Tag Archives: parts

#435640 Video Friday: This Wearable Robotic Tail ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, Pa., USA
CLAWAR 2019 – August 26-28, 2019 – Kuala Lumpur, Malaysia
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

Lakshmi Nair from Georgia Tech describes some fascinating research towards robots that can create their own tools, as presented at ICRA this year:

Using a novel capability to reason about shape, function, and attachment of unrelated parts, researchers have for the first time successfully trained an intelligent agent to create basic tools by combining objects.

The breakthrough comes from Georgia Tech’s Robot Autonomy and Interactive Learning (RAIL) research lab and is a significant step toward enabling intelligent agents to devise more advanced tools that could prove useful in hazardous – and potentially life-threatening – environments.

[ Lakshmi Nair ]

Victor Barasuol, from the Dynamic Legged Systems Lab at IIT, wrote in to share some new research on their HyQ quadruped that enables sensorless shin collision detection. This helps the robot navigate unstructured environments, and also mitigates all those painful shin strikes, because ouch.

This will be presented later this month at the International Conference on Climbing and Walking Robots (CLAWAR) in Kuala Lumpur, Malaysia.

[ IIT ]

Thanks Victor!

You used to have a tail, you know—as an embryo, about a month in to your development. All mammals used to have tails, and now we just have useless tailbones, which don’t help us with balancing even a little bit. BRING BACK THE TAIL!

The tail, created by Junichi Nabeshima, Kouta Minamizawa, and MHD Yamen Saraiji from Keio University’s Graduate School of Media Design, was presented at SIGGRAPH 2019 Emerging Technologies.

[ Paper ] via [ Gizmodo ]

The noises in this video are fantastic.

[ ESA ]

Apparently the industrial revolution wasn’t a thorough enough beatdown of human knitting, because the robots are at it again.

[ MIT CSAIL ]

Skydio’s drones just keep getting more and more impressive. Now if only they’d make one that I can afford…

[ Skydio ]

The only thing more fun than watching robots is watching people react to robots.

[ SEER ]

There aren’t any robots in this video, but it’s robotics-related research, and very soothing to watch.

[ Stanford ]

#autonomousicecreamtricycle

In case it wasn’t clear, which it wasn’t, this is a Roboy project. And if you didn’t understand that first video, you definitely won’t understand this second one:

Whatever that t-shirt is at the end (Roboy in sunglasses puking rainbows…?) I need one.

[ Roboy ]

By adding electronics and computation technology to a simple cane that has been around since ancient times, a team of researchers at Columbia Engineering have transformed it into a 21st century robotic device that can provide light-touch assistance in walking to the aged and others with impaired mobility.

The light-touch robotic cane, called CANINE, acts as a cane-like mobile assistant. The device improves the individual’s proprioception, or self-awareness in space, during walking, which in turn improves stability and balance.

[ ROAR Lab ]

During the second field experiment for DARPA’s OFFensive Swarm-Enabled Tactics (OFFSET) program, which took place at Fort Benning, Georgia, teams of autonomous air and ground robots tested tactics on a mission to isolate an urban objective. Similar to the way a firefighting crew establishes a boundary around a burning building, they first identified locations of interest and then created a perimeter around the focal point.

[ DARPA ]

I think there’s a bit of new footage here of Ghost Robotics’ Vision 60 quadruped walking around without sensors on unstructured terrain.

[ Ghost Robotics ]

If you’re as tired of passenger drone hype as I am, there’s absolutely no need to watch this video of NEC’s latest hover test.

[ AP ]

As researchers teach robots to perform more and more complex tasks, the need for realistic simulation environments is growing. Existing techniques for closing the reality gap by approximating real-world physics often require extensive real world data and/or thousands of simulation samples. This paper presents TuneNet, a new machine learning-based method to directly tune the parameters of one model to match another using an iterative residual tuning technique. TuneNet estimates the parameter difference between two models using a single observation from the target and minimal simulation, allowing rapid, accurate and sample-efficient parameter estimation.

The system can be trained via supervised learning over an auto-generated simulated dataset. We show that TuneNet can perform system identification, even when the true parameter values lie well outside the distribution seen during training, and demonstrate that simulators tuned with TuneNet outperform existing techniques for predicting rigid body motion. Finally, we show that our method can estimate real-world parameter values, allowing a robot to perform sim-to-real task transfer on a dynamic manipulation task unseen during training. We are also making a baseline implementation of our code available online.

[ Paper ]

Here’s an update on what GITAI has been up to with their telepresence astronaut-replacement robot.

[ GITAI ]

Curiosity captured this 360-degree panorama of a location on Mars called “Teal Ridge” on June 18, 2019. This location is part of a larger region the rover has been exploring called the “clay-bearing unit” on the side of Mount Sharp, which is inside Gale Crater. The scene is presented with a color adjustment that approximates white balancing to resemble how the rocks and sand would appear under daytime lighting conditions on Earth.

[ MSL ]

Some updates (in English) on ROS from ROSCon France. The first is a keynote from Brian Gerkey:

And this second video is from Omri Ben-Bassat, about how to keep your Anki Vector alive using ROS:

All of the ROSCon FR talks are available on Vimeo.

[ ROSCon FR ] Continue reading

Posted in Human Robots

#435619 Video Friday: Watch This Robot Dog ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
RoboBusiness 2019 – October 1-3, 2019 – Santa Clara, CA, USA
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

Team PLUTO (University of Pennsylvania, Ghost Robotics, and Exyn Technologies) put together this video giving us a robot’s-eye-view (or whatever they happen to be using for eyes) of the DARPA Subterranean Challenge tunnel circuits.

[ PLUTO ]

Zhifeng Huang has been improving his jet-stepping humanoid robot, which features new hardware and the ability to take larger and more complex steps.

This video reported the last progress of an ongoing project utilizing ducted-fan propulsion system to improve humanoid robot’s ability in stepping over large ditches. The landing point of the robot’s swing foot can be not only forward but also side direction. With keeping quasi-static balance, the robot was able to step over a ditch with 450mm in width (up to 97% of the robot’s leg’s length) in 3D stepping.

[ Paper ]

Thanks Zhifeng!

These underacuated hands from Matei Ciocarlie’s lab at Columbia are magically able to reconfigure themselves to grasp different object types with just one or two motors.

[ Paper ] via [ ROAM Lab ]

This is one reason we should pursue not “autonomous cars” but “fully autonomous cars” that never require humans to take over. We can’t be trusted.

During our early days as the Google self-driving car project, we invited some employees to test our vehicles on their commutes and weekend trips. What we were testing at the time was similar to the highway driver assist features that are now available on cars today, where the car takes over the boring parts of the driving, but if something outside its ability occurs, the driver has to take over immediately.

What we saw was that our testers put too much trust in that technology. They were doing things like texting, applying makeup, and even falling asleep that made it clear they would not be ready to take over driving if the vehicle asked them to. This is why we believe that nothing short of full autonomy will do.

[ Waymo ]

Buddy is a DIY and fetchingly minimalist social robot (of sorts) that will be coming to Kickstarter this month.

We have created a new arduino kit. His name is Buddy. He is a DIY social robot to serve as a replacement for Jibo, Cozmo, or any of the other bots that are no longer available. Fully 3D printed and supported he adds much more to our series of Arduino STEM robotics kits.

Buddy is able to look around and map his surroundings and react to changes within them. He can be surprised and he will always have a unique reaction to changes. The kit can be built very easily in less than an hour. It is even robust enough to take the abuse that kids can give it in a classroom.

[ Littlebots ]

The android Mindar, based on the Buddhist deity of mercy, preaches sermons at Kodaiji temple in Kyoto, and its human colleagues predict that with artificial intelligence it could one day acquire unlimited wisdom. Developed at a cost of almost $1 million (¥106 million) in a joint project between the Zen temple and robotics professor Hiroshi Ishiguro, the robot teaches about compassion and the dangers of desire, anger and ego.

[ Japan Times ]

I’m not sure whether it’s the sound or what, but this thing scares me for some reason.

[ BIRL ]

This gripper uses magnets as a sort of adjustable spring for dynamic stiffness control, which seems pretty clever.

[ Buffalo ]

What a package of medicine sees while being flown by drone from a hospital to a remote clinic in the Dominican Republic. The drone flew 11 km horizontally and 800 meters vertically, and I can’t even imagine what it would take to make that drive.

[ WeRobotics ]

My first ride in a fully autonomous car was at Stanford in 2009. I vividly remember getting in the back seat of a descendant of Junior, and watching the steering wheel turn by itself as the car executed a perfect parking maneuver. Ten years later, it’s still fun to watch other people have that experience.

[ Waymo ]

Flirtey, the pioneer of the commercial drone delivery industry, has unveiled the much-anticipated first video of its next-generation delivery drone, the Flirtey Eagle. The aircraft designer and manufacturer also unveiled the Flirtey Portal, a sophisticated take off and landing platform that enables scalable store-to-door operations; and an autonomous software platform that enables drones to deliver safely to homes.

[ Flirtey ]

EPFL scientists are developing new approaches for improved control of robotic hands – in particular for amputees – that combines individual finger control and automation for improved grasping and manipulation. This interdisciplinary proof-of-concept between neuroengineering and robotics was successfully tested on three amputees and seven healthy subjects.

[ EPFL ]

This video is a few years old, but we’ll take any excuse to watch the majestic sage-grouse be majestic in all their majesticness.

[ UC Davis ]

I like the idea of a game of soccer (or, football to you weirdos in the rest of the world) where the ball has a mind of its own.

[ Sphero ]

Looks like the whole delivery glider idea is really taking off! Or, you know, not taking off.

Weird that they didn’t show the landing, because it sure looked like it was going to plow into the side of the hill at full speed.

[ Yates ] via [ sUAS News ]

This video is from a 2018 paper, but it’s not like we ever get tired of seeing quadrupeds do stuff, right?

[ MIT ]

Founder and Head of Product, Ian Bernstein, and Head of Engineering, Morgan Bell, have been involved in the Misty project for years and they have learned a thing or two about building robots. Hear how and why Misty evolved into a robot development platform, learn what some of the earliest prototypes did (and why they didn’t work for what we envision), and take a deep dive into the technology decisions that form the Misty II platform.

[ Misty Robotics ]

Lex Fridman interviews Vijay Kumar on the Artifiical Intelligence Podcast.

[ AI Podcast ]

This week’s CMU RI Seminar is from Ross Knepper at Cornell, on Formalizing Teamwork in Human-Robot Interaction.

Robots out in the world today work for people but not with people. Before robots can work closely with ordinary people as part of a human-robot team in a home or office setting, robots need the ability to acquire a new mix of functional and social skills. Working with people requires a shared understanding of the task, capabilities, intentions, and background knowledge. For robots to act jointly as part of a team with people, they must engage in collaborative planning, which involves forming a consensus through an exchange of information about goals, capabilities, and partial plans. Often, much of this information is conveyed through implicit communication. In this talk, I formalize components of teamwork involving collaboration, communication, and representation. I illustrate how these concepts interact in the application of social navigation, which I argue is a first-class example of teamwork. In this setting, participants must avoid collision by legibly conveying intended passing sides via nonverbal cues like path shape. A topological representation using the braid groups enables the robot to reason about a small enumerable set of passing outcomes. I show how implicit communication of topological group plans achieves rapid covergence to a group consensus, and how a robot in the group can deliberately influence the ultimate outcome to maximize joint performance, yielding pedestrian comfort with the robot.

[ CMU RI ]

In this week’s episode of Robots in Depth, Per speaks with Julien Bourgeois about Claytronics, a project from Carnegie Mellon and Intel to develop “programmable matter.”

Julien started out as a computer scientist. He was always interested in robotics privately but then had the opportunity to get into micro robots when his lab was merged into the FEMTO-ST Institute. He later worked with Seth Copen Goldstein at Carnegie Mellon on the Claytronics project.

Julien shows an enlarged mock-up of the small robots that make up programmable matter, catoms, and speaks about how they are designed. Currently he is working on a unit that is one centimeter in diameter and he shows us the very small CPU that goes into that model.

[ Robots in Depth ] Continue reading

Posted in Human Robots

#435605 All of the Winners in the DARPA ...

The first competitive event in the DARPA Subterranean Challenge concluded last week—hopefully you were able to follow along on the livestream, on Twitter, or with some of the articles that we’ve posted about the event. We’ll have plenty more to say about how things went for the SubT teams, but while they take a bit of a (well earned) rest, we can take a look at the winning teams as well as who won DARPA’s special superlative awards for the competition.

First Place: Team Explorer (25/40 artifacts found)
With their rugged, reliable robots featuring giant wheels and the ability to drop communications nodes, Team Explorer was in the lead from day 1, scoring in double digits on every single run.

Second Place: Team CoSTAR (11/40 artifacts found)
Team CoSTAR had one of the more diverse lineups of robots, and they switched up which robots they decided to send into the mine as they learned more about the course.

Third Place: Team CTU-CRAS (10/40 artifacts found)
While many teams came to SubT with DARPA funding, Team CTU-CRAS was self-funded, making them eligible for a special $200,000 Tunnel Circuit prize.

DARPA also awarded a bunch of “superlative awards” after SubT:

Most Accurate Artifact: Team Explorer

To score a point, teams had to submit the location of an artifact that was correct to within 5 meters of the artifact itself. However, DARPA was tracking the artifact locations with much higher precision—for example, the “zero” point on the backpack artifact was the center of the label on the front, which DARPA tracked to the millimeter. Team Explorer managed to return the location of a backpack with an error of just 0.18 meter, which is kind of amazing.

Down to the Wire: Team CSIRO Data61

With just an hour to find as many artifacts as possible, teams had to find the right balance between sending robots off to explore and bringing them back into communication range to download artifact locations. Team CSIRO Data61 cut their last point pretty close, sliding their final point in with a mere 22 seconds to spare.

Most Distinctive Robots: Team Robotika

Team Robotika had some of the quirkiest and most recognizable robots, which DARPA recognized with the “Most Distinctive” award. Robotika told us that part of the reason for that distinctiveness was practical—having a robot that was effectively in two parts meant that they could disassemble it so that it would fit in the baggage compartment of an airplane, very important for a team based in the Czech Republic.

Most Robots Per Person: Team Coordinated Robotics

Kevin Knoedler, who won NASA’s Space Robotics Challenge entirely by himself, brought his own personal swarm of drones to SubT. With a ratio of seven robots to one human, Kevin was almost certainly the hardest working single human at the challenge.

Fan Favorite: Team NCTU

Photo: Evan Ackerman/IEEE Spectrum

The Fan Favorite award went to the team that was most popular on Twitter (with the #SubTChallenge hashtag), and it may or may not be the case that I personally tweeted enough about Team NCTU’s blimp to win them this award. It’s also true that whenever we asked anyone on other teams what their favorite robot was (besides their own, of course), the blimp was overwhelmingly popular. So either way, the award is well deserved.

DARPA shared this little behind-the-scenes clip of the blimp in action (sort of), showing what happened to the poor thing when the mine ventilation system was turned on between runs and DARPA staff had to chase it down and rescue it:

The thing to keep in mind about the results of the Tunnel Circuit is that unlike past DARPA robotics challenges (like the DRC), they don’t necessarily indicate how things are going to go for the Urban or Cave circuits because of how different things are going to be. Explorer did a great job with a team of rugged wheeled vehicles, which turned out to be ideal for navigating through mines, but they’re likely going to need to change things up substantially for the rest of the challenges, where the terrain will be much more complex.

DARPA hasn’t provided any details on the location of the Urban Circuit yet; all we know is that it’ll be sometime in February 2020. This gives teams just six months to take all the lessons that they learned from the Tunnel Circuit and update their hardware, software, and strategies. What were those lessons, and what do teams plan to do differently next year? Check back next week, and we’ll tell you.

[ DARPA SubT ] Continue reading

Posted in Human Robots

#435591 Video Friday: This Robotic Thread Could ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

Eight engineering students from ETH Zurich are working on a year-long focus project to develop a multimodal robot called Dipper, which can fly, swim, dive underwater, and manage that difficult air-water transition:

The robot uses one motor to selectively drive either a propeller or a marine screw depending on whether it’s in flight or not. We’re told that getting the robot to autonomously do the water to air transition is still a work in progress, but that within a few weeks things should be much smoother.

[ Dipper ]

Thanks Simon!

Giving a jellyfish a hug without stressing them out is exactly as hard as you think, but Harvard’s robot will make sure that all jellyfish get the emotional (and physical) support that they need.

The gripper’s six “fingers” are composed of thin, flat strips of silicone with a hollow channel inside bonded to a layer of flexible but stiffer polymer nanofibers. The fingers are attached to a rectangular, 3D-printed plastic “palm” and, when their channels are filled with water, curl in the direction of the nanofiber-coated side. Each finger exerts an extremely low amount of pressure — about 0.0455 kPA, or less than one-tenth of the pressure of a human’s eyelid on their eye. By contrast, current state-of-the-art soft marine grippers, which are used to capture delicate but more robust animals than jellyfish, exert about 1 kPA.

The gripper was successfully able to trap each jellyfish against the palm of the device, and the jellyfish were unable to break free from the fingers’ grasp until the gripper was depressurized. The jellyfish showed no signs of stress or other adverse effects after being released, and the fingers were able to open and close roughly 100 times before showing signs of wear and tear.

[ Harvard ]

MIT engineers have developed a magnetically steerable, thread-like robot that can actively glide through narrow, winding pathways, such as the labyrinthine vasculature of the brain. In the future, this robotic thread may be paired with existing endovascular technologies, enabling doctors to remotely guide the robot through a patient’s brain vessels to quickly treat blockages and lesions, such as those that occur in aneurysms and stroke.

[ MIT ]

See NASA’s next Mars rover quite literally coming together inside a clean room at the Jet Propulsion Laboratory. This behind-the-scenes look at what goes into building and preparing a rover for Mars, including extensive tests in simulated space environments, was captured from March to July 2019. The rover is expected to launch to the Red Planet in summer 2020 and touch down in February 2021.

The Mars 2020 rover doesn’t have a name yet, but you can give it one! As long as you’re not too old! Which you probably are!

[ Mars 2020 ]

I desperately wish that we could watch this next video at normal speed, not just slowed down, but it’s quite impressive anyway.

Here’s one more video from the Namiki Lab showing some high speed tracking with a pair of very enthusiastic robotic cameras:

[ Namiki Lab ]

Normally, tedious modeling of mechanics, electronics, and information science is required to understand how insects’ or robots’ moving parts coordinate smoothly to take them places. But in a new study, biomechanics researchers at the Georgia Institute of Technology boiled down the sprints of cockroaches to handy principles and equations they then used to make a test robot amble about better.

[ Georgia Tech ]

More magical obstacle-dodging footage from Skydio’s still secret new drone.

We’ve been hard at work extending the capabilities of our upcoming drone, giving you ways to get the control you want without the stress of crashing. The result is you can fly in ways, and get shots, that would simply be impossible any other way. How about flying through obstacles at full speed, backwards?

[ Skydio ]

This is a cute demo with Misty:

[ Misty Robotics ]

We’ve seen pieces of hardware like this before, but always made out of hard materials—a soft version is certainly something new.

Utilizing vacuum power and soft material actuators, we have developed a soft reconfigurable surface (SRS) with multi-modal control and performance capabilities. The SRS is comprised of a square grid array of linear vacuum-powered soft pneumatic actuators (linear V-SPAs), built into plug-and-play modules which enable the arrangement, consolidation, and control of many DoF.

[ RRL ]

The EksoVest is not really a robot, but it’ll make you a cyborg! With super strength!

“This is NOT intended to give you super strength but instead give you super endurance and reduce fatigue so that you have more energy and less soreness at the end of your shift.”

Drat!

[ EksoVest ]

We have created a solution for parents, grandparents, and their children who are living separated. This is an amazing tool to stay connected from a distance through the intimacy that comes through interactive play with a child. For parents who travel for work, deployed military, and families spread across the country, the Cushybot One is much more than a toy; it is the opportunity for maintaining a deep connection with your young child from a distance.

Hmm.

I think the concept here is great, but it’s going to be a serious challenge to successfully commercialize.

[ Indiegogo ]

What happens when you equip RVR with a parachute and send it off a cliff? Watch this episode of RVR Launchpad to find out – then go Behind the Build to see how we (eventually) accomplished this high-flying feat.

[ Sphero ]

These omnidirectional crawler robots aren’t new, but that doesn’t keep them from being fun to watch.

[ NEDO ] via [ Impress ]

We’ll finish up the week with a couple of past ICRA and IROS keynote talks—one by Gill Pratt on The Reliability Challenges of Autonomous Driving, and the other from Peter Hart, on Making Shakey.

[ IEEE RAS ] Continue reading

Posted in Human Robots

#435583 Soft Self-Healing Materials for Robots ...

If there’s one thing we know about robots, it’s that they break. They break, like, literally all the time. The software breaks. The hardware breaks. The bits that you think could never, ever, ever possibly break end up breaking just when you need them not to break the most, and then you have to try to explain what happened to your advisor who’s been standing there watching your robot fail and then stay up all night fixing the thing that seriously was not supposed to break.

While most of this is just a fundamental characteristic of robots that can’t be helped, the European Commission is funding a project called SHERO (Self HEaling soft RObotics) to try and solve at least some of those physical robot breaking problems through the use of structural materials that can autonomously heal themselves over and over again.

SHERO is a three year, €3 million collaboration between Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris), and Swiss Federal Laboratories for Materials Science and Technology (Empa). As the name SHERO suggests, the goal of the project is to develop soft materials that can completely recover from the kinds of damage that robots are likely to suffer in day to day operations, as well as the occasional more extreme accident.

Most materials, especially soft materials, are fixable somehow, whether it’s with super glue or duct tape. But fixing things involves a human first identifying when they’re broken, and then performing a potentially skill, labor, time, and money intensive task. SHERO’s soft materials will, eventually, make this entire process autonomous, allowing robots to self-identify damage and initiate healing on their own.

Photos: SHERO Project

The damaged robot finger [top] can operate normally after healing itself.

How the self-healing material works
What these self-healing materials can do is really pretty amazing. The researchers are actually developing two different types—the first one heals itself when there’s an application of heat, either internally or externally, which gives some control over when and how the healing process starts. For example, if the robot is handling stuff that’s dirty, you’d want to get it cleaned up before healing it so that dirt doesn’t become embedded in the material. This could mean that the robot either takes itself to a heating station, or it could activate some kind of embedded heating mechanism to be more self-sufficient.

The second kind of self-healing material is autonomous, in that it will heal itself at room temperature without any additional input, and is probably more suitable for relatively minor scrapes and cracks. Here are some numbers about how well the healing works:

Autonomous self-healing polymers do not require heat. They can heal damage at room temperature. Developing soft robotic systems from autonomous self-healing polymers excludes the need of additional heating devices… The healing however takes some time. The healing efficiency after 3 days, 7 days and 14 days is respectively 62 percent, 91 percent and 97 percent.

This material was used to develop a healable soft pneumatic hand. Relevant large cuts can be healed entirely without the need of external heat stimulus. Depending on the size of the damage and even more on the location of damage, the healing takes only seconds or up to a week. Damage on locations on the actuator that are subjected to very small stresses during actuation was healed instantaneously. Larger damages, like cutting the actuator completely in half, took 7 days to heal. But even this severe damage could be healed completely without the need of any external stimulus.

Applications of self-healing robots
Both of these materials can be mixed together, and their mechanical properties can be customized so that the structure that they’re a part of can be tuned to move in different ways. The researchers also plan on introducing flexible conductive sensors into the material, which will help sense damage as well as providing position feedback for control systems. A lot of development will happen over the next few years, and for more details, we spoke with Bram Vanderborght at Vrije Universiteit in Brussels.

IEEE Spectrum: How easy or difficult or expensive is it to produce these materials? Will they add significant cost to robotic grippers?

Bram Vanderborght: They are definitely more expensive materials, but it’s also a matter of size of production. At the moment, we’ve made a few kilograms of the material (enough to make several demonstrators), and the price already dropped significantly from when we ordered 100 grams of the material in the first phase of the project. So probably the cost of the gripper will be higher [than a regular gripper], but you won’t need to replace the gripper as often as other grippers that need to be replaced due to wear, so it can be an advantage.

Moreover due to the method of 3D printing the material, the surface is smoother and airtight (so no post-processing is required to make it airtight). Also, the smooth surface is better to avoid contamination for food handling, for example.

In commercial or industrial applications, gradual fatigue seems to be a more common issue than more abrupt trauma like cuts. How well does the self-healing work to improve durability over long periods of time?

We did not test for gradual fatigue over very long times. But both macroscopic and microscopic damage can be healed. So hopefully it can provide an answer here as well.

Image: SHERO Project

After developing a self-healing robot gripper, the researchers plan to use similar materials to build parts that can be used as the skeleton of robots, allowing them to repair themselves on a regular basis.

How much does the self-healing capability restrict the material properties? What are the limits for softness or hardness or smoothness or other characteristics of the material?

Typically the mechanical properties of networked polymers are much better than thermoplastics. Our material is a networked polymer but in which the crosslinks are reversible. We can change quite a lot of parameters in the design of the materials. So we can develop very stiff (fracture strain at 1.24 percent) and very elastic materials (fracture strain at 450 percent). The big advantage that our material has is we can mix it to have intermediate properties. Moreover, at the interface of the materials with different mechanical properties, we have the same chemical bonds, so the interface is perfect. While other materials, they may need to glue it, which gives local stresses and a weak spot.

When the material heals itself, is it less structurally sound in that spot? Can it heal damage that happens to the same spot over and over again?

In theory we can heal it an infinite amount of times. When the wound is not perfectly aligned, of course in that spot it will become weaker. Also too high temperatures lead to irreversible bonds, and impurities lead to weak spots.

Besides grippers and skins, what other potential robotics applications would this technology be useful for?

Most of self healing materials available now are used for coatings. What we are developing are structural components, therefore the mechanical properties of the material need to be good for such applications. So maybe part of the skeleton of the robot can be developed with such materials to make it lighter, since can be designed for regular repair. And for exceptional loads, it breaks and can be repaired like our human body.

[ SHERO Project ] Continue reading

Posted in Human Robots