmented and Virtual Reality
Augmented and virtual reality aren’t just for fun and games anymore, and they’ll be even less so in the near future. According to Pearly Chen, vice president at HTC, they’ll also go from being two different things to being one and the same. “AR overlays digital information on top of the real world, and VR transports you to a different world,” she said. “In the near future we will not need to delineate between these two activities; AR and VR will come together naturally, and will change everything we do as we know it today.”

For that to happen, we’ll need a more ergonomically friendly device than we have today for interacting with this technology. “Whenever we use tech today, we’re multitasking,” said product designer and futurist Jody Medich. “When you’re using GPS, you’re trying to navigate in the real world and also manage this screen. Constant task-switching is killing our brain’s ability to think.” Augmented and virtual reality, she believes, will allow us to adapt technology to match our brain’s functionality.

This all sounds like a lot of fun for uses like gaming and entertainment, but what about practical applications? “Ultimately what we care about is how this technology will improve lives,” Chen said.

A few ways that could happen? Extended reality will be used to simulate hazardous real-life scenarios, reduce the time and resources needed to bring a product to market, train healthcare professionals (such as surgeons), or provide therapies for patients—not to mention education. “Think about the possibilities for children to learn about history, science, or math in ways they can’t today,” Chen said.

Quantum Computing
If there’s one technology that’s truly baffling, it’s quantum computing. Qubits, entanglement, quantum states—it’s hard to wrap our heads around these concepts, but they hold great promise. Where is the tech right now?

Mandy Birch, head of engineering strategy at Rigetti Computing, thinks quantum development is starting slowly but will accelerate quickly. “We’re at the innovation stage right now, trying to match this capability to useful applications,” she said. “Can we solve problems cheaper, better, and faster than classical computers can do?” She believes quantum’s first breakthrough will happen in two to five years, and that is highest potential is in applications like routing, supply chain, and risk optimization, followed by quantum chemistry (for materials science and medicine) and machine learning.

David Awschalom, director of the Chicago Quantum Exchange and senior scientist at Argonne National Laboratory, believes quantum communication and quantum sensing will become a reality in three to seven years. “We’ll use states of matter to encrypt information in ways that are completely secure,” he said. A quantum voting system, currently being prototyped, is one application.

Who should be driving quantum tech development? The panelists emphasized that no one entity will get very far alone. “Advancing quantum tech will require collaboration not only between business, academia, and government, but between nations,” said Linda Sapochak, division director of materials research at the National Science Foundation. She added that this doesn’t just go for the technology itself—setting up the infrastructure for quantum will be a big challenge as well.

Space
Space has always been the final frontier, and it still is—but it’s not quite as far-removed from our daily lives now as it was when Neil Armstrong walked on the moon in 1969.

The space industry has always been funded by governments and private defense contractors. But in 2009, SpaceX launched its first commercial satellite, and in subsequent years have drastically cut the cost of spaceflight. More importantly, they published their pricing, which brought transparency to a market that hadn’t seen it before.

Entrepreneurs around the world started putting together business plans, and there are now over 400 privately-funded space companies, many with consumer applications.

Chad Anderson, CEO of Space Angels and managing partner of Space Capital, pointed out that the technology floating around in space was, until recently, archaic. “A few NASA engineers saw they had more computing power in their phone than there was in satellites,” he said. “So they thought, ‘why don’t we just fly an iPhone?’” They did—and it worked.

Now companies have networks of satellites monitoring the whole planet, producing a huge amount of data that’s valuable for countless applications like agriculture, shipping, and observation. “A lot of people underestimate space,” Anderson said. “It’s already enabling our modern global marketplace.”

Next up in the space realm, he predicts, are mining and tourism.

Artificial Intelligence and the Future of Work
From the US to Europe to Asia, alarms are sounding about AI taking our jobs. What will be left for humans to do once machines can do everything—and do it better?

These fears may be unfounded, though, and are certainly exaggerated. It’s undeniable that AI and automation are changing the employment landscape (not to mention the way companies do business and the way we live our lives), but if we build these tools the right way, they’ll bring more good than harm, and more productivity than obsolescence.

Accenture’s Julie Sweet emphasized that AI alone is not what’s disrupting business and employment. Rather, it’s what she called the “triple A”: automation, analytics, and artificial intelligence. But even this fear-inducing trifecta of terms doesn’t spell doom, for workers or for companies. Accenture has automated 40,000 jobs—and hasn’t fired anyone in the process. Instead, they’ve trained and up-skilled people. The most important drivers to scale this, Sweet said, are a commitment by companies and government support (such as tax credits).

Imbuing AI with the best of human values will also be critical to its impact on our future. Tracy Frey, Google Cloud AI’s director of strategy, cited the company’s set of seven AI principles. “What’s important is the governance process that’s put in place to support those principles,” she said. “You can’t make macro decisions when you have technology that can be applied in many different ways.”

High Risks, High Stakes
This year, Vaitheeswaran said, 50 percent of the world’s population will have internet access (he added that he’s disappointed that percentage isn’t higher given the proliferation of smartphones). As technology becomes more widely available to people around the world and its influence grows even more, what are the biggest risks we should be monitoring and controlling?

Information integrity—being able to tell what’s real from what’s fake—is a crucial one. “We’re increasingly operating in siloed realities,” said Renee DiResta, director of research at New Knowledge and head of policy at Data for Democracy. “Inadvertent algorithmic amplification on social media elevates certain perspectives—what does that do to us as a society?”

Algorithms have also already been proven to perpetuate the bias of the people who create it—and those people are often wealthy, white, and male. Ensuring that technology doesn’t propagate unfair bias will be crucial to its ability to serve a diverse population, and to keep societies from becoming further polarized and inequitable. The polarization of experience that results from pronounced inequalities within countries, Vaitheeswaran pointed out, can end up undermining democracy.

We’ll also need to walk the line between privacy and utility very carefully. As Dan Wagner, founder of Civis Analytics put it, “We want to ensure privacy as much as possible, but open access to information helps us achieve important social good.” Medicine in the US has been hampered by privacy laws; if, for example, we had more data about biomarkers around cancer, we could provide more accurate predictions and ultimately better healthcare.

But going the Chinese way—a total lack of privacy—is likely not the answer, either. “We have to be very careful about the way we bake rights and freedom into our technology,” said Alex Gladstein, chief strategy officer at Human Rights Foundation.

Technology’s risks are clearly as fraught as its potential is promising. As Gary Shapiro, chief executive of the Consumer Technology Association, put it, “Everything we’ve talked about today is simply a tool, and can be used for good or bad.”

The decisions we’re making now, at every level—from the engineers writing algorithms, to the legislators writing laws, to the teenagers writing clever Instagram captions—will determine where on the spectrum we end up.

Image Credit: Rudy Balasko / Shutterstock.com Continue reading

Posted in Human Robots

#434701 3 Practical Solutions to Offset ...

In recent years, the media has sounded the alarm about mass job loss to automation and robotics—some studies predict that up to 50 percent of current jobs or tasks could be automated in coming decades. While this topic has received significant attention, much of the press focuses on potential problems without proposing realistic solutions or considering new opportunities.

The economic impacts of AI, robotics, and automation are complex topics that require a more comprehensive perspective to understand. Is universal basic income, for example, the answer? Many believe so, and there are a number of experiments in progress. But it’s only one strategy, and without a sustainable funding source, universal basic income may not be practical.

As automation continues to accelerate, we’ll need a multi-pronged approach to ease the transition. In short, we need to update broad socioeconomic strategies for a new century of rapid progress. How, then, do we plan practical solutions to support these new strategies?

Take history as a rough guide to the future. Looking back, technology revolutions have three themes in common.

First, past revolutions each produced profound benefits to productivity, increasing human welfare. Second, technological innovation and technology diffusion have accelerated over time, each iteration placing more strain on the human ability to adapt. And third, machines have gradually replaced more elements of human work, with human societies adapting by moving into new forms of work—from agriculture to manufacturing to service, for example.

Public and private solutions, therefore, need to be developed to address each of these three components of change. Let’s explore some practical solutions for each in turn.

Figure 1. Technology’s structural impacts in the 21st century. Refer to Appendix I for quantitative charts and technological examples corresponding to the numbers (1-22) in each slice.
Solution 1: Capture New Opportunities Through Aggressive Investment
The rapid emergence of new technology promises a bounty of opportunity for the twenty-first century’s economic winners. This technological arms race is shaping up to be a global affair, and the winners will be determined in part by who is able to build the future economy fastest and most effectively. Both the private and public sectors have a role to play in stimulating growth.

At the country level, several nations have created competitive strategies to promote research and development investments as automation technologies become more mature.

Germany and China have two of the most notable growth strategies. Germany’s Industrie 4.0 plan targets a 50 percent increase in manufacturing productivity via digital initiatives, while halving the resources required. China’s Made in China 2025 national strategy sets ambitious targets and provides subsidies for domestic innovation and production. It also includes building new concept cities, investing in robotics capabilities, and subsidizing high-tech acquisitions abroad to become the leader in certain high-tech industries. For China, specifically, tech innovation is driven partially by a fear that technology will disrupt social structures and government control.

Such opportunities are not limited to existing economic powers. Estonia’s progress after the breakup of the Soviet Union is a good case study in transitioning to a digital economy. The nation rapidly implemented capitalistic reforms and transformed itself into a technology-centric economy in preparation for a massive tech disruption. Internet access was declared a right in 2000, and the country’s classrooms were outfitted for a digital economy, with coding as a core educational requirement starting at kindergarten. Internet broadband speeds in Estonia are among the fastest in the world. Accordingly, the World Bank now ranks Estonia as a high-income country.

Solution 2: Address Increased Rate of Change With More Nimble Education Systems
Education and training are currently not set for the speed of change in the modern economy. Schools are still based on a one-time education model, with school providing the foundation for a single lifelong career. With content becoming obsolete faster and rapidly escalating costs, this system may be unsustainable in the future. To help workers more smoothly transition from one job into another, for example, we need to make education a more nimble, lifelong endeavor.

Primary and university education may still have a role in training foundational thinking and general education, but it will be necessary to curtail rising price of tuition and increase accessibility. Massive open online courses (MooCs) and open-enrollment platforms are early demonstrations of what the future of general education may look like: cheap, effective, and flexible.

Georgia Tech’s online Engineering Master’s program (a fraction of the cost of residential tuition) is an early example in making university education more broadly available. Similarly, nanodegrees or microcredentials provided by online education platforms such as Udacity and Coursera can be used for mid-career adjustments at low cost. AI itself may be deployed to supplement the learning process, with applications such as AI-enhanced tutorials or personalized content recommendations backed by machine learning. Recent developments in neuroscience research could optimize this experience by perfectly tailoring content and delivery to the learner’s brain to maximize retention.

Finally, companies looking for more customized skills may take a larger role in education, providing on-the-job training for specific capabilities. One potential model involves partnering with community colleges to create apprenticeship-style learning, where students work part-time in parallel with their education. Siemens has pioneered such a model in four states and is developing a playbook for other companies to do the same.

Solution 3: Enhance Social Safety Nets to Smooth Automation Impacts
If predicted job losses to automation come to fruition, modernizing existing social safety nets will increasingly become a priority. While the issue of safety nets can become quickly politicized, it is worth noting that each prior technological revolution has come with corresponding changes to the social contract (see below).

The evolving social contract (U.S. examples)
– 1842 | Right to strike
– 1924 | Abolish child labor
– 1935 | Right to unionize
– 1938 | 40-hour work week
– 1962, 1974 | Trade adjustment assistance
– 1964 | Pay discrimination prohibited
– 1970 | Health and safety laws
– 21st century | AI and automation adjustment assistance?

Figure 2. Labor laws have historically adjusted as technology and society progressed

Solutions like universal basic income (no-strings-attached monthly payout to all citizens) are appealing in concept, but somewhat difficult to implement as a first measure in countries such as the US or Japan that already have high debt. Additionally, universal basic income may create dis-incentives to stay in the labor force. A similar cautionary tale in program design was the Trade Adjustment Assistance (TAA), which was designed to protect industries and workers from import competition shocks from globalization, but is viewed as a missed opportunity due to insufficient coverage.

A near-term solution could come in the form of graduated wage insurance (compensation for those forced to take a lower-paying job), including health insurance subsidies to individuals directly impacted by automation, with incentives to return to the workforce quickly. Another topic to tackle is geographic mismatch between workers and jobs, which can be addressed by mobility assistance. Lastly, a training stipend can be issued to individuals as means to upskill.

Policymakers can intervene to reverse recent historical trends that have shifted incomes from labor to capital owners. The balance could be shifted back to labor by placing higher taxes on capital—an example is the recently proposed “robot tax” where the taxation would be on the work rather than the individual executing it. That is, if a self-driving car performs the task that formerly was done by a human, the rideshare company will still pay the tax as if a human was driving.

Other solutions may involve distribution of work. Some countries, such as France and Sweden, have experimented with redistributing working hours. The idea is to cap weekly hours, with the goal of having more people employed and work more evenly spread. So far these programs have had mixed results, with lower unemployment but high costs to taxpayers, but are potential models that can continue to be tested.

We cannot stop growth, nor should we. With the roles in response to this evolution shifting, so should the social contract between the stakeholders. Government will continue to play a critical role as a stabilizing “thumb” in the invisible hand of capitalism, regulating and cushioning against extreme volatility, particularly in labor markets.

However, we already see business leaders taking on some of the role traditionally played by government—thinking about measures to remedy risks of climate change or economic proposals to combat unemployment—in part because of greater agility in adapting to change. Cross-disciplinary collaboration and creative solutions from all parties will be critical in crafting the future economy.

Note: The full paper this article is based on is available here.

Image Credit: Dmitry Kalinovsky / Shutterstock.com Continue reading

Posted in Human Robots

#434685 How Tech Will Let You Learn Anything, ...

Today, over 77 percent of Americans own a smartphone with access to the world’s information and near-limitless learning resources.

Yet nearly 36 million adults in the US are constrained by low literacy skills, excluding them from professional opportunities, prospects of upward mobility, and full engagement with their children’s education.

And beyond its direct impact, low literacy rates affect us all. Improving literacy among adults is predicted to save $230 billion in national healthcare costs and could result in US labor productivity increases of up to 2.5 percent.

Across the board, exponential technologies are making demonetized learning tools, digital training platforms, and literacy solutions more accessible than ever before.

With rising automation and major paradigm shifts underway in the job market, these tools not only promise to make today’s workforce more versatile, but could play an invaluable role in breaking the poverty cycles often associated with low literacy.

Just three years ago, the Barbara Bush Foundation for Family Literacy and the Dollar General Literacy Foundation joined forces to tackle this intractable problem, launching a $7 million Adult Literacy XPRIZE.

Challenging teams to develop smartphone apps that significantly increase literacy skills among adult learners in just 12 months, the competition brought five prize teams to the fore, each targeting multiple demographics across the nation.

Now, after four years of research, prototyping, testing, and evaluation, XPRIZE has just this week announced two grand prize winners: Learning Upgrade and People ForWords.

In this blog, I’ll be exploring the nuts and bolts of our two winning teams and how exponential technologies are beginning to address rapidly shifting workforce demands.

We’ll discuss:

Meeting 100 percent adult literacy rates
Retooling today’s workforce for tomorrow’s job market
Granting the gift of lifelong learning

Let’s dive in.

Adult Literacy XPRIZE
Emphasizing the importance of accessible mediums and scalability, the Adult Literacy XPRIZE called for teams to create mobile solutions that lower the barrier to entry, encourage persistence, develop relevant learning content, and can scale nationally.

Outperforming the competition in two key demographic groups in aggregate—native English speakers and English language learners—teams Learning Upgrade and People ForWords together claimed the prize.

To win, both organizations successfully generated the greatest gains between a pre- and post-test, administered one year apart to learners in a 12-month field test across Los Angeles, Dallas, and Philadelphia.

Prize money in hand, Learning Upgrade and People ForWords are now scaling up their solutions, each targeting a key demographic in America’s pursuit of adult literacy.

Based in San Diego, Learning Upgrade has developed an Android and iOS app that helps students learn English and math through video, songs, and gamification. Offering a total of 21 courses from kindergarten through adult education, Learning Upgrade touts a growing platform of over 900 lessons spanning English, reading, math, and even GED prep.

To further personalize each student’s learning, Learning Upgrade measures time-on-task and builds out formative performance assessments, granting teachers a quantified, real-time view of each student’s progress across both lessons and criteria.

Specialized in English reading skills, Dallas-based People ForWords offers a similarly delocalized model with its mobile game “Codex: Lost Words of Atlantis.” Based on an archaeological adventure storyline, the app features an immersive virtual environment.

Set in the Atlantis Library (now with a 3D rendering underway), Codex takes its students through narrative-peppered lessons covering everything from letter-sound practice to vocabulary reinforcement in a hidden object game.

But while both mobile apps have recruited initial piloting populations, the key to success is scale.

Using a similar incentive prize competition structure to drive recruitment, the second phase of the XPRIZE is a $1 million Barbara Bush Foundation Adult Literacy XPRIZE Communities Competition. For 15 months, the competition will challenge organizations, communities, and individuals alike to onboard adult learners onto both prize-winning platforms and fellow finalist team apps, AmritaCREATE and Cell-Ed.

Each awarded $125,000 for participation in the Communities Competition, AmritaCREATE and Cell-Ed bring yet other nuanced advantages to the table.

While AmritaCREATE curates culturally appropriate e-content relevant to given life skills, Cell-Ed takes a learn-on-the-go approach, offering micro-lessons, on-demand essential skills training, and individualized coaching on any mobile device, no internet required.

Although all these cases target slightly different demographics and problem niches, they converge upon common phenomena: mobility, efficiency, life skill relevance, personalized learning, and practicability.

And what better to scale these benefits than AI and immersive virtual environments?

In the case of education’s growing mobility, 5G and the explosion of connectivity speeds will continue to drive a learn-anytime-anywhere education model, whereby adult users learn on the fly, untethered to web access or rigid time strictures.

As I’ve explored in a previous blog on AI-crowd collaboration, we might also see the rise of AI learning consultants responsible for processing data on how you learn.

Quantifying and analyzing your interaction with course modules, where you get stuck, where you thrive, and what tools cause you ease or frustration, each user’s AI trainer might then issue personalized recommendations based on crowd feedback.

Adding a human touch, each app’s hired teaching consultants would thereby be freed to track many more students’ progress at once, vetting AI-generated tips and adjustments, and offering life coaching along the way.

Lastly, virtual learning environments—and, one day, immersive VR—will facilitate both speed and retention, two of the most critical constraints as learners age.

As I often reference, people generally remember only 10 percent of what we see, 20 percent of what we hear, and 30 percent of what we read…. But over a staggering 90 percent of what we do or experience.

By introducing gamification, immersive testing activities, and visually rich sensory environments, adult literacy platforms have a winning chance at scalability, retention, and user persistence.

Exponential Tools: Training and Retooling a Dynamic Workforce
Beyond literacy, however, virtual and augmented reality have already begun disrupting the professional training market.

As projected by ABI Research, the enterprise VR training market is on track to exceed $6.3 billion in value by 2022.

Leading the charge, Walmart has already implemented VR across 200 Academy training centers, running over 45 modules and simulating everything from unusual customer requests to a Black Friday shopping rush.

Then in September of last year, Walmart committed to a 17,000-headset order of the Oculus Go to equip every US Supercenter, neighborhood market, and discount store with VR-based employee training.

In the engineering world, Bell Helicopter is using VR to massively expedite development and testing of its latest aircraft, FCX-001. Partnering with Sector 5 Digital and HTC VIVE, Bell found it could concentrate a typical six-year aircraft design process into the course of six months, turning physical mockups into CAD-designed virtual replicas.

But beyond the design process itself, Bell is now one of a slew of companies pioneering VR pilot tests and simulations with real-world accuracy. Seated in a true-to-life virtual cockpit, pilots have now tested countless iterations of the FCX-001 in virtual flight, drawing directly onto the 3D model and enacting aircraft modifications in real time.

And in an expansion of our virtual senses, several key players are already working on haptic feedback. In the case of VR flight, French company Go Touch VR is now partnering with software developer FlyInside on fingertip-mounted haptic tech for aviation.

Dramatically reducing time and trouble required for VR-testing pilots, they aim to give touch-based confirmation of every switch and dial activated on virtual flights, just as one would experience in a full-sized cockpit mockup. Replicating texture, stiffness, and even the sensation of holding an object, these piloted devices contain a suite of actuators to simulate everything from a light touch to higher-pressured contact, all controlled by gaze and finger movements.

When it comes to other high-risk simulations, virtual and augmented reality have barely scratched the surface.
Firefighters can now combat virtual wildfires with new platforms like FLAIM Trainer or TargetSolutions. And thanks to the expansion of medical AR/VR services like 3D4Medical or Echopixel, surgeons might soon perform operations on annotated organs and magnified incision sites, speeding up reaction times and vastly improving precision.

But perhaps most urgently, virtual reality will offer an immediate solution to today’s constant industry turnover and large-scale re-education demands.

VR educational facilities with exact replicas of anything from large industrial equipment to minute circuitry will soon give anyone a second chance at the 21st-century job market.

Want to become an electric, autonomous vehicle mechanic at age 44? Throw on a demonetized VR module and learn by doing, testing your prototype iterations at almost zero cost and with no risk of harming others.

Want to be a plasma physicist and play around with a virtual nuclear fusion reactor? Now you’ll be able to simulate results and test out different tweaks, logging Smart Educational Record credits in the process.

As tomorrow’s career model shifts from a “one-and-done graduate degree” to continuous lifelong education, professional VR-based re-education will allow for a continuous education loop, reducing the barrier to entry for anyone wanting to try their hand at a new industry.

Learn Anything, Anytime, at Any Age
As VR and artificial intelligence converge with demonetized mobile connectivity, we are finally witnessing an era in which no one will be left behind.

Whether in pursuit of fundamental life skills, professional training, linguistic competence, or specialized retooling, users of all ages, career paths, income brackets, and goals are now encouraged to be students, no longer condemned to stagnancy.

Traditional constraints need no longer prevent non-native speakers from gaining an equal foothold, or specialists from pivoting into new professions, or low-income parents from staking new career paths.

As exponential technologies drive democratized access, bolstering initiatives such as the Barbara Bush Foundation Adult Literacy XPRIZE are blazing the trail to make education a scalable priority for all.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Iulia Ghimisli / Shutterstock.com Continue reading

Posted in Human Robots